dc.contributor.author |
Naidoo, Laven
|
|
dc.contributor.author |
Main, Russell S
|
|
dc.contributor.author |
Cho, Moses A
|
|
dc.contributor.author |
Madonsela, Sabelo
|
|
dc.contributor.author |
Majozi, Nobuhle, P
|
|
dc.date.accessioned |
2022-05-04T19:50:40Z |
|
dc.date.available |
2022-05-04T19:50:40Z |
|
dc.date.issued |
2021-07 |
|
dc.identifier.citation |
Naidoo, L., Main, R., Cho, M.A., Madonsela, S. & Majozi, N. 2021. Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets. http://hdl.handle.net/10204/12390 . |
en_ZA |
dc.identifier.isbn |
978-1-6654-0369-6 |
|
dc.identifier.isbn |
978-1-6654-0368-9 |
|
dc.identifier.issn |
2153-7003 |
|
dc.identifier.issn |
2153-6996 |
|
dc.identifier.uri |
DOI: 10.1109/IGARSS47720.2021.9554261
|
|
dc.identifier.uri |
http://hdl.handle.net/10204/12390
|
|
dc.description.abstract |
Sentinel-1 and Sentinel-2 have provided consistent hyper-temporal information (5–7 days or earlier) at high spatial resolutions (10m) on biophysical composition, structural and physiological conditions of crops in a variety of environments. Unmanned aerial vehicles (UAVs) can provide sufficient calibration and validation data for model upscaling and regional extrapolation. Of the numerous maize crop parameters which require regular and accurate modelling, maize above ground biomass (AGB) is important for yield estimates. The aim of this study was to evaluate the Random Forest modelling performance of Sentinel 1 SAR C-band and Sentinel 2 multispectral imagery for maize AGB estimation whilst utilising UAV-derived maize AGB for model upscaling. Results illustrated that Sentinel 2 reflectance bands predicted more accurate estimates of maize AGB than the VV and VH polarisation bands of Sentinel 1 (R2 = 0.91; RMSE = 355.11g/m 2 ; rRMSE = 21.28% versus R2 = 0.31; RMSE = 974.72g/m 2 ; rRMSE = 59.04%). |
en_US |
dc.format |
Abstract |
en_US |
dc.language.iso |
en |
en_US |
dc.relation.uri |
https://ieeexplore.ieee.org/document/9554261 |
en_US |
dc.source |
2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11-16 July 2021 |
en_US |
dc.subject |
Biomass |
en_US |
dc.subject |
Crops |
en_US |
dc.subject |
Biological system modelling |
en_US |
dc.subject |
Reflectivity |
en_US |
dc.subject |
Geoscience and remote sensing |
en_US |
dc.subject |
Unmanned Aerial Vehicles |
en_US |
dc.title |
Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets |
en_US |
dc.type |
Conference Presentation |
en_US |
dc.description.pages |
1594-1596 |
en_US |
dc.description.note |
Copyright: 2021 IEEE. Due to copyright restrictions, the attached PDF file only contains the abstract of the full text item. For access to the full text item, please consult the publisher's website: https://ieeexplore.ieee.org/document/9554261 |
en_US |
dc.description.cluster |
Advanced Agriculture & Food |
en_US |
dc.description.impactarea |
Precision Agriculture |
en_US |
dc.identifier.apacitation |
Naidoo, L., Main, R., Cho, M. A., Madonsela, S., & Majozi, N. (2021). Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets. http://hdl.handle.net/10204/12390 |
en_ZA |
dc.identifier.chicagocitation |
Naidoo, Laven, Russell Main, Moses A Cho, Sabelo Madonsela, and Nobuhle Majozi. "Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets." <i>2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11-16 July 2021</i> (2021): http://hdl.handle.net/10204/12390 |
en_ZA |
dc.identifier.vancouvercitation |
Naidoo L, Main R, Cho MA, Madonsela S, Majozi N, Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets; 2021. http://hdl.handle.net/10204/12390 . |
en_ZA |
dc.identifier.ris |
TY - Conference Presentation
AU - Naidoo, Laven
AU - Main, Russell, S
AU - Cho, Moses A
AU - Madonsela, Sabelo
AU - Majozi, Nobuhle, P
AB - Sentinel-1 and Sentinel-2 have provided consistent hyper-temporal information (5–7 days or earlier) at high spatial resolutions (10m) on biophysical composition, structural and physiological conditions of crops in a variety of environments. Unmanned aerial vehicles (UAVs) can provide sufficient calibration and validation data for model upscaling and regional extrapolation. Of the numerous maize crop parameters which require regular and accurate modelling, maize above ground biomass (AGB) is important for yield estimates. The aim of this study was to evaluate the Random Forest modelling performance of Sentinel 1 SAR C-band and Sentinel 2 multispectral imagery for maize AGB estimation whilst utilising UAV-derived maize AGB for model upscaling. Results illustrated that Sentinel 2 reflectance bands predicted more accurate estimates of maize AGB than the VV and VH polarisation bands of Sentinel 1 (R2 = 0.91; RMSE = 355.11g/m 2 ; rRMSE = 21.28% versus R2 = 0.31; RMSE = 974.72g/m 2 ; rRMSE = 59.04%).
DA - 2021-07
DB - ResearchSpace
DP - CSIR
J1 - 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11-16 July 2021
KW - Biomass
KW - Crops
KW - Biological system modelling
KW - Reflectivity
KW - Geoscience and remote sensing
KW - Unmanned Aerial Vehicles
LK - https://researchspace.csir.co.za
PY - 2021
SM - 978-1-6654-0369-6
SM - 978-1-6654-0368-9
SM - 2153-7003
SM - 2153-6996
T1 - Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets
TI - Estimating South African maize biomass using integrated high-resolution UAV and sentinel 1 and 2 datasets
UR - http://hdl.handle.net/10204/12390
ER - |
en_ZA |
dc.identifier.worklist |
25535 |
en_US |