dc.contributor.author |
McLaren, M
|
|
dc.contributor.author |
Romero, J
|
|
dc.contributor.author |
Padgett, MJ
|
|
dc.contributor.author |
Roux, FS
|
|
dc.contributor.author |
Forbes, A
|
|
dc.date.accessioned |
2014-06-17T12:48:37Z |
|
dc.date.available |
2014-06-17T12:48:37Z |
|
dc.date.issued |
2013-09 |
|
dc.identifier.citation |
McLaren, M, Romero, J, Padgett, M.J, Roux, F.S and Forbes, A. 2013. Two-photon optics of Bessel-Gaussian modes. Physical Review A, vol. 88, pp 033818(1)-033818(8) |
en_US |
dc.identifier.issn |
1050-2947 |
|
dc.identifier.uri |
http://arxiv.org/pdf/1306.2767v1.pdf
|
|
dc.identifier.uri |
http://hdl.handle.net/10204/7474
|
|
dc.description |
Copyright: 2013 American Physical Society. This is an Open Access journal. The journal authorizes the publication of the information herewith contained. Published in Physical Review A, vol. 88, pp 033818(1)-033818(8) |
en_US |
dc.description.abstract |
In this paper we consider geometrical two-photon optics of Bessel-Gaussian modes generated in spontaneous parametric down-conversion of a Gaussian pump beam. We provide a general theoretical expression for the orbital angular momentum (OAM) spectrum and Schmidt number in this basis and show how this may be varied by control over the radial degree of freedom, a continuous parameter in Bessel-Gaussian modes. As a test we first implement a back-projection technique to classically predict, by experiment, the quantum correlations for Bessel-Gaussian modes produced by three holographic masks: a blazed axicon, a binary axicon, and a binary Bessel function. We then proceed to test the theory on the down-converted photons using the binary Bessel mask. We experimentally quantify the number of usable OAM modes and confirm the theoretical prediction of a flattening in the OAMspectrum and a concomitant increase in the OAM bandwidth. The results have implications for the control of dimensionality in quantum states. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
American Physical Society |
en_US |
dc.relation.ispartofseries |
Workflow;12813 |
|
dc.subject |
Bessel-Gaussian modes |
en_US |
dc.subject |
Gaussian pump beams |
en_US |
dc.subject |
Laser beams |
en_US |
dc.subject |
Two-photon optics |
en_US |
dc.subject |
Orbital angular momentum |
en_US |
dc.subject |
OAM |
en_US |
dc.subject |
Schmidt number |
en_US |
dc.title |
Two-photon optics of Bessel-Gaussian modes |
en_US |
dc.type |
Article |
en_US |
dc.identifier.apacitation |
McLaren, M., Romero, J., Padgett, M., Roux, F., & Forbes, A. (2013). Two-photon optics of Bessel-Gaussian modes. http://hdl.handle.net/10204/7474 |
en_ZA |
dc.identifier.chicagocitation |
McLaren, M, J Romero, MJ Padgett, FS Roux, and A Forbes "Two-photon optics of Bessel-Gaussian modes." (2013) http://hdl.handle.net/10204/7474 |
en_ZA |
dc.identifier.vancouvercitation |
McLaren M, Romero J, Padgett M, Roux F, Forbes A. Two-photon optics of Bessel-Gaussian modes. 2013; http://hdl.handle.net/10204/7474. |
en_ZA |
dc.identifier.ris |
TY - Article
AU - McLaren, M
AU - Romero, J
AU - Padgett, MJ
AU - Roux, FS
AU - Forbes, A
AB - In this paper we consider geometrical two-photon optics of Bessel-Gaussian modes generated in spontaneous parametric down-conversion of a Gaussian pump beam. We provide a general theoretical expression for the orbital angular momentum (OAM) spectrum and Schmidt number in this basis and show how this may be varied by control over the radial degree of freedom, a continuous parameter in Bessel-Gaussian modes. As a test we first implement a back-projection technique to classically predict, by experiment, the quantum correlations for Bessel-Gaussian modes produced by three holographic masks: a blazed axicon, a binary axicon, and a binary Bessel function. We then proceed to test the theory on the down-converted photons using the binary Bessel mask. We experimentally quantify the number of usable OAM modes and confirm the theoretical prediction of a flattening in the OAMspectrum and a concomitant increase in the OAM bandwidth. The results have implications for the control of dimensionality in quantum states.
DA - 2013-09
DB - ResearchSpace
DP - CSIR
KW - Bessel-Gaussian modes
KW - Gaussian pump beams
KW - Laser beams
KW - Two-photon optics
KW - Orbital angular momentum
KW - OAM
KW - Schmidt number
LK - https://researchspace.csir.co.za
PY - 2013
SM - 1050-2947
T1 - Two-photon optics of Bessel-Gaussian modes
TI - Two-photon optics of Bessel-Gaussian modes
UR - http://hdl.handle.net/10204/7474
ER -
|
en_ZA |