dc.contributor.author |
Kinsey, GS
|
|
dc.contributor.author |
Riedel-Lyngskær, NC
|
|
dc.contributor.author |
Miguel, A
|
|
dc.contributor.author |
Boyd, M
|
|
dc.contributor.author |
Braga, M
|
|
dc.contributor.author |
Shou, C
|
|
dc.contributor.author |
Cordero, RR
|
|
dc.contributor.author |
Duck, BC
|
|
dc.contributor.author |
Maweza, Elijah L
|
|
dc.contributor.author |
Pratt, Lawrence E
|
|
dc.date.accessioned |
2022-09-05T06:48:22Z |
|
dc.date.available |
2022-09-05T06:48:22Z |
|
dc.date.issued |
2022-08 |
|
dc.identifier.citation |
Kinsey, G., Riedel-Lyngskær, N., Miguel, A., Boyd, M., Braga, M., Shou, C., Cordero, R. & Duck, B. et al. 2022. Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide. <i>Renewable Energy, 196.</i> http://hdl.handle.net/10204/12488 |
en_ZA |
dc.identifier.issn |
1879-0682 |
|
dc.identifier.issn |
0960-1481 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.renene.2022.07.011
|
|
dc.identifier.uri |
http://hdl.handle.net/10204/12488
|
|
dc.description.abstract |
In photovoltaic power ratings, a single solar spectrum, AM1.5, is the de facto standard for record laboratory efficiencies, commercial module specifications, and performance ratios of solar power plants. More detailed energy analysis that accounts for local spectral irradiance, along with temperature and broadband irradiance, reduces forecast errors to expand the grid utility of solar energy. Here, ground-level measurements of spectral irradiance collected worldwide have been pooled to provide a sampling of geographic, seasonal, and diurnal variation. Applied to nine solar cell types, the resulting divergence in solar cell efficiencies illustrates that a single spectrum is insufficient for comparisons of cells with different spectral responses. Cells with two or more junctions tend to have efficiencies below that under the standard spectrum. Silicon exhibits the least spectral sensitivity: relative weekly site variation ranges from 1% in Lima, Peru to 14% in Edmonton, Canada. |
en_US |
dc.format |
Abstract |
en_US |
dc.language.iso |
en |
en_US |
dc.relation.uri |
https://www.sciencedirect.com/science/article/pii/S0960148122010072 |
en_US |
dc.source |
Renewable Energy, 196 |
en_US |
dc.subject |
Energy yield |
en_US |
dc.subject |
Forecasting |
en_US |
dc.subject |
Photovoltaics |
en_US |
dc.subject |
Spectral irradiance |
en_US |
dc.title |
Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide |
en_US |
dc.type |
Article |
en_US |
dc.description.pages |
995-1016 |
en_US |
dc.description.note |
© 2022 Elsevier Ltd. All rights reserved. Due to copyright restrictions, the attached PDF file only contains the abstract of the full text item. For access to the full text item, please consult the publisher's website: https://www.sciencedirect.com/science/article/pii/S0960148122010072 |
en_US |
dc.description.cluster |
Smart Places |
en_US |
dc.description.impactarea |
Energy Supply and Demand |
en_US |
dc.identifier.apacitation |
Kinsey, G., Riedel-Lyngskær, N., Miguel, A., Boyd, M., Braga, M., Shou, C., ... Pratt, L. E. (2022). Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide. <i>Renewable Energy, 196</i>, http://hdl.handle.net/10204/12488 |
en_ZA |
dc.identifier.chicagocitation |
Kinsey, GS, NC Riedel-Lyngskær, A Miguel, M Boyd, M Braga, C Shou, RR Cordero, BC Duck, Elijah L Maweza, and Lawrence E Pratt "Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide." <i>Renewable Energy, 196</i> (2022) http://hdl.handle.net/10204/12488 |
en_ZA |
dc.identifier.vancouvercitation |
Kinsey G, Riedel-Lyngskær N, Miguel A, Boyd M, Braga M, Shou C, et al. Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide. Renewable Energy, 196. 2022; http://hdl.handle.net/10204/12488. |
en_ZA |
dc.identifier.ris |
TY - Article
AU - Kinsey, GS
AU - Riedel-Lyngskær, NC
AU - Miguel, A
AU - Boyd, M
AU - Braga, M
AU - Shou, C
AU - Cordero, RR
AU - Duck, BC
AU - Maweza, Elijah L
AU - Pratt, Lawrence E
AB - In photovoltaic power ratings, a single solar spectrum, AM1.5, is the de facto standard for record laboratory efficiencies, commercial module specifications, and performance ratios of solar power plants. More detailed energy analysis that accounts for local spectral irradiance, along with temperature and broadband irradiance, reduces forecast errors to expand the grid utility of solar energy. Here, ground-level measurements of spectral irradiance collected worldwide have been pooled to provide a sampling of geographic, seasonal, and diurnal variation. Applied to nine solar cell types, the resulting divergence in solar cell efficiencies illustrates that a single spectrum is insufficient for comparisons of cells with different spectral responses. Cells with two or more junctions tend to have efficiencies below that under the standard spectrum. Silicon exhibits the least spectral sensitivity: relative weekly site variation ranges from 1% in Lima, Peru to 14% in Edmonton, Canada.
DA - 2022-08
DB - ResearchSpace
DP - CSIR
J1 - Renewable Energy, 196
KW - Energy yield
KW - Forecasting
KW - Photovoltaics
KW - Spectral irradiance
LK - https://researchspace.csir.co.za
PY - 2022
SM - 1879-0682
SM - 0960-1481
T1 - Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide
TI - Impact of measured spectrum variation on solar photovoltaic efficiencies worldwide
UR - http://hdl.handle.net/10204/12488
ER -
|
en_ZA |
dc.identifier.worklist |
25983 |
en_US |