dc.contributor.author |
Claessens, R
|
|
dc.contributor.author |
De Waal, A
|
|
dc.contributor.author |
De Villiers, P
|
|
dc.contributor.author |
Penders, A
|
|
dc.contributor.author |
Pavlin, G
|
|
dc.contributor.author |
Tuyls, K
|
|
dc.date.accessioned |
2016-10-13T13:40:18Z |
|
dc.date.available |
2016-10-13T13:40:18Z |
|
dc.date.issued |
2015-05 |
|
dc.identifier.citation |
Claessens, R., De Waal. A., De Villers, P. Penders, A, Pavlin, G. and Tuyls, K. 2015. Multi-agent target tracking using particle filters enhanced with context data. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multi-agent Systems, Istanbul, 4-8 May 2015, pp 1933-1934. |
en_US |
dc.identifier.uri |
http://www.aamas2015.com/en/AAMAS_2015_USB/aamas/p1933.pdf
|
|
dc.identifier.uri |
http://hdl.handle.net/10204/8828
|
|
dc.description |
Proceedings of the 2015 International Conference on Autonomous Agents and Multi-agent Systems, Istanbul, 4-8 May 2015. . Due to copyright restrictions, the attached PDF file only contains the abstract of the full text item. |
en_US |
dc.description.abstract |
The proposed framework for Multi-Agent Target Tracking supports i) tracking of objects and ii) search and rescue based on the fusion of very heterogeneous data. The system is based on a novel approach to fusing sensory observations, intelligence and context data (i.e. the data about the environmental conditions relevant for the tracked target). In contrast to the traditional approaches to target tracking (e.g. maritime or aviation domains), the emphasis is on tracking with low quality data sampled at low frequencies from different sensors dispersed throughout a larger area that may be only partially covered. In this demo we illustrate a live, real-time target tracking application that uses a Multi-Agent System approach to find and connect relevant information sources. |
en_US |
dc.language.iso |
en |
en_US |
dc.relation.ispartofseries |
Worklist;16106 |
|
dc.subject |
Distributed information fusion |
en_US |
dc.subject |
Bayesian networks |
en_US |
dc.subject |
Particle filters |
en_US |
dc.subject |
Target tracking |
en_US |
dc.subject |
Situation & threat assessment |
en_US |
dc.title |
Multi-agent target tracking using particle filters enhanced with context data |
en_US |
dc.type |
Other Material |
en_US |
dc.identifier.apacitation |
Claessens, R., De Waal, A., De Villiers, P., Penders, A., Pavlin, G., & Tuyls, K. 2015. <i>Multi-agent target tracking using particle filters enhanced with context data.</i> http://hdl.handle.net/10204/8828 |
en_ZA |
dc.identifier.chicagocitation |
Claessens, R, A De Waal, P De Villiers, A Penders, G Pavlin, and K Tuyls. 2015. <i>Multi-agent target tracking using particle filters enhanced with context data.</i> http://hdl.handle.net/10204/8828 |
en_ZA |
dc.identifier.vancouvercitation |
Claessens R, De Waal A, De Villiers P, Penders A, Pavlin G, Tuyls K. 2015. <i>Multi-agent target tracking using particle filters enhanced with context data.</i> http://hdl.handle.net/10204/8828 |
en_ZA |
dc.identifier.ris |
TY - Other Material
AU - Claessens, R
AU - De Waal, A
AU - De Villiers, P
AU - Penders, A
AU - Pavlin, G
AU - Tuyls, K
AB - The proposed framework for Multi-Agent Target Tracking supports i) tracking of objects and ii) search and rescue based on the fusion of very heterogeneous data. The system is based on a novel approach to fusing sensory observations, intelligence and context data (i.e. the data about the environmental conditions relevant for the tracked target). In contrast to the traditional approaches to target tracking (e.g. maritime or aviation domains), the emphasis is on tracking with low quality data sampled at low frequencies from different sensors dispersed throughout a larger area that may be only partially covered. In this demo we illustrate a live, real-time target tracking application that uses a Multi-Agent System approach to find and connect relevant information sources.
DA - 2015-05
DB - ResearchSpace
DP - CSIR
KW - Distributed information fusion
KW - Bayesian networks
KW - Particle filters
KW - Target tracking
KW - Situation & threat assessment
LK - https://researchspace.csir.co.za
PY - 2015
T1 - Multi-agent target tracking using particle filters enhanced with context data
TI - Multi-agent target tracking using particle filters enhanced with context data
UR - http://hdl.handle.net/10204/8828
ER -
|
en_ZA |