dc.contributor.author |
Boubaha, B
|
|
dc.contributor.author |
Naidoo, Darryl
|
|
dc.contributor.author |
Godin, T
|
|
dc.contributor.author |
Fromager, M
|
|
dc.contributor.author |
Forbes, A
|
|
dc.contributor.author |
Aït-Ameur, K
|
|
dc.date.accessioned |
2014-08-15T13:05:49Z |
|
dc.date.available |
2014-08-15T13:05:49Z |
|
dc.date.issued |
2013-08 |
|
dc.identifier.citation |
Boubaha, B, Naidoo, D, Godin, T, Fromager, M, Forbes, A and Aït-Ameur, K. 2013. Spatial properties of coaxial superposition of two coherent Gaussian beams. Applied Optics, vol. 52(23), pp 5766-5772 |
en_US |
dc.identifier.issn |
1559-128X |
|
dc.identifier.uri |
http://www.ncbi.nlm.nih.gov/pubmed/23938430
|
|
dc.identifier.uri |
http://hdl.handle.net/10204/7601
|
|
dc.description |
Copyright: 2013 Optical Society of America. This journal authorizes the publication of the information herewith contained. Published in Applied Optics, vol. 52(23), pp 5766-5772 |
en_US |
dc.description.abstract |
In this paper, we explore theoretically and experimentally the laser beam shaping ability resulting from the coaxial superposition of two coherent Gaussian beams (GBs). This technique is classified under interferometric laser beam shaping techniques contrasting with the usual ones based on diffraction. The experimental setup does not involve the use of some two-wave interferometer but uses a spatial light modulator for the generation of the necessary interference term. This allows one to avoid the thermal drift occurring in interferometers and gives a total flexibility of the key parameter setting the beam transformation. In particular, we demonstrate the reshaping of a GB into a bottle beam or top-hat beam in the focal plane of a focusing lens. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
Optical Society of America |
en_US |
dc.relation.ispartofseries |
Workflow;13118 |
|
dc.subject |
Laser beam shaping |
en_US |
dc.subject |
Gaussian beams |
en_US |
dc.subject |
Interferometric laser beam shaping |
en_US |
dc.title |
Spatial properties of coaxial superposition of two coherent Gaussian beams |
en_US |
dc.type |
Article |
en_US |
dc.identifier.apacitation |
Boubaha, B., Naidoo, D., Godin, T., Fromager, M., Forbes, A., & Aït-Ameur, K. (2013). Spatial properties of coaxial superposition of two coherent Gaussian beams. http://hdl.handle.net/10204/7601 |
en_ZA |
dc.identifier.chicagocitation |
Boubaha, B, Darryl Naidoo, T Godin, M Fromager, A Forbes, and K Aït-Ameur "Spatial properties of coaxial superposition of two coherent Gaussian beams." (2013) http://hdl.handle.net/10204/7601 |
en_ZA |
dc.identifier.vancouvercitation |
Boubaha B, Naidoo D, Godin T, Fromager M, Forbes A, Aït-Ameur K. Spatial properties of coaxial superposition of two coherent Gaussian beams. 2013; http://hdl.handle.net/10204/7601. |
en_ZA |
dc.identifier.ris |
TY - Article
AU - Boubaha, B
AU - Naidoo, Darryl
AU - Godin, T
AU - Fromager, M
AU - Forbes, A
AU - Aït-Ameur, K
AB - In this paper, we explore theoretically and experimentally the laser beam shaping ability resulting from the coaxial superposition of two coherent Gaussian beams (GBs). This technique is classified under interferometric laser beam shaping techniques contrasting with the usual ones based on diffraction. The experimental setup does not involve the use of some two-wave interferometer but uses a spatial light modulator for the generation of the necessary interference term. This allows one to avoid the thermal drift occurring in interferometers and gives a total flexibility of the key parameter setting the beam transformation. In particular, we demonstrate the reshaping of a GB into a bottle beam or top-hat beam in the focal plane of a focusing lens.
DA - 2013-08
DB - ResearchSpace
DP - CSIR
KW - Laser beam shaping
KW - Gaussian beams
KW - Interferometric laser beam shaping
LK - https://researchspace.csir.co.za
PY - 2013
SM - 1559-128X
T1 - Spatial properties of coaxial superposition of two coherent Gaussian beams
TI - Spatial properties of coaxial superposition of two coherent Gaussian beams
UR - http://hdl.handle.net/10204/7601
ER -
|
en_ZA |