dc.contributor.author |
Van Deventer, Heidi
|
|
dc.contributor.author |
Cho, Moses A
|
|
dc.date.accessioned |
2014-08-27T12:39:51Z |
|
dc.date.available |
2014-08-27T12:39:51Z |
|
dc.date.issued |
2014-07 |
|
dc.identifier.citation |
Van Deventer, H. and Cho, M.A. 2014. Assessing leaf spectral properties of Phragmites australis impacted by acid mine drainage. Assessing leaf spectral properties of Phragmites australis impacted by acid mine drainage, vol. 110(7/8), pp 1-12 |
en_US |
dc.identifier.issn |
0038-2353 |
|
dc.identifier.uri |
http://www.sajs.co.za/sites/default/files/publications/pdf/van%20Deventer_Research%20Article.pdf
|
|
dc.identifier.uri |
http://hdl.handle.net/10204/7646
|
|
dc.description |
Copyright: 2014 AOSIS Open Journals. Published in South African Journal of Science, vol. 110(7/8), pp 1-12 |
en_US |
dc.description.abstract |
The decanting of acid mine drainage (AMD) from the Western Basin on the Witwatersrand in late 2010 raised concerns about AMD risks in other gold, coal and copper mining areas of South Africa. Field spectroscopy and the use of vegetation indices could offer an affordable and easy means of monitoring the impact of mine water and/or AMD on vegetation. The impact of raw and treated mine water or contaminated soil on wetland vegetation often manifests in growth inhibition and reduction of foliar pigments and nutrient levels. Surveying the impact on wetland vegetation or underlying soils can be difficult and expensive considering the cost of laboratory analysis of samples. The potential of field spectroscopy for detecting the impact of mine water on wetland vegetation was examined by assessing (1) whether there was a significant difference in leaf spectra between sites receiving mine water and a non-impacted control site and (2) whether there was a gradation of vegetation condition downstream from the decanting site. Two vegetation indices were derived from portable field spectrometer-measured spectra of five green leaves of Phragmites australis – the chlorophyll red edge position (REP) and the normalised difference vegetation index (NDVI) – for two dormant (winter) and peak growth (summer) seasons in 2011–2012. Mean REP and NDVI values were significantly (p<0.05) lower for affected sites compared to the control site for both seasons and years. The range of REP values for young green leaves in winter for affected sites was 695–720 nm compared to the narrower range of 705–721 nm for the control site. The mean REP values for young green leaves in winter was 708 nm for the affected sites compared to 716 nm for the control site. The downstream gradation, however, fluctuated for REP and NDVI over the study period. We conclude that field spectroscopy shows potential to serve as a relatively quick and affordable means to assess the condition and health of vegetation affected by AMD. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
AOSIS Open Journals |
en_US |
dc.relation.ispartofseries |
Workflow;13311 |
|
dc.subject |
Acid mine drainage |
en_US |
dc.subject |
AMD |
en_US |
dc.subject |
Contaminated soil |
en_US |
dc.subject |
Wetland vegetation |
en_US |
dc.subject |
Leaf spectra |
en_US |
dc.subject |
Chlorophyll red edge position |
en_US |
dc.subject |
Field spectroscopy |
en_US |
dc.subject |
Normalised difference vegetation index |
en_US |
dc.subject |
NDVI |
en_US |
dc.subject |
Phragmites australis |
en_US |
dc.title |
Assessing leaf spectral properties of Phragmites australis impacted by acid mine drainage |
en_US |
dc.type |
Article |
en_US |
dc.identifier.apacitation |
Van Deventer, H., & Cho, M. A. (2014). Assessing leaf spectral properties of Phragmites australis impacted by acid mine drainage. http://hdl.handle.net/10204/7646 |
en_ZA |
dc.identifier.chicagocitation |
Van Deventer, Heidi, and Moses A Cho "Assessing leaf spectral properties of Phragmites australis impacted by acid mine drainage." (2014) http://hdl.handle.net/10204/7646 |
en_ZA |
dc.identifier.vancouvercitation |
Van Deventer H, Cho MA. Assessing leaf spectral properties of Phragmites australis impacted by acid mine drainage. 2014; http://hdl.handle.net/10204/7646. |
en_ZA |
dc.identifier.ris |
TY - Article
AU - Van Deventer, Heidi
AU - Cho, Moses A
AB - The decanting of acid mine drainage (AMD) from the Western Basin on the Witwatersrand in late 2010 raised concerns about AMD risks in other gold, coal and copper mining areas of South Africa. Field spectroscopy and the use of vegetation indices could offer an affordable and easy means of monitoring the impact of mine water and/or AMD on vegetation. The impact of raw and treated mine water or contaminated soil on wetland vegetation often manifests in growth inhibition and reduction of foliar pigments and nutrient levels. Surveying the impact on wetland vegetation or underlying soils can be difficult and expensive considering the cost of laboratory analysis of samples. The potential of field spectroscopy for detecting the impact of mine water on wetland vegetation was examined by assessing (1) whether there was a significant difference in leaf spectra between sites receiving mine water and a non-impacted control site and (2) whether there was a gradation of vegetation condition downstream from the decanting site. Two vegetation indices were derived from portable field spectrometer-measured spectra of five green leaves of Phragmites australis – the chlorophyll red edge position (REP) and the normalised difference vegetation index (NDVI) – for two dormant (winter) and peak growth (summer) seasons in 2011–2012. Mean REP and NDVI values were significantly (p<0.05) lower for affected sites compared to the control site for both seasons and years. The range of REP values for young green leaves in winter for affected sites was 695–720 nm compared to the narrower range of 705–721 nm for the control site. The mean REP values for young green leaves in winter was 708 nm for the affected sites compared to 716 nm for the control site. The downstream gradation, however, fluctuated for REP and NDVI over the study period. We conclude that field spectroscopy shows potential to serve as a relatively quick and affordable means to assess the condition and health of vegetation affected by AMD.
DA - 2014-07
DB - ResearchSpace
DP - CSIR
KW - Acid mine drainage
KW - AMD
KW - Contaminated soil
KW - Wetland vegetation
KW - Leaf spectra
KW - Chlorophyll red edge position
KW - Field spectroscopy
KW - Normalised difference vegetation index
KW - NDVI
KW - Phragmites australis
LK - https://researchspace.csir.co.za
PY - 2014
SM - 0038-2353
T1 - Assessing leaf spectral properties of Phragmites australis impacted by acid mine drainage
TI - Assessing leaf spectral properties of Phragmites australis impacted by acid mine drainage
UR - http://hdl.handle.net/10204/7646
ER -
|
en_ZA |