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The Finite Element Method is a powerful tool that can be used to test, improve or bet-

ter understand an industrially relevant problem. There are numerous Finite Element

Analysis (FEA) software packages that operate either in the commercial, open source or

research space. Di�erent application speci�c codes also have specialised model formu-

lations. Most software packages have a comprehensive list of material models already

implemented. If a di�erent material model is required, some form of user material can

often be implemented and linked to the software package.

In some cases the e�ective implementation and testing of a user implemented ma-

terial requires knowledge on the e�ect and handling of strain formulations, element

technologies and the desired material behaviour. With sophisticated material models

available in the research space, this thesis focuses on the identi�cation and implemen-

i



tation of existing computational plasticity models for use within FEA.

The e�ect of di�erent strain formulation choices is �rst illustrated and discussed

using di�erent sample problems. Three di�erent FEA software packages are also com-

pared before discussion and implementation of a general numerical framework for coro-

tated hypo-elastoplasticity in isotropic and combined hardening. The numerical frame-

work allows expansion to include di�erent, more sophisticated hardening behaviour by

simply altering the scalar equation used to update the von Mises yield surface.

The Mechanical Threshold Stress (MTS) material model is implemented within the

hypo-elastoplastic numerical framework. Material parameter identi�cation is investi-

gated using linear regression on data followed by numerical optimisation. The MTS

model is a rate and temperature dependent state variable based material model. The

model is tuned to �t imperfect cemented carbide data in compression, where material

test frame compliance or some eccentricity caused inhomogeneous deformation through

the test section of the specimen. The characterised model is then used on a sample

problem to investigate the plastic deformation in the cemented carbide anvils during

the High Pressure, High Temperature (HPHT) synthesis of diamond.

Further extensions, built on the dislocation density based modelling theory of the

MTS model, are investigated by selecting an alternate form of the state dependent

variable. A dislocation density ratio is used instead of the original stress like variable

in the MTS model. The evolution of this internal state variable is altered, along with

additional state dependent variables, to include additional deformation and thermal

mechanisms. The model extensions in the case of rate and temperature dependent

cyclic deformation as well as multiple waves of recrystallisation are discussed and im-

plemented. The recrystallisation and through thickness microstructural variation of a

High Strength, Low Alloy (HSLA) steel are �nally investigated during the process of

industrial hot rolling or roughing simulations.
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Chapter 1

Introduction

This thesis contains some of the work done while on a Ph.D. studentship contract at

the Council for Scienti�c and Industrial Research (CSIR) in South Africa. The Ad-

vanced Mathematical Modelling (AMM) competency area within the CSIR Modelling

and Digital Science operating unit focuses on various industrial applications using

mathematical sciences and scienti�c computing.

It is common practise in industry to only use material models already built into

Finite Element Analysis (FEA) software packages. This limits software functionality. It

is possible however to investigate and model a wide range of material response through

the implementation and proper material parameter identi�cation of a user material

subroutine. Proper implementation and use of these user subroutines require extensive

knowledge of �nite element technologies, strain formulations, materials as well as time

for adequate testing and veri�cation. Due to the lack of competence in this regard

and time required to implement a user material from scratch, industry often chooses

to stick to the trusted material models implemented within a software package of its

choice.

Within AMM, the CSIR and even the larger South African context, a lack of ma-

terial modelling competency and speci�c project requirements drove much of the work

done in this thesis. For this reason, the work done in this document is presented in

the hope that it would contribute to improved modelling capability in computational

plasticity. All of the user materials implemented are also included in the thesis, so that

it may be freely used, learnt from or improved upon in the spirit of an open source
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philosophy.

There are sophisticated and well studied models in the research environment that do

not form part of the standard material libraries in FEA software. From a Mechanical

Engineering background, a lot of focus and attention is given in this thesis to the

identi�cation of the proper material models available or necessary for a speci�c problem.

The state dependent plasticity models used in this thesis can be seen as built on the

same dislocation density based modelling theory.

The focus in this thesis is not on the development of new and unique material

models but the rigorous numerical implementation of existing models or a combination

of existing ideas. This thesis therefore covers the theory where possible while the main

focus is on proper implementation and testing of the model.

1.1 Structure

The structure of this document starts with a general user material framework to model

von Mises elastoplasticity within a �nite element environment. Di�erent material mod-

els can be implemented into this framework. Various physical phenomena is modelled

by selecting di�erent forms of the kinetic and internal state variable evolution equa-

tions.

Two industry relevant problems are considered in this study following speci�c

projects completed and modelling needs identi�ed. The �rst problem considers the

plastic deformation of a high strength cemented carbide. The material response is

modelled using the temperature and strain rate dependent Mechanical Threshold Stress

(MTS) material model. The second problem is the industrial simulation of a hot rolling

process in which temperatures exceed the recrystallisation temperature. Here it is crit-

ical that one considers material softening that includes recrystallisation and thermal

recovery. A brief general outline of the Chapters contained within this document is

now presented.
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1.1.1 Chapter 2: Veri�cation of the User Material Framework

In Chapter 2, di�erent strain formulations in computational plasticity are demon-

strated. This is done using a modi�ed Cook's membrane sample problem with linear

hardening plasticity. The e�ect of the di�erent strain formulations in plasticity is

demonstrated for cases where a reasonable deformation is applied and small strain

plasticity is no longer valid. The compression of an axi-symmetric billet with bar-

relling and rollover is also modelled to investigate the di�erent strain formulations in

a case where a signi�cant amount of deformation is present.

Comparisons are made for the same axi-symmetric billet analysis modelled using

three �nite element solvers namely Abaqus 6.11 (2011b), CalculiX 2.8 (Dhondt and

Wittig, 1998) and Code_Aster 11.3 (Électricité de France, 2012). Each of these �nite

element software packages use a slightly di�erent strain formulation in large deforma-

tion plasticity. A satisfactory agreement between the corotational hypo-elastoplastic

formulation of Abaqus and the fully hyper-elastoplastic formulation used in Code_Aster

is observed. The results obtained using the hyper-elastoplastic formulation of CalculiX

di�ers slightly from that of Code_Aster. This could be due to the fact that the yield

function in CalculiX is evaluated using the second Piola-Kirchho� stress measure while

Code_Aster uses the Kirchho� stress.

User de�ned material models are possible in all three software packages by linking

a Fortran material model subroutine. In all three packages the user material layout

native to Abaqus can be linked. Code_Aster makes use of the subroutine in either the

reinitialised small strain plastic or logarithmic hypo-elastoplastic strain formulations.

CalculiX on the other hand transforms its total strain vector into a logarithmic form of

the strain increment. A six dimensional strain vector is passed into the user material

subroutine containing principal strain εkk and engineering shear strain γij,i6=j = εij+εji

components.

