ResearchSpace

The water balance of a seasonal stream in the semi-arid Western Cape (South Africa)

Show simple item record

dc.contributor.author Bugan, Richard DH
dc.contributor.author Jovanovic, Nebojsa
dc.contributor.author De Clercq, WP
dc.date.accessioned 2012-05-11T14:15:29Z
dc.date.available 2012-05-11T14:15:29Z
dc.date.issued 2012-04
dc.identifier.citation Bugan, R.D.H., Jovanovic, N. and De Clercq, W.P. 2012. The water balance of a seasonal stream in the semi-arid Western Cape (South Africa). Water SA, vol. 38(2), pp 201-212 en_US
dc.identifier.issn 0378-4738
dc.identifier.uri http://www.wrc.org.za/Pages/DisplayItem.aspx?ItemID=9526&FromURL=%2FPages%2FKnowledgeHub.aspx%3F
dc.identifier.uri http://hdl.handle.net/10204/5853
dc.description Copyright: 2012 Water Research Commission en_US
dc.description.abstract A detailed water balance and conceptual flow model was calculated and developed for the Sandspruit catchment for the period 1990 to 2010 on a winter rainfall water-year (1 April - 31 March) basis. The Sandspruit catchment (quaternary catchment G10J) is located in the Western Cape Province of South Africa and is a tributary of the Berg River. It contributes significantly to the salinisation of the mid- to lower-reaches of the Berg River and thus the hydrological drivers need to be quantified and conceptualised in order to develop salinity management strategies. Various components of the water balance, i.e. precipitation, evaporation, streamflow, recharge, etc., were monitored and quantified. In addition, stable environmental isotopes and water balance modelling were used to perform hydrograph separation as well as to quantify components of the water balance. Annual streamflow in the catchment during the period of observation was variable, ranging between 0.026 mm·a-1 and 75.401 mm·a-1. Streamflow volumes also exhibit high variability between water years. Catchment annual rainfall varied between 351 and 655 mm·a-1, averaging at 473 mm·a-1. On average, 6.5% of rainfall was converted to streamflow during the period of observation. Evapotranspiration was found to be the dominant component of the water balance, as it comprises, on average, 94% of precipitation in the catchment. Groundwater recharge was calculated to average at 29 mm·a-1. The water balance model (J2000) performed well during the simulation period with all measures of performance exhibiting acceptable values. Simulation results indicate that streamflow is driven by interflow from the soil horizon (94.68% of streamflow), followed by overland flow (4.92% of streamflow). These results, together with the physiographic conditions evident in the catchment, were used to develop a conceptual flow model. Streamflow is interpreted to be driven by quickflow, i.e. overland flow and interflow, with minimal contribution from groundwater, and is also more dependent on the rainfall distribution in time rather than on the annual volume. The correlation between average annual streamflow and average rainfall was observed to be poor, suggesting that alternative factors, e.g. the spatial distribution of winter wheat, the temporal distribution of rainfall, climatic variables (temperature), etc., exert a greater influence on streamflow. The water balance and conceptual flow model will form the basis for the application of distributed hydrological modelling in the Sandspruit catchment and the development of salinity management strategies. Results from this investigation, e.g. ET estimates, methods to quantify groundwater recharge, hydrograph separation, etc., could potentially be extrapolated to other semi-arid areas. en_US
dc.language.iso en en_US
dc.publisher Water Research Commission en_US
dc.relation.ispartofseries Workflow;8931
dc.subject Sandspruit River en_US
dc.subject Berg River en_US
dc.subject Semi-arid en_US
dc.subject Conceptual water balance en_US
dc.subject Evapotranspiration en_US
dc.subject Hydrological modelling en_US
dc.subject Recharge en_US
dc.title The water balance of a seasonal stream in the semi-arid Western Cape (South Africa) en_US
dc.type Article en_US
dc.identifier.apacitation Bugan, R. D., Jovanovic, N., & De Clercq, W. (2012). The water balance of a seasonal stream in the semi-arid Western Cape (South Africa). http://hdl.handle.net/10204/5853 en_ZA
dc.identifier.chicagocitation Bugan, Richard DH, Nebojsa Jovanovic, and WP De Clercq "The water balance of a seasonal stream in the semi-arid Western Cape (South Africa)." (2012) http://hdl.handle.net/10204/5853 en_ZA
dc.identifier.vancouvercitation Bugan RD, Jovanovic N, De Clercq W. The water balance of a seasonal stream in the semi-arid Western Cape (South Africa). 2012; http://hdl.handle.net/10204/5853. en_ZA
dc.identifier.ris TY - Article AU - Bugan, Richard DH AU - Jovanovic, Nebojsa AU - De Clercq, WP AB - A detailed water balance and conceptual flow model was calculated and developed for the Sandspruit catchment for the period 1990 to 2010 on a winter rainfall water-year (1 April - 31 March) basis. The Sandspruit catchment (quaternary catchment G10J) is located in the Western Cape Province of South Africa and is a tributary of the Berg River. It contributes significantly to the salinisation of the mid- to lower-reaches of the Berg River and thus the hydrological drivers need to be quantified and conceptualised in order to develop salinity management strategies. Various components of the water balance, i.e. precipitation, evaporation, streamflow, recharge, etc., were monitored and quantified. In addition, stable environmental isotopes and water balance modelling were used to perform hydrograph separation as well as to quantify components of the water balance. Annual streamflow in the catchment during the period of observation was variable, ranging between 0.026 mm·a-1 and 75.401 mm·a-1. Streamflow volumes also exhibit high variability between water years. Catchment annual rainfall varied between 351 and 655 mm·a-1, averaging at 473 mm·a-1. On average, 6.5% of rainfall was converted to streamflow during the period of observation. Evapotranspiration was found to be the dominant component of the water balance, as it comprises, on average, 94% of precipitation in the catchment. Groundwater recharge was calculated to average at 29 mm·a-1. The water balance model (J2000) performed well during the simulation period with all measures of performance exhibiting acceptable values. Simulation results indicate that streamflow is driven by interflow from the soil horizon (94.68% of streamflow), followed by overland flow (4.92% of streamflow). These results, together with the physiographic conditions evident in the catchment, were used to develop a conceptual flow model. Streamflow is interpreted to be driven by quickflow, i.e. overland flow and interflow, with minimal contribution from groundwater, and is also more dependent on the rainfall distribution in time rather than on the annual volume. The correlation between average annual streamflow and average rainfall was observed to be poor, suggesting that alternative factors, e.g. the spatial distribution of winter wheat, the temporal distribution of rainfall, climatic variables (temperature), etc., exert a greater influence on streamflow. The water balance and conceptual flow model will form the basis for the application of distributed hydrological modelling in the Sandspruit catchment and the development of salinity management strategies. Results from this investigation, e.g. ET estimates, methods to quantify groundwater recharge, hydrograph separation, etc., could potentially be extrapolated to other semi-arid areas. DA - 2012-04 DB - ResearchSpace DP - CSIR KW - Sandspruit River KW - Berg River KW - Semi-arid KW - Conceptual water balance KW - Evapotranspiration KW - Hydrological modelling KW - Recharge LK - https://researchspace.csir.co.za PY - 2012 SM - 0378-4738 T1 - The water balance of a seasonal stream in the semi-arid Western Cape (South Africa) TI - The water balance of a seasonal stream in the semi-arid Western Cape (South Africa) UR - http://hdl.handle.net/10204/5853 ER - en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record