ResearchSpace

Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets

Show simple item record

dc.contributor.author Naidoo, Laven
dc.contributor.author Main, Russell S
dc.contributor.author Cho, Moses A
dc.contributor.author Madonsela, Sabelo
dc.contributor.author Majozi, Nobuhle, P
dc.date.accessioned 2022-05-04T19:50:40Z
dc.date.available 2022-05-04T19:50:40Z
dc.date.issued 2021-07
dc.identifier.citation Naidoo, L., Main, R., Cho, M.A., Madonsela, S. & Majozi, N. 2021. Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets. http://hdl.handle.net/10204/12390 . en_ZA
dc.identifier.isbn 978-1-6654-0369-6
dc.identifier.isbn 978-1-6654-0368-9
dc.identifier.issn 2153-7003
dc.identifier.issn 2153-6996
dc.identifier.uri DOI: 10.1109/IGARSS47720.2021.9554261
dc.identifier.uri http://hdl.handle.net/10204/12390
dc.description.abstract Sentinel-1 and Sentinel-2 have provided consistent hyper-temporal information (5–7 days or earlier) at high spatial resolutions (10m) on biophysical composition, structural and physiological conditions of crops in a variety of environments. Unmanned aerial vehicles (UAVs) can provide sufficient calibration and validation data for model upscaling and regional extrapolation. Of the numerous maize crop parameters which require regular and accurate modelling, maize above ground biomass (AGB) is important for yield estimates. The aim of this study was to evaluate the Random Forest modelling performance of Sentinel 1 SAR C-band and Sentinel 2 multispectral imagery for maize AGB estimation whilst utilising UAV-derived maize AGB for model upscaling. Results illustrated that Sentinel 2 reflectance bands predicted more accurate estimates of maize AGB than the VV and VH polarisation bands of Sentinel 1 (R2 = 0.91; RMSE = 355.11g/m 2 ; rRMSE = 21.28% versus R2 = 0.31; RMSE = 974.72g/m 2 ; rRMSE = 59.04%). en_US
dc.format Abstract en_US
dc.language.iso en en_US
dc.relation.uri https://ieeexplore.ieee.org/document/9554261 en_US
dc.source 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11-16 July 2021 en_US
dc.subject Biomass en_US
dc.subject Crops en_US
dc.subject Biological system modelling en_US
dc.subject Reflectivity en_US
dc.subject Geoscience and remote sensing en_US
dc.subject Unmanned Aerial Vehicles en_US
dc.title Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets en_US
dc.type Conference Presentation en_US
dc.description.pages 1594-1596 en_US
dc.description.note Copyright: 2021 IEEE. Due to copyright restrictions, the attached PDF file only contains the abstract of the full text item. For access to the full text item, please consult the publisher's website: https://ieeexplore.ieee.org/document/9554261 en_US
dc.description.cluster Advanced Agriculture & Food en_US
dc.description.impactarea Precision Agriculture en_US
dc.identifier.apacitation Naidoo, L., Main, R., Cho, M. A., Madonsela, S., & Majozi, N. (2021). Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets. http://hdl.handle.net/10204/12390 en_ZA
dc.identifier.chicagocitation Naidoo, Laven, Russell Main, Moses A Cho, Sabelo Madonsela, and Nobuhle Majozi. "Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets." <i>2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11-16 July 2021</i> (2021): http://hdl.handle.net/10204/12390 en_ZA
dc.identifier.vancouvercitation Naidoo L, Main R, Cho MA, Madonsela S, Majozi N, Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets; 2021. http://hdl.handle.net/10204/12390 . en_ZA
dc.identifier.ris TY - Conference Presentation AU - Naidoo, Laven AU - Main, Russell, S AU - Cho, Moses A AU - Madonsela, Sabelo AU - Majozi, Nobuhle, P AB - Sentinel-1 and Sentinel-2 have provided consistent hyper-temporal information (5–7 days or earlier) at high spatial resolutions (10m) on biophysical composition, structural and physiological conditions of crops in a variety of environments. Unmanned aerial vehicles (UAVs) can provide sufficient calibration and validation data for model upscaling and regional extrapolation. Of the numerous maize crop parameters which require regular and accurate modelling, maize above ground biomass (AGB) is important for yield estimates. The aim of this study was to evaluate the Random Forest modelling performance of Sentinel 1 SAR C-band and Sentinel 2 multispectral imagery for maize AGB estimation whilst utilising UAV-derived maize AGB for model upscaling. Results illustrated that Sentinel 2 reflectance bands predicted more accurate estimates of maize AGB than the VV and VH polarisation bands of Sentinel 1 (R2 = 0.91; RMSE = 355.11g/m 2 ; rRMSE = 21.28% versus R2 = 0.31; RMSE = 974.72g/m 2 ; rRMSE = 59.04%). DA - 2021-07 DB - ResearchSpace DP - CSIR J1 - 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11-16 July 2021 KW - Biomass KW - Crops KW - Biological system modelling KW - Reflectivity KW - Geoscience and remote sensing KW - Unmanned Aerial Vehicles LK - https://researchspace.csir.co.za PY - 2021 SM - 978-1-6654-0369-6 SM - 978-1-6654-0368-9 SM - 2153-7003 SM - 2153-6996 T1 - Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets TI - Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets UR - http://hdl.handle.net/10204/12390 ER - en_ZA
dc.identifier.worklist 25535 en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record