The general elastoplastic user material framework is discussed for isotropic and

combined hardening. Numerical implementation of the material framework in a coro-

tational hypo-elastoplastic sense is discussed and the implementations validated against

the native Abaqus large strain plasticity formulations. The corotational hypo-elasto-

plastic implementation can be used as foundation for other state variable based mate-

rial formulations. The framework is therefore designed to be modular. In subsequent
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chapters, a di�erent model can be implemented by changing the content of the hard-

ening subroutine. A reader familiar with general large strain elastoplastic formulations

is encouraged to skip ahead to Chapter 3.

1.1.2 Chapter 3: Temperature and Rate E�ects

The linear isotropic strain hardening model of Chapter 2 is replaced by the temperature

and strain rate dependent Mechanical Threshold Stress (MTS) model in Chapter 3.

The kinetic equation leading to the form of the MTS scaling functions as well as the

development of the microstructure evolution equation in the form of the Voce-law are

discussed. Apart from the Voce-law, the mechanical threshold stress internal state vari-

able can also be evolved using di�erent versions of the evolution equation. Numerical

implementation of the MTS model is discussed and the analytical sensitivities required

for proper convergence within the isotropic user material framework are derived. The

MTS model is �nally �t to experimental data using a scalar model or material point

simulation. The experimental data, material point simulation and detailed �nite el-

ement analyses using the MTS hardening function in the isotropic hardening user

material framework are also compared.

1.1.3 Chapter 4: Characterising Imperfect Compression Data

for Cemented Carbides

In Chapter 4, the MTS model is applied to cemented Tungsten Carbide data. Exper-

imental data for cemented Tungsten Carbide is available for di�erent material grades

at di�erent temperatures. In the room temperature data, the imperfect compression

of the material specimen, possibly due to test frame compliance, is visible with a clear

variation in strain gauge data around the circumference of the test section of the spec-

imen. In this chapter, the use of a �nite element analysis to simulate approximate

experimental conditions and time varying boundary conditions are discussed to im-

prove the accuracy with which the MTS material parameter values may be identi�ed.

Simultaneous estimation of the material parameters as well as the time varying

boundary conditions are investigated, using �nite element analyses within the opti-

misation loop. This is illustrated on a virtual problem so that the known material
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response can be compared to the response estimated by inverse analysis. From the

investigation the procedure seems satisfactory in accurately determining the material

property values, but at great computational cost. An alternative characterisation pro-

cedure is also investigated using an extended and calibrated point integration setup to

promising e�ect.

The tungsten carbide data used in this chapter is proprietary information and sub-

ject to an ongoing memorandum of understanding. For this reason most of the �gure

axes in this chapter are scaled or normalised and the speci�c alloy compositions or

carbide particulate sizes are not reported. The chapter serves only as an illustration of

improved characterisation using imperfect hardmetal compression data. It is mainly

demonstrated on virtual experimental data in this document with characterisation on

the actual data reserved for a con�dential document. A six axis multi-anvil press simu-

lation is used to investigate the plastic deformation in the cemented Tungsten Carbide

anvils during the High Pressure, High Temperature (HPHT) synthesis of diamond.

1.1.4 Chapter 5: Dislocation Density Based Modelling Exten-

sions

An alternative choice on internal state variable, the dislocation density ratio, is chosen

to replace the evolving internal stress like variable of the original mechanical threshold

stress model in Chapter 5. The model implementation using the alternative formulation

of the temperature and rate dependent model of Chapter 3 is now considered using the

dislocation density ratio. Within the new modelling environment, various extensions

are discussed and implemented to include further physical phenomena present during

metal forming.

The inclusion of geometrically necessary dislocations and stage IV hardening is

achieved by including an additional internal state variable to represent the average

slip plane lattice incompatibility. Extending the microstructural evolution equation

to include thermal or static recovery of statistical dislocations is also included. By

viewing the microstructure as a system of channels or regions of low dislocation density,

separated by parallel narrow walls with a high density of segmented edge dislocations,

cyclic e�ects are also included.
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To model cyclic e�ects, a back stress and additional internal state variable is con-

sidered. The additional internal state variable represents the density of dislocations

trapped in the walls but partially recoverable upon stress reversal. Both back stress

and partially recoverable dislocation density ratio internal state variables have their

own evolution equations and are e�ected by load reversal. The dislocation density

ratio based model with cyclic behaviour is implemented numerically into the com-

bined hardening model framework validated in Chapter 2. The characterisation of the

dislocation density based combined hardening model is �nally illustrated on digitised

experimental data for two di�erent metal alloys.

An extension on the isotropic dislocation density ratio model is also covered to

include recrystallisation. Some of the foundation theory on recrystallisation modelling

is �rst discussed as well as the assumptions made in the current modelling approach.

The model describes multiple waves of recrystallisation and each recrystallised or un-

recrystallised volume fraction has its own set of internal state variables. The numerical

implementation as well as choices made to keep track of, initialise or shift internal state

variables as needed at the onset or completion of a speci�c wave of recrystallisation are

discussed. The recrystallisation model is �nally calibrated to dynamic recrystallisation

data on Cobalt and Copper.

1.1.5 Chapter 6: Roughing of a Steel Alloy

Austenite grain growth is an important factor that determines the �nal microstruc-

ture and mechanical properties of the product. The dislocation density based model

with recrystallisation is used in Chapter 6 to investigate the through-thickness mi-

crostructural variation due to di�erent roll reduction schedules. The behaviour of a

microalloyed C-Mn-Nb-Ti-V steel is modelled during hot rolling or roughing. Stress-

strain data obtained from di�erent cylindrical test specimens, subjected to di�erent

deformation schedules are used in the material parameter identi�cation.

The through thickness microstructural variation is estimated by linking a normal

grain growth model to the mechanical response. The grain size of the original material

volume fraction as well as each subsequent wave of recrystallised material is determined

and combined as a volume fraction averaged grain size estimate per integration point.
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1.1.6 Chapter 7: Conclusions

Some suggestions for future work are included in Chapter 7. The contributions of this

work are also summarised.

1.1.7 Appendices

All of the developed user material subroutines are included in the Appendices. Ap-

pendix D serves as an extension to the material characterisation performed in Chapter 4

while Appendices G to I are used for �gures related to Chapter 6.
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Chapter 2

Veri�cation of the User Material

Framework

The main aim of this chapter is to implement and verify a generic elastoplastic material

framework. Di�erent material responses can be modelled within this framework by

implementing other hardening subroutines based on speci�c choices of kinetic equations

or equations for the evolution of internal state variables. Readers familiar with the

numerical implementation of plasticity should be familiar with the work covered in

this chapter and could skip ahead. However, for the sake of sound and thorough

documentation of the work, this chapter is included to serve as a source of the relevant

theory and implementation.

In this chapter, various strain formulations in computational plasticity are com-

pared for di�erent boundary value problems. In an attempt to make the work more

general, di�erent �nite element packages are also compared. Investigating di�erent

strain formulations and simulation environments gives a more holistic view on elasto-

plastic modelling. This provides a basis from which to make decisions. Software acces-

sibility, ease of implementation or validity of di�erent formulations under an expected

degree of deformation could be a deciding factor for which route to follow in modelling

a boundary value problem of interest.

