dc.contributor.author |
Salmon, BP
|
|
dc.contributor.author |
Kleynhans, W
|
|
dc.contributor.author |
Van den Bergh, F
|
|
dc.contributor.author |
Olivier, JC
|
|
dc.contributor.author |
Wessels, Konrad J
|
|
dc.date.accessioned |
2013-02-25T05:46:49Z |
|
dc.date.available |
2013-02-25T05:46:49Z |
|
dc.date.issued |
2012-07 |
|
dc.identifier.citation |
Salmon, BP, Kleynhans, W, Van den Bergh, F, Olivier, JC and Wessels, KJ. 2012. Detecting land cover change by evaluating the internal covariance matrix of the extended Kalman filter. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22-27 July 2012 |
en_US |
dc.identifier.uri |
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=6352676&contentType=Conference+Publications
|
|
dc.identifier.uri |
http://hdl.handle.net/10204/6569
|
|
dc.description |
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22-27 July 2012 |
en_US |
dc.description.abstract |
In this paper, the internal operations of an Extended Kalman Filter is investigated to see if any useful information can be derived to detect land cover change in a MODIS time series. The Extended Kalman Filter expands its internal covariance if a significant change in reflectance value is observed, followed by adapting the state parameters to compensate for this change. The analysis shows a change detection accuracy above 90% can be attained when evaluating the elements within the internal covariance matrix to detect new human settlements, with a corresponding false alarm rate below 11%. |
en_US |
dc.language.iso |
en |
en_US |
dc.publisher |
IEEE Xplore |
en_US |
dc.relation.ispartofseries |
Workflow;9563 |
|
dc.subject |
Change detection algorithms |
en_US |
dc.subject |
Covariance matrix |
en_US |
dc.subject |
Kalman Filter |
en_US |
dc.subject |
Spatial information |
en_US |
dc.subject |
Time series analysis |
en_US |
dc.title |
Detecting land cover change by evaluating the internal covariance matrix of the extended Kalman filter |
en_US |
dc.type |
Conference Presentation |
en_US |
dc.identifier.apacitation |
Salmon, B., Kleynhans, W., Van den Bergh, F., Olivier, J., & Wessels, K. J. (2012). Detecting land cover change by evaluating the internal covariance matrix of the extended Kalman filter. IEEE Xplore. http://hdl.handle.net/10204/6569 |
en_ZA |
dc.identifier.chicagocitation |
Salmon, BP, W Kleynhans, F Van den Bergh, JC Olivier, and Konrad J Wessels. "Detecting land cover change by evaluating the internal covariance matrix of the extended Kalman filter." (2012): http://hdl.handle.net/10204/6569 |
en_ZA |
dc.identifier.vancouvercitation |
Salmon B, Kleynhans W, Van den Bergh F, Olivier J, Wessels KJ, Detecting land cover change by evaluating the internal covariance matrix of the extended Kalman filter; IEEE Xplore; 2012. http://hdl.handle.net/10204/6569 . |
en_ZA |
dc.identifier.ris |
TY - Conference Presentation
AU - Salmon, BP
AU - Kleynhans, W
AU - Van den Bergh, F
AU - Olivier, JC
AU - Wessels, Konrad J
AB - In this paper, the internal operations of an Extended Kalman Filter is investigated to see if any useful information can be derived to detect land cover change in a MODIS time series. The Extended Kalman Filter expands its internal covariance if a significant change in reflectance value is observed, followed by adapting the state parameters to compensate for this change. The analysis shows a change detection accuracy above 90% can be attained when evaluating the elements within the internal covariance matrix to detect new human settlements, with a corresponding false alarm rate below 11%.
DA - 2012-07
DB - ResearchSpace
DP - CSIR
KW - Change detection algorithms
KW - Covariance matrix
KW - Kalman Filter
KW - Spatial information
KW - Time series analysis
LK - https://researchspace.csir.co.za
PY - 2012
T1 - Detecting land cover change by evaluating the internal covariance matrix of the extended Kalman filter
TI - Detecting land cover change by evaluating the internal covariance matrix of the extended Kalman filter
UR - http://hdl.handle.net/10204/6569
ER -
|
en_ZA |