ResearchSpace

Optimizing tree-species classification in hyperspectal images

Show simple item record

dc.contributor.author Barnard, E
dc.contributor.author Cho, Moses A
dc.contributor.author Debba, Pravesh
dc.contributor.author Mathieu, Renaud SA
dc.contributor.author Wessels, Konrad J
dc.contributor.author van Heerden, C
dc.contributor.author Van der Walt, Christiaan M
dc.contributor.author Asner, GP
dc.date.accessioned 2011-02-01T06:54:59Z
dc.date.available 2011-02-01T06:54:59Z
dc.date.issued 2010-11
dc.identifier.citation Barnard, E., Cho, M.A., Debba, P. et al. 2010. Optimizing tree-species classification in hyperspectal images. 21st Annual Symposium of the Pattern Recognition Association of South Africa (PRASA). Stellenbosch, South Africa, 22-23 November 2010, pp 33-37 en_US
dc.identifier.isbn 978-0-7992-2470-2
dc.identifier.uri http://hdl.handle.net/10204/4804
dc.description 21st Annual Symposium of the Pattern Recognition Association of South Africa (PRASA). Stellenbosch, South Africa, 22-23 November 2010 en_US
dc.description.abstract The authors investigate the classification of eight prominent savanna tree species, based on hyperspectral reflectance data. Although two principal components account for 95% of the variance of the data, up to 20 components are found to be useful for classification. Scaling of these components so that all features have equal variance is found to be useful, and their best performance (88.9% accurate classification) is achieved with 15 scaled features and a support vector machine as classifier. A graphical analysis suggests that several exemplars (“endmembers”) are required for each class, and this observation is confirmed by the large number of support vectors employed by the best classifier. en_US
dc.language.iso en en_US
dc.publisher PRASA 2010 en_US
dc.relation.ispartofseries Conference Paper;
dc.subject Tree-species en_US
dc.subject Hyperspectacle images en_US
dc.subject Spectral resolution en_US
dc.subject Biodiversity assessment en_US
dc.subject Savanna en_US
dc.subject PRASA 2010 en_US
dc.title Optimizing tree-species classification in hyperspectal images en_US
dc.type Conference Presentation en_US
dc.identifier.apacitation Barnard, E., Cho, M. A., Debba, P., Mathieu, R. S., Wessels, K. J., van Heerden, C., ... Asner, G. (2010). Optimizing tree-species classification in hyperspectal images. PRASA 2010. http://hdl.handle.net/10204/4804 en_ZA
dc.identifier.chicagocitation Barnard, E, Moses A Cho, Pravesh Debba, Renaud SA Mathieu, Konrad J Wessels, C van Heerden, Christiaan M Van der Walt, and GP Asner. "Optimizing tree-species classification in hyperspectal images." (2010): http://hdl.handle.net/10204/4804 en_ZA
dc.identifier.vancouvercitation Barnard E, Cho MA, Debba P, Mathieu RS, Wessels KJ, van Heerden C, et al, Optimizing tree-species classification in hyperspectal images; PRASA 2010; 2010. http://hdl.handle.net/10204/4804 . en_ZA
dc.identifier.ris TY - Conference Presentation AU - Barnard, E AU - Cho, Moses A AU - Debba, Pravesh AU - Mathieu, Renaud SA AU - Wessels, Konrad J AU - van Heerden, C AU - Van der Walt, Christiaan M AU - Asner, GP AB - The authors investigate the classification of eight prominent savanna tree species, based on hyperspectral reflectance data. Although two principal components account for 95% of the variance of the data, up to 20 components are found to be useful for classification. Scaling of these components so that all features have equal variance is found to be useful, and their best performance (88.9% accurate classification) is achieved with 15 scaled features and a support vector machine as classifier. A graphical analysis suggests that several exemplars (“endmembers”) are required for each class, and this observation is confirmed by the large number of support vectors employed by the best classifier. DA - 2010-11 DB - ResearchSpace DP - CSIR KW - Tree-species KW - Hyperspectacle images KW - Spectral resolution KW - Biodiversity assessment KW - Savanna KW - PRASA 2010 LK - https://researchspace.csir.co.za PY - 2010 SM - 978-0-7992-2470-2 T1 - Optimizing tree-species classification in hyperspectal images TI - Optimizing tree-species classification in hyperspectal images UR - http://hdl.handle.net/10204/4804 ER - en_ZA


Files in this item

This item appears in the following Collection(s)

Show simple item record