The �rst strain formulation comparisons are done by modelling linear work hard-

ening on a version of Cook's membrane problem for small strain plasticity, hyper-

elastoplasticity and logarithmic hypo-elastoplasticity in Code_Aster 11.3 (Électricité
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de France, 2012). The Cook's membrane problem is a popular benchmark problem

where small strain plasticity is no longer valid due to the magnitude of deformation. A

second strain formulation comparison is done by modelling the compression of a cylin-

drical test specimen up to about 120% true axial strain. The second sample problem is

more complex with rollover present at the contact surface as would be expected if ma-

terial testing is performed in this manner. This axi-symmetric test problem therefore

requires a strain formulation that e�ectively describes geometric e�ects.

In Section 2.2, a comparison is made between the built in elastoplastic formulations

in Abaqus 6.11 (2011b) and CalculiX 2.8 (Dhondt and Wittig, 1998) against the hyper-

elastoplastic formulation in Code_Aster 11.3. The same test problem setup for an

axi-symmetric billet with rollover is modelled in the three di�erent software packages.

The von Mises stress as well as the displacement �eld values are extracted at the same

1281 nodal locations for comparison. The comparison between the Code_Aster results

to that of Abaqus shows on average a 0.6781% di�erence despite using di�erent strain

formulations. The largest average di�erence is observed between the Code_Aster and

CalculiX results at 1.166%.

In Section 2.3, the elastoplastic material framework that is implemented into an

Abaqus user material Fortran subroutine is discussed. This section includes the de-

velopment of the material consistent tangent and numerical implementation for the

purely isotropic hardening case as well as combined hardening. The results obtained

using the user material subroutine is veri�ed against the built in elastoplastic model

by modelling a slender beam subject to varying boundary conditions in Abaqus.

2.1 Comparison example using di�erent strain formu-

lations

2.1.1 Cook's membrane

Cook's membrane is a common test problem used to assess �nite elements in combined

bend and shear with moderate distortion, usually using linear elastic materials. Al-

though it was �rst used by Cook (1974) to test an improved two dimensional �nite

element formulation, it has also been proposed as a benchmark in �nite strain plastic-
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(a) (b)

Figure 2.1: The Cook's membrane problem modelled to compare the di�erent �nite
strain plasticity formulations. (a) The geometry and setup as well as (b) the discretisa-
tion using 50×50 elements. In (b) the four corner nodes are labelled to ease subsequent
discussion.

ity by Simo and Armero (1992) and used by Glaser and Armero (1997). Authors such

as Elguedj et al. (2008), Auricchio et al. (2005) as well as Mathisen et al. (2011) to

name a few, have also used Cook's membrane as a benchmark in nonlinear elasticity

and plasticity using isogeometric formulations.

In this comparison the membrane geometry in Figure 2.1(a) is discretised into

a 50 × 50 mesh of linear, four noded elements as seen in Figure 2.1(b). The test

problem is modelled in Code_Aster, using plane strain elements with full integration.

Each element therefore has 4 Gauss integration points (2×2 Gauss quadrature) and

is modelled using a thickness of 1mm. The arti�cial material modelled has an elastic

sti�ness E = 1GPa and a Poisson's ratio of ν = 0.25.

The plastic behaviour is modelled with using a linear strain hardening model. The

isotropic von Mises yield surface is evolved using a univariate description of the total
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equivalent plastic strain α. In this model the isotropic yield stress is given by

σY = σ0 +Kα, (2.1)

where σ0 is the initial yield stress and K the strain hardening modulus. In the Cook's

membrane problem, an initial yield stress of σ0 = 10MPa and linear strain hardening

modulus of K = 100MPa is used.

The left most nodes in Figure 2.1(b) are �xed. On the right most node set, a

vertical force is applied per node. In this comparison, a force of Fy = 3N is applied to

each of the 51 nodes, in 50 loading increments.

The analysis is performed using four di�erent strain formulations. In the �rst

case, the small strain plasticity formulation is used. In this formulation there is no

distinction between the current or reference con�guration. A second case is modelled,

again using the small strain formulation, but using a reactualised geometry for each load

increment. This means that the mesh is updated at the start of each increment using

the converged displacement solution of the previous increment. A third simulation uses

the hyper-elastoplastic formulation of Simo and Miehe (1992). This formulation takes

a multiplicative approach to elastoplastic coupling based on observations from crystal

plasticity. The hyper-elastoplastic formulation is assumed to be the most accurate

and is therefore treated as the benchmark solution used for comparison. A fourth

formulation modelled is the logarithmic hypo-elastoplastic formulation of Miehe et al.

(2002), where the logarithmic form of the right Cauchy-Green strain tensor is additively

decomposed into elastic and plastic components.

The equivalent plastic strain contours between 0 and 0.1 can be seen on the de-

formed membrane geometry in Figure 2.2 for the four di�erent cases modelled. To

facilitate a comparison to the results using the hyper-elastoplastic formulation as bench-

mark, the same contours in Figure 2.2 are superimposed as lines onto the colour con-

tours of the benchmark result in Figure 2.3. In Figure 2.3 the contour lines for equiv-

alent plastic strain in increments of 0.01 up to 0.09 are displayed, with overlayed �lled

contours of the hyper-elastoplastic result, all displayed on the undeformed con�gura-

tion.
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(a) (b)

(c) (d)

Figure 2.2: The equivalent plastic strain contours for the Cook's membrane test prob-
lem using the (a) small strain plasticity formulation with (b) reactualisation of the
geometry. The results for the (c) hyper-elastoplastic and (d) logarithmic elastoplastic
formulations are seen to compare very well.
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(a) (b) (c)

Figure 2.3: The undeformed geometry with hyper-elastoplastic �lled contours for the
equivalent plastic strains as in Figure 2.2. Contour lines correspond to (a) the small
strain plasticity formulation with (b) reactualisation of the geometry as well as (c)
logarithmic elastoplastic formulation.

Equivalent Plastic Strain x Displacement y Displacement Average

A B C C D C D Di�erence

Small Strain 0.2359 0.0251 0.0720 -2.9571 -11.936 14.945 16.053 39.187%

Updated Mesh 0.1998 0.0092 0.0614 -3.6496 -10.060 11.029 10.371 6.1913%

Logarithmic 0.1814 0.0112 0.0658 -3.5735 -10.031 11.330 10.585 0.7014%

Hyper-elastoplastic 0.1833 0.0116 0.0659 -3.5819 -10.034 11.329 10.585 -

Table 2.1: Equivalent plastic strain and de�ection values extracted at selected nodal
locations labelled in Figure 2.1(b).

For further comparison, the total equivalent plastic strain values at nodes A, B and

C as well as the displacements at nodes C and D labelled in Figure 2.1(b) are also

given in Table 2.1.

