dc.contributor.author |
Rademeyer, E
|
|
dc.contributor.author |
Van der Walt, Christiaan M
|
|
dc.contributor.author |
De Waal, A
|
|
dc.date.accessioned |
2017-07-28T09:08:43Z |
|
dc.date.available |
2017-07-28T09:08:43Z |
|
dc.date.issued |
2016-12 |
|
dc.identifier.citation |
Rademeyer, E., Van der Walt, C.M. and De Waal, A. 2016. Low default credit scoring using two-class non-parametric kernel density estimation. Proceedings of the Twenty-Seventh Annual Symposium of the Pattern Recognition Association of South Africa, 30 November - 2 December 2016, Stellenbosch, South Africa. DOI: 10.1109/RoboMech.2016.7813152 |
en_US |
dc.identifier.isbn |
978-1-5090-3335-5 |
|
dc.identifier.uri |
http://ieeexplore.ieee.org/document/7813152/
|
|
dc.identifier.uri |
DOI: 10.1109/RoboMech.2016.7813152
|
|
dc.identifier.uri |
http://hdl.handle.net/10204/9369
|
|
dc.description |
Copyright: 2016 IEEE. Due to copyright restrictions, the attached PDF file only contains the abstract of the full text item. For access to the full text item, kindly consult the publisher's website. |
en_US |
dc.description.abstract |
This paper investigates the performance of two-class classification credit scoring data sets with low default ratios. The standard two-class parametric Gaussian and non-parametric Parzen classifiers are extended, using Bayes’ rule, to include either a class imbalance or a Bernoulli prior. This is done with the aim of addressing the low default probability problem. Furthermore, the performance of Parzen classification with Silverman and Minimum Leave-one-out Entropy (MLE) Gaussian kernel bandwidth estimation is also investigated. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
IEEE |
en_US |
dc.relation.ispartofseries |
Worklist;18147 |
|
dc.subject |
Credit scoring |
en_US |
dc.subject |
Modelling credit risk |
en_US |
dc.subject |
Gaussian classifiers |
en_US |
dc.subject |
Parzen classifiers |
en_US |
dc.title |
Low default credit scoring using two-class non-parametric kernel density estimation |
en_US |
dc.type |
Conference Presentation |
en_US |
dc.identifier.apacitation |
Rademeyer, E., Van der Walt, C. M., & De Waal, A. (2016). Low default credit scoring using two-class non-parametric kernel density estimation. IEEE. http://hdl.handle.net/10204/9369 |
en_ZA |
dc.identifier.chicagocitation |
Rademeyer, E, Christiaan M Van der Walt, and A De Waal. "Low default credit scoring using two-class non-parametric kernel density estimation." (2016): http://hdl.handle.net/10204/9369 |
en_ZA |
dc.identifier.vancouvercitation |
Rademeyer E, Van der Walt CM, De Waal A, Low default credit scoring using two-class non-parametric kernel density estimation; IEEE; 2016. http://hdl.handle.net/10204/9369 . |
en_ZA |
dc.identifier.ris |
TY - Conference Presentation
AU - Rademeyer, E
AU - Van der Walt, Christiaan M
AU - De Waal, A
AB - This paper investigates the performance of two-class classification credit scoring data sets with low default ratios. The standard two-class parametric Gaussian and non-parametric Parzen classifiers are extended, using Bayes’ rule, to include either a class imbalance or a Bernoulli prior. This is done with the aim of addressing the low default probability problem. Furthermore, the performance of Parzen classification with Silverman and Minimum Leave-one-out Entropy (MLE) Gaussian kernel bandwidth estimation is also investigated.
DA - 2016-12
DB - ResearchSpace
DP - CSIR
KW - Credit scoring
KW - Modelling credit risk
KW - Gaussian classifiers
KW - Parzen classifiers
LK - https://researchspace.csir.co.za
PY - 2016
SM - 978-1-5090-3335-5
T1 - Low default credit scoring using two-class non-parametric kernel density estimation
TI - Low default credit scoring using two-class non-parametric kernel density estimation
UR - http://hdl.handle.net/10204/9369
ER -
|
en_ZA |