The small strain formulation is not consistent and even at these moderate strains

a fair amount of tip enlargement and overestimated displacement is visible in Fig-

ure 2.2(a) compared to the other solutions. The plastic response also seems to be

overestimated when comparing the results obtained using the other formulations. If

the plastic strains and displacement values given in Table 2.1 are compared to those

of the hyper-elastoplastic results, an average di�erence of 39.19% is observed.
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While still using the small strain plastic formulation, reactualising the geometry at

each of the 50 load increments created a result closer to the actual solution. This is

evident when comparing Figure 2.2(b) to Figure 2.2(c) or by inspecting Figure 2.3(b).

In Table 2.1, the 39.19% error using the small strain formulation is reduced to 6.19% by

updating the nodal coordinates at the end of each time step in this case. A drawback

of this method however is that it is not fully objective. Each incremental solution is

determined from the previous updated mesh, meaning the solution may be strongly

a�ected by the size of the increments. The stresses, strains, and other internal state

variables are also not properly rotated throughout the solution. It is therefore possible

that the incremental mistakes could accumulate to make up a large part of the solution

in the presence of larger deformations compared to the other formulations.

For this test case with moderate geometric e�ects, the hyper-elastoplastic and log-

arithmic formulations compare very well. The contours in Figure 2.3(c) and extracted

values in Table 2.1 are closely matched compared to the results obtained using other

strain formulations. An average di�erence of 0.7% is observed when comparing the

plastic strains and displacement values given in Table 2.1 to those of to the hyper-

elastoplastic results.

2.1.2 Compression of a cylindrical specimen

In this test case, a cylinder with a height to diameter ratio of 2:1 is modelled subject

to a large amount of axial strain. Figure 2.4(a) illustrates a cylinder with a height of

10mm and diameter of 5mm between two anvils. One anvil is assumed �xed while the

other is subject to a force or pressure displacing it a speci�ed amount at some speci�ed

velocity.

Code_Aster is again used to compare the small strain plasticity, hyper-elastoplasticity

and logarithmic hypo-elastoplastic formulations. A boundary value problem is set up

to model a 5mm × 2.5mm quarter axi-symmetric section of the test specimen using

a 20 × 20 mesh of quadratic elements. The arti�cial material modelled has an elastic

sti�ness E = 1GPa, Poisson's ratio of ν = 0.25, initial yield stress of σ0 = 50MPa and

linear strain hardening modulus of K = 100MPa assigned to all of the elements.

The nodal degrees of freedom associated with the axis of symmetry is constrained
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in the radial or x direction while the nodes corresponding to the middle of the test

specimen are constrained in the axial direction. A 7mm long line is used to model

the contact surface of the upper anvil, assumed to be rigid. The line has a starting

point at {x, y} = {0, 5} and end point at {7, 5}, and is therefore in contact with the

line segments associated with the upper face of the test specimen at the start of the

simulation. Possible contact is de�ned between the rigid line and outer surface of the

test specimen so that barrelling and rollover may be handled during the compression.

An illustration of the axi-symmetric boundary value problem setup is presented in

Figure 2.4(b). While the rigid line starts o� already in contact with the billet in

the simulation, the line is displayed above the billet in Figure 2.4(b) to show them

individually. The red lines illustrate the two surfaces where contact is checked and

allowed. For convenience of subsequent discussion and comparison, the four corner

nodes are again labelled.

The discrete Lagrangian contact formulation in Code_Aster is used with hard or

impenetrable contact normal to the surface while friction is handled using a Coulomb

friction coe�cient of µC = 0.2 assuming there is suitable lubricant between the anvil

and material sample. Over the course of the simulation, the rigid line is displaced

3.5mm downward resulting in a total true axial strain of 100× ln (1− 3.5/5) ≈ 120%.

The displacement is applied as a linear ramp over the course of the simulation using

automatic time stepping between 0 and 1 with a maximum allowable step size of 0.1

and a minimum of 1× 10−8.

Figure 2.5 shows the solution to the boundary value problem at time t = 1 using

the di�erent formulations. The black wireframe is as a result of the hyper-elastoplastic

formulation while the red and blue wireframes are as a result of the logarithmic and

small strain elastoplastic formulations respectively.

As expected, the small strain formulation generates an unrealistic solution consid-

ering the di�erence in the �nal volumes of the three formulations in Figure 2.5. The

equivalent plastic strain contours are presented in Figure 2.6 while the von Mises equiv-

alent stress values are given in Figure 2.7. The von Mises stresses are scaled between

the initial yield value of 50MPa and 200MPa. For all three cases, the maximum stress

value is reported at the corner node of the element associated with the initial roll over

due to excessive distortion. For the small strain formulation an interpolated value
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(a) (b)

Figure 2.4: (a) Axial compression of a cylindrical test specimen with (b) the axi-
symmetric boundary value problem setup. In (b) the four corner nodes are labelled to
ease subsequent discussion.

Figure 2.5: Resulting deformations of the three di�erent strain formulations on the
cylindrical test specimen boundary value problem with isotropic plasticity. The blue
mesh indicates the small strain solution while red is the logarithmic hypo-elastoplastic
solution and black the hyper-elastoplastic solution.
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(a)

(b)

(c)

Figure 2.6: Equivalent plastic strains for the compressed cylindrical test specimen using
the (a) small strain (b) hyper- and (c) logarithmic elastoplastic formulations.
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(a)

(b)

(c)

Figure 2.7: Von Mises equivalent stress values between 50MPa and 200MPa for the
compressed cylindrical test specimen using the (a) small strain (b) hyper- and (c)
logarithmic elastoplastic formulations.
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of 158.57MPa is reported while the hyper-elastoplastic formulation reports a value of

363.08MPa and 281.07MPa in case of the logarithmic formulation. The upper limit of

200MPa is simply chosen to better compare the results visually without giving much

importance to these concentrated nodal values.

The results for the Cook's membrane problem, that was subjected to moderate

strains, compared well for the hyper-elastoplastic and logarithmic cases. This test

sample shows the variation between these formulations given larger deformations, where

in some cases elements also undergo substantial rotation relative to one another. A

similar test problem is again modelled, this time in three di�erent boundary value

problem solvers for comparison on the native formulations used in large deformation

plasticity.

2.2 Software package comparison

This section compares the built in elastoplastic formulations for Abaqus 6.11 and Cal-

culiX 2.8 in the presence of geometric e�ects as well as the hyper-elastoplastic formu-

lation using Code_Aster 11.3. In all three packages an Abaqus user material, coded

as a Fortran subroutine, can be linked.

A cylinder with a height to diameter ratio of 2:1 is again modelled subject to a

large axial strain, as depicted in Figure 2.4. In the three software packages, the axi-

symmetric problem is set up and and solved using the same linear strain hardening

material parameters.

A boundary value problem is set up in this section to model a 5mm×2.5mm quarter

axi-symmetric section of the test specimen using a 20×20 mesh of quadratic elements.

To make the roll over easier to solve, the upper right square element is replaced with

two triangular elements. For this comparison, the material is modelled using an elastic

sti�ness of E = 10GPa, Poisson's ratio of ν = 0.3, initial yield stress of σ0 = 50MPa

and linear strain hardening modulus of K = 100MPa.

CalculiX does not have the option of a rigid line or surface to model the anvil. The

anvil is therefore modelled using a single element 5mm long in the radial direction and

1mm high in the axial direction. Contact is de�ned between the lower surface of the

anvil element and outer surface of the test specimen so that barrelling and rollover may
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again be handled during the compression. Hard normal contact is chosen in Abaqus

and friction is assumed using a coe�cient µC = 0.2. CalculiX does not have the

option for hard contact and so it is modelled using a spring contact formulation with

a spring sti�ness of Kspring = 50GPa. The discrete Lagrangian contact formulation in

Code_Aster is again used as in Section 2.1.2.

Over the course of the simulation, a downward axial displacement of 3.5mm is pre-

scribed to the two lower nodes of the anvil element. The resulting von Mises equivalent

stress is displayed for comparison at the end of the simulation, in Figure 2.8. These

stress results are limited between 50MPa and 200MPa to allow easier comparison. The

von Mises stress values extracted at the corner nodes labelled in Figure 2.4(b) as well

as the displacement in the radial direction are given in Table 2.2.

Despite some local variations, the hyper-elastoplastic result in Figure 2.8(c) seems

in good agreement to the hypo-elastoplastic, Jaumann corotational formulation intrin-

sically used by Abaqus in Figure 2.8(a).

Although the results obtained using CalculiX have the same approximate stress

distributions, there is a clearer distinction between Figure 2.8(b) and the other �gures.

According to the CalculiX documentation, the native formulation used for isotropic

plasticity in the presence of large strain or geometric e�ects is modelled using the

hyper-elastoplastic formulation described by Simo and Hughes (1997). If we assume

that the CalculiX results should be closer to that of Figure 2.8(c), a possible reason

for the observed variation from the other two results could be due to the alternative

spring contact formulation used. The variation could also be attributed to a slightly

di�erent element formulation or treatment of the yield surface hardening function.

The quadratic meshes contain a total of 1281 nodes. For a quantitative comparison,

the Von Mises stresses as well as the radial and axial displacements at all 1281 nodal

Von Mises stress Radial displacement

A B C D C D

Abaqus 50.803 213.08 138.02 194.81 2.1578 0.61400

CalculiX 78.304 209.16 138.30 195.53 2.1507 0.63447

Code_Aster 51.996 214.36 138.51 199.07 2.1593 0.62628

Table 2.2: Von Mises stress and displacement values at selected locations
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(a)

(b)

(c)

Figure 2.8: Von Mises equivalent stress values between 50MPa and 200MPa for the
compressed cylindrical test specimen. The results are obtained from (a) Abaqus (b)
CalculiX and (c) the hyper-elastoplastic formulation in Code_Aster.
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locations are extracted and compared.

The average di�erence as a percentage of both quantities compared is calculated

over all N = 1281 nodal locations using

Average % difference(φ,ϕ) =
200

N

N∑
i

∣∣∣∣φi − ϕiφi + ϕi

∣∣∣∣ , (2.2)

where φ and ϕ are the two vectors containing the quantities compared.

The average di�erences when comparing the Abaqus, CalculiX and Code_Aster

results are given in Table 2.3. The von Mises stresses between Abaqus and CalculiX

compare the best at a 1.17% di�erence while the largest di�erence is 2.18% when

comparing the CalculiX results to that of Code_Aster. The displacement solution

using Abaqus and Code_Aster compare well with a 0.65% di�erence in the radial

direction and less than 0.1% di�erence in the axial direction. Comparing all 3843

extracted values the Abaqus and Code_Aster solution are within 0.68%. While there

are a large number of reasons why the solutions could vary, the solution using the three

di�erent software packages compare favourably with an average variation below 1.2%.

Abaqus, as a commercial software package, is extensively validated while CalculiX

and Code_Aster are both research codes. The veri�cation using the three di�erent

packages to solve the same representative problem in this subsection is mainly aimed

at illustrating reasonable variation while concluding that both the hyper-elastoplastic

and corotational hypo-elastoplastic formulations are appropriate choices.

A general elastoplastic user material framework is discussed in the following section

for isotropic and combined (isotropic and kinematic) hardening. Theory and imple-

mentation of the Abaqus material framework in a corotational hypo-elastoplastic sense

are discussed.

Von Mises stress Radial displacement Axial displacement Average

Abaqus - CalculiX 1.1679 1.5792 0.2508 0.9993

Abaqus - Code_Aster 1.2856 0.6519 0.0966 0.6781

CalculiX - Code Aster 2.1773 1.1546 0.1663 1.1661

Table 2.3: Average percentage di�erence in the von Mises stress �eld and displacement
solution evaluated at 1281 nodal locations.
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2.3 Incremental hypo-elastoplasticity: an Abaqus user

material framework

The results of the Abaqus native formulation, where the corotational Jaumann stress

rate is used to obtain a hypo-elastoplastic formulation, and those of the hyper-elastoplastic

formulation in Code_Aster compare well, considering Figure 2.8. This section therefore

focuses on the relevant theory and implementation of a hypo-elastoplastic framework

for both purely isotropic as well as an extension to combined isotropic and kinematic

hardening plasticity into an Abaqus user material subroutine.

In this section, a review on some basic continuum mechanics is presented as may be

found in many books on the subject, see for example �Nonlinear Solid Mechanics: A

Continuum Approach for Engineering� by Holzapfel (2000). Much of the theory is also

contained in �Computational Inelasticity� by Simo and Hughes (1997) or taken from

pages 757 to 818 of the Abaqus 6.11 Theory Manual (2011a).

2.3.1 Deformation theory

If B0, an open bounded set in R3, is the reference con�guration of a continuum body

with particles labelled by X ∈ B0, a smooth deformation is de�ned by a one-to-one

mapping:

ϕ : B0 → B ⊂ R3. (2.3)

Here X is mapped by ϕ to x ∈ B, a point in the current con�guration B = ϕ(B0).

Therefore x = ϕ(X, t) at time t, as seen in Figure 2.9.

The deformation gradient at time t, F (X, t) is the derivative of the deformation

(Simo and Hughes, 1997)

F (X, t) :=
∂x

∂X
=
∂ϕ(X, t)

∂X
. (2.4)

Interpenetrability of matter further means that the determinant of the deformation

gradient (Simo and Hughes, 1997)

J (X) = det [F (X)] > 0. (2.5)
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Figure 2.9: The deformation gradient, adapted from Simo and Hughes (1997).

The deformation gradient may be decomposed into a rigid and nonrigid part as is

visible in Figure 2.9. If R is a pure rigid body rotation with the property RT = R−1,

U is the right stretch tensor and V the left stretch tensor, the deformation gradient

may be decomposed into (Simo and Hughes, 1997)

F = R ·U or F = V ·R. (2.6)

First consider rigid body rotation. Each unit vector N on the original solid body

B0 is rotated to the unit normal in the current con�guration through

n = R ·N , (2.7)

where n therefore becomes the principal stretch direction in the Eulerian frame (on

B). Given three associated orthogonal directions, the total rigid body rotation may be
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constructed by sum of the dyadic products of the principal directions

R =
III∑
A=I

n(A) ⊗N (A). (2.8)

Spectral decomposition of the deformation gradient further takes the form (Simo and

Hughes, 1997)

F =
III∑
A=I

λ(A)n(A) ⊗N (A), (2.9)

where λ(A) is the stretch associated with principal direction n(A) in the Eulerian refer-

ence frame. The right and left stretch tensors are further given by

U =
III∑
A=I

λ(A)N (A) ⊗N (A) and V =
III∑
A=I

λ(A)n(A) ⊗ n(A). (2.10)

Using Equation (2.6), these tensors are related through the rotation by

U = RT · F = RT · V ·R. (2.11)

2.3.2 Displacement and velocity

We may have a displacement u such that the coordinates x on the deformed con�gu-

ration are related to the coordinates X on the undeformed con�guration by

x = X + u. (2.12)

The deformation gradient according to Equation (2.4) can now be determined with

F =
dx

dX
=
d (X + u)

dX
= I +∇Xu, (2.13)

where ∇Xu is known as the displacement gradient. If the velocity of a material particle

is u̇ = ∂tx, we can similarly have a velocity gradient. The velocity di�erence between

neighbouring particles in the current con�guration, an in�nitesimal distance dx apart
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using dx = F · dX from Equation (2.4) is:

du̇ = ∇xu̇ · dx = ∇xu̇ · F · dX or
du̇

dX
= ∇xu̇ · F , (2.14)

where ∇xu̇ is the velocity gradient in the current con�guration B. It can also be

determined directly:
du̇

dX
=

∂

∂t

(
dx

dX

)
=

∂

∂t
(F ) = Ḟ . (2.15)

Comparing these two equations the expression for the spatial velocity gradient is (Simo

and Hughes, 1997):

∇xu̇ · F = Ḟ

∇xu̇ = Ḟ · F−1. (2.16)

The velocity gradient is commonly split into a symmetric part known as the rate

of deformation tensor (d = dT) and a skew symmetric part known as the spin matrix

(w = −wT). This decomposition means that

d =
1

2

[
∇xu̇+∇T

xu̇
]

and w =
1

2

[
∇xu̇−∇T

xu̇
]
. (2.17)

2.3.3 Incremental solution update in Abaqus

Given a converged solution to the boundary value problem at time step t, a solution

update

δu = ϕ (X, t+ δt)−ϕ (X, t) = xt+δt − xt (2.18)

to an incremental change or time step δt is generally required. The average material

rotation over an increment can be constructed using the multiplicative decomposition

of the rotation tensor. From the work by Hughes and Winget (1980), assume that a

rotation somewhere in the current increment can be determined from

Rt+αδt = δR (β) ·Rt ⇒ δR (β) = Rt+βδt ·RT
t . (2.19)
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The scalar value 0 ≤ β ≤ 1 indicates where the calculation takes place. A value of

β = 0 is associated with values at the start of the increment t while a value of 1

is associated with the end of the increment t + δt. For notational brevity, the full

rotation during an increment is simply δR = Rt+δt · RT
t while at the start of the

increment δR (0) = Rt ·RT
t = I. For each rotational increment, the deformation basis

or principal stretch direction is updated. All vectors and tensors can be rotated by this

incremental rotation. For example,

ñt = δR · nt and σ̃t = δR · σt · δRT (2.20)

are a rotated normal vector and rotated stress tensor at the start of the calculation

under the imposed incremental rotation respectively. In Abaqus, rotated variables are

passed to constitutive routines that further update them subject to various constitutive

e�ects. The velocity gradient at any time in the increment ∇xu̇ (α), is rotated to the

current deformation basis using the instantaneous rotation in Equation (2.19) as well

as the full rotation increment. The tensor is �rst rotated back to the basis at the start

of the increment and then rotated forward to the end. The rotated velocity gradient

at any point during the increment time, as seen in the current coordinate system is

therefore

∇x
˙̃u (β) = δR ·

(
δRT (β) · ∇xu̇ (β) · δR (β)

)
· δRT. (2.21)

Using Equation (2.21), an expression for the instantaneous rate of deformation

tensor in Equation (2.17) as rotated to the �nal coordinate system becomes

d̃ (β) =
1

2

[
∇x

˙̃u (β) +∇T
x

˙̃u (β)
]
. (2.22)

Decomposing the total deformation increment as in Equation (2.6) so that δF (β) =

δR (β) · δU (β) and using Equation (2.16) for the instantaneous velocity gradient:

∇xu̇ (β) = δḞ (β) · δF−1 (β)

=
(
δṘ (β) · δU (β) + δR (β) · δU̇ (β)

)
·
(
δU−1 (β) · δRT (β)

)
= δṘ (β) · δRT (β) + δR (β) · δU̇ (β) · δU−1 (β) · δRT (β) . (2.23)
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Within Abaqus, integration of the rotated rate of deformation tensor in Equation (2.22)

over the entire increment gives the total strain update δε for the current con�guration.

Using Equations (2.21) and (2.23), the strain increment is determined by

δε =

ˆ 1

0

d̃ (β) dβ

=
1

2
δR ·

ˆ 1

0

δRT (β) ·
[
∇xu̇ (β) +∇T

xu̇ (β)
]
· δR (β) dβ · δRT

=
1

2
δR ·

ˆ 1

0

[
δU̇ (β) · δU−1 (β) + δU−1 (β) · δU̇ (β)

]
dβ · δRT. (2.24)

Using spectral decomposition of the stretch tensors in Equation (2.10), the instan-

taneous right stretch tensor is

δU (β) =
III∑
A=I

[
1 + β

(
δλ(A) − 1

)]
N (A) ⊗N (A). (2.25)

If the instantaneous time increment is βδt, the time derivative of the right stretch

tensor is

δU̇ (β) =
1

δt

∂U (β)

∂β
=

1

δt

III∑
A=I

(
δλ(A) − 1

)
N (A) ⊗N (A), (2.26)

while the inverse using the instantaneous stretch increment is

δU−1 (β) =
III∑
A=I

[
1

1 + β (δλ(A) − 1)

]
N (A) ⊗N (A). (2.27)

The integral part of Equation (2.24) can be determined using Equations (2.25) to

(2.27):

1

2

ˆ 1

0

[
δU̇ (β) · δU−1 (β) + δU−1 (β) · δU̇ (β)

]
dβ

=

ˆ 1

0

III∑
A=I

[ (
δλ(A) − 1

)
1 + β (δλ(A) − 1)

]
N (A) ⊗N (A)dβ
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=
III∑
A=I

ln(δλ(A))N (A) ⊗N (A) (2.28)

since
´ 1

0

(δλ(A)−1)
1+β(δλ(A)−1)

dβ = ln
(
1 + β

(
δλ(A) − 1

))∣∣1
0

= ln
(
δλ(A)

)
. Equation (2.24) in

terms of the incremental logarithmic strain increment is therefore:

δε = δR ·

[
III∑
A=I

ln(δλ(A))N (A) ⊗N (A)

]
· δRT

=
III∑
A=I

ln(δλ(A))n(A) ⊗ n(A)

= ln(δV ). (2.29)

As long as the stretch at any time during the increment has the same principal di-

rections as the total stretch increment, Abaqus assumes that a logarithmic incremental

strain provides the integral of the strain rate or rate of deformation. In Abaqus, the

logarithmic strain increment formulation as described above is used as an input to

the material constitutive subroutine and solved using a corotational description of the

relevant tensors such as the strain, plastic strain, stress and back stress.

2.3.4 Hypo-elastoplasticity

In hypo-elastoplasticity, the material constitutive response is integrated objectively

by using a rotation neutralised description of the spatial evolution equations. The

formulation can be explained by �rst introducing an orthogonal tensor Λ. Following

Simo and Hughes (1997), this tensor has the following properties:

Λ|t=0 = I, Λ̇ = ω̂ ·Λ, (2.30)

where ω̂ = −ω̂T is a skew symmetric tensor. Using this orthogonal tensor, the rotated

local con�gurations

D = ΛT · d ·Λ and Σ = ΛT · σ ·Λ (2.31)
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are introduced as the rotated rate of deformation tensor D and rotated Cauchy stress

tensor Σ. The time derivative of the rotated Cauchy stress tensor gives

Σ̇ = ΛT · σ̇ ·Λ + Λ̇
T · σ ·Λ + ΛT · σ · Λ̇

= ΛT ·
[
σ̇ + ω̂T · σ + σ · ω̂

]
·Λ

= ΛT · [σ̇ − ω̂ · σ + σ · ω̂] ·Λ

= ΛT · ◦σ ·Λ (2.32)

with
◦
σ now a corotated objective Cauchy stress rate relative to the axes with spin ω̂.

The objective stress rate may follow from the choice of the skew symmetric spatial

tensor. Choosing ω̂ = w, the spin tensor associated with the velocity gradient in

Equation (2.17) e�ectively recovers the Jaumann rate while the choice of ω̂ = Ṙ ·RT

results in the Green-Naghdi rate (Simo and Hughes, 1997). In most cases, Abaqus

natively uses the Jaumann rate.

The hypo-elastoplastic formulation assumes the additive decomposition of the rate

of deformation or strain rate

D = De +Dp or d = de + dp. (2.33)

From this assumption, material rate constitutive equations are given by

◦
σ = C : de (2.34)

where the material tensor C can take the same form as in the small strain formulation

with

Cijkl =

(
κ− 2

3
µ

)
δijδkl + 2µδikδjl (2.35)

for example. In this equation κ > 0 is the bulk modulus; µ is the shear modulus and

δij represents Kronecker's delta (δii = 1, δi,j 6=i = 0). κ and µ are related to the elastic

modulus E and Poisson's ratio ν through

κ =
νE

(1 + ν) (1− 2ν)
and µ =

E

2 (1 + ν)
. (2.36)
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2.3.5 Isotropic Hardening

From Equation (2.33), the rotated instantaneous rate of deformation tensor is decom-

posed additively:

d̃ = d̃
e

+ d̃
p
⇒ ε̇ = d̃ ⇒ δε = δεe + δεp. (2.37)

The stress tensor is updated incrementally using the Hughes-Winget formula (1980):

σt+δt = σ̃t + C : δεe, (2.38)

where σ̃t is the corotated stress tensor at the start of the increment in Equation (2.20)

and C is the material tensor. Using the incremental strains, the integrated corotational

strains are

εij|t+δt = ε̃e
ij

∣∣
t
+ ε̃p

ij

∣∣
t
+ δεe

ij + δεp
ij. (2.39)

with ε̃t = δR · εt · δRT as in Equation (2.20). In associated �ow, the von Mises yield

function means that there is no volumetric plastic strain. The strain is therefore split

into a volumetric εvolI and deviatoric strain tensor ε′ component where

εvol = εkk and ε′ij = εij −
1

3
δijεkk. (2.40)

The deviatoric stress may be expressed as a function of the deviatoric elastic strain

component

σ′ij = 2µεe
ij
′. (2.41)

Plastic deformation in the materials considered is volume preserving. Given that the

trace of the plastic strain is zero and there is no pressure dependent plastic deformation,

the yield only depends on the deviatoric component of the stress tensor σ′. The �rst

invariant of the deviatoric stress I1 (σ′) = σ′kk = 0, meaning the yield can not be a

function of the �rst invariant. The equivalent stress measure used in the formulation of

the Huber - von Mises yield criterion or J2 isotropic plasticity is the second invariant

of the deviatoric stress tensor. The equivalent stress is de�ned in terms of the second
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invariant of the deviatoric stress as

σvM =
√

3I2 (σ′)

=

√
3

2
σ′ijσ

′
ij (2.42)

known as the von Mises stress. Isotropic plasticity requires that the material satisfy

a uniaxial-stress plastic-strain strain-rate relationship. If the material is rate indepen-

dent, the yield condition is now de�ned in three dimensional isotropic plasticity as

f(σ, α) = σvM − σY (α) ≤ 0, i.e.

f(σ, α) =

√
3

2
‖σ′‖ − σY (α) or f(σ, α) = ‖σ′‖ −

√
2

3
σY (α) . (2.43)

In these equations, σY is the e�ective yield stress and α the equivalent plastic strain.

From the consistency condition, with γ ≥ 0 the absolute value of the slip rate:

γḟ(σ) = 0 if f(σ) = 0 =⇒ ε̇p = γ
∂

∂σ
f (σ, α) = γn, (2.44)

with n the direction of plastic �ow normal to the yield surface. Since plastic �ow is

only a function of the deviatoric stress component:

nij =
σ′ij
‖σ′‖

. (2.45)

The plastic strain rate tensor can be written in terms of the equivalent plastic strain

rate and stresses to take the form of the Lévy-von Mises equation for the �ow rule

ε̇p
ij = γnij

=

√
3

2
α̇
σ′ij
‖σ′‖

=
3

2
α̇
σ′ij
σvM

. (2.46)

The yield stress may also be temperature and rate dependent, or depend on the

evolution of other internal variables of state, as discussed in subsequent chapters. If the
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plastic �ow is rate dependent, the equivalent plastic strain rate could be determined

from a kinetic equation

α̇ = h (σY, δα,χ) (2.47)

where h (•) is a known function dependent on the yield stress, strain increment as well

as other variables χ. Using backward Euler fully implicit integration gives the equation

δα = δt h (σY, δα,χ) , (2.48)

that may be inverted to give the equivalent yield stress as a function of the equivalent

plastic strain at the end of the increment. The rate independent as well as the inte-

grated rate dependent elastoplastic model can therefore be given here by the general

uniaxial form

σvM = σY (δα,χ) (2.49)

during plastic �ow. Integration is performed by applying the fully implicit backward

Euler method to the �ow rule in Equation (2.44) so that an incremental change in

plasticity is given by

δεp
ij = ε̇p

ijδt = δγnij. (2.50)

Taking the incremental deviatoric elastic strain

δεe
ij
′ = δε′ij − δε

p
ij = δε′ij − δγnij, (2.51)

the deviatoric stress calculated incrementally by taking the equivalent plastic strain

into account is

σ′ij = 2µεe
ij
′

= 2µ
(
ε̃e
ij
′∣∣
t
+ δεe

ij
′
)

= 2µ
(
ε̃e
ij
′∣∣
t
+ δε′ij − δγnij

)
. (2.52)

By taking the de�nition of the associated �ow direction in Equation (2.46), the equation

becomes (
1 +

3µ

σvM

δα

)
σ′ij = 2µ

(
ε̃e
ij
′∣∣
t
+ δε′ij

)
. (2.53)
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Assuming that the full strain increment is elastic, this introduces the trial deviatoric

elastic strain state

ε′ij
trial = ε̃e

ij
′∣∣
t
+ δε′ij and σ′ij

trial = 2µε′ij
trial. (2.54)

By substituting this trial elastic stress state and taking the inner product of Equa-

tion (2.53) we have a relationship to construct a residual equation in the case for a

nonlinear yield condition in three dimensions:(
1 +

3µ

σvM

δα

)2

σ′ijσ
′
ij = σ′ij

trialσ′ij
trial

(
1 +

3µ

σvM

δα

)2
2

3
σ2

vM = σ′ij
trialσ′ij

trial

(σvM + 3µδα)2 =
3

2
σ′ij

trialσ′ij
trial

σvM + 3µδα =

√
3

2
σ′ij

trialσ′ij
trial

σvM + 3µδα = σtrial
vM . (2.55)

This equation is now formulated in terms of the trial von Mises stress σtrial
vM . Using

the general uniaxial requirement for rate independent and rate dependent plasticity

set up in Equation (2.49), Equation (2.55) is recast as a residual equation to solve the

equivalent plastic strain increment that would result in σvM = σY upon convergence.

The residual equation is

Rf (δα) = σtrial
vM − 3µδα− σY (δα) . (2.56)

Equation (2.56) is solved by Newton's method:

{δα}k+1 = {δα}k −
Rf

(
{δα}k

)
DRf

(
{δα}k

) , (2.57)

where

DRf

(
{δα}k

)
= −3µ−

[
dσY

dδα

]k
(2.58)
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until convergence is achieved. Once the equivalent plastic strain increment is known,

the solution is fully de�ned with σvM = σY, meaning the relationship between the de-

viatoric stress components and deviatoric strain components in the case of incremental

elastoplasticity is

σ′ij =
2µ

1 + 3µδα/σvM

ε′ij
trial. (2.59)

2.3.6 Consistent Tangent Formulation

Taking the variational form of Equation (2.53) with respect to all quantities at the end

of the time increment gives(
1 +

3µ

σvM

δα

)
∂σ′ij + σ′ij

3µ

σvM

(
∂δα− δα

σvM

∂σvM

)
= ∂σ′ij

trial. (2.60)

Now let us �rst focus on the second term of Equation (2.60). From Equation (2.49) in

variational form follows

∂σvM = K∂δα where K =
∂σY

∂δα
. (2.61)

From Equation (2.55), we get:

∂σvM + 3µ∂δα = ∂σtrial
vM

∂σvM = ∂σtrial
vM − 3µ∂δα. (2.62)

Combining these expressions means we have a variational from for the equivalent plastic

strain in terms of the elastic trial von Mises stress:

∂δα =
1

3µ+K
∂σtrial

vM . (2.63)

From the trial elastic state:

∂σtrial
vM =

3

2σtrial
vM

σ′kl
trial∂σ′kl

trial and ∂σ′kl
trial = 2µ∂ε′kl

trial. (2.64)
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If we �rst focus on the second term of Equation (2.60):

σ′ij
3µ

σvM

(
∂δα− δα

σvM

∂σvM

)
= σ′ij

3µ

σvM

[(
1− δα

σvM

K
)
∂δα

]
= σ′ij

3µ

σvM

[(
1− δα

σvM

K
)

1

3µ+K
∂σtrial

vM

]
(2.65)

= σ′ij
3µ

σvM

[(
1− δα

σvM

K
)

3µ

3µ+K
σ′kl

trial

σtrial
vM

∂ε′kl
trial

]
.

Noting that in associated �ow the �ow directions are

nij =
σ′ij
σvM

=
σ′ij

trial

σtrial
vM

, (2.66)

the expression is further simpli�ed as

σ′ij
3µ

σvM

(
∂δα− δα

σvM

∂σvM

)
=

[(
3µ− 3µδα

σvM

K
)

3µ

3µ+K

]
nijnkl∂ε

′
kl

trial (2.67)

=

[
3µ−

(
1 +

3µ

σvM

δα

)
K

1 +K/3µ

]
nijnkl∂ε

′
kl

trial.

Substituting the relative expressions, it is possible to rewrite Equation (2.60) as(
1 +

3µ

σvM

δα

)
∂σ′ij +

[
3µ−

(
1 +

3µ

σvM

δα

)
K

1 +K/3µ

]
nijnkl∂ε

′
kl

trial = 2µ∂ε′ij
trial.

(2.68)

In order to write the result in terms of only the trial and �nal yield function value,

consider that upon convergence, from Equation (2.56):

σtrial
vM − 3µδα− σY = 0

3µδα + σY = σtrial
vM

1 +
3µ

σY

δα =
σtrial

vM

σY

. (2.69)
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Considering that σvM = σY upon convergence:

∂σ′ij = 2µ
σY

σtrial
vM

∂ε′ij
trial +

[
K

1 +K/3µ
− 3µ

σY

σtrial
vM

]
nijnkl∂ε

′
kl

trial. (2.70)

For all cases where three direct strains are de�ned, the material sti�ness is completed

by the hydrostatic pressure component.

∂σij = ∂σ′ij − δij∂p (2.71)

where ∂p = κ∂εkk.

Computing the deviatoric strain component

∂ε′ij = ∂εij −
1

3
δijδkl∂εkl, (2.72)

and substituting it into the relevant locations yields

∂σij = κδij∂εkk + 2µ
σY

σtrial
vM

(
∂εij −

1

3
δij∂εkk

)
+

[
K

1 +K/3µ
− 3µ

σY

σtrial
vM

]
nijnkl∂εkl.

(2.73)

Finally, the solution is written as

∂σij = λ∗δij∂εkk + 2µ∗∂εij +

(
K

1 +K/3µ
− 3µ∗

)
nijnkl∂εkl, (2.74)

where

µ∗ = µ
σY

σtrial
vM

, and λ∗ = κ− 2

3
µ∗. (2.75)

2.3.7 Combined Hardening

For the combined hardening case, kinematic hardening is included along with the

isotropic formulation. The equivalent von Mises stress is now

ςvM =

√
3

2
ςijςij (2.76)
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where the e�ective stress ςij = σ′ij − qij is now used. qij is the moving centre of the

yield surface or back stresses. The associated �ow direction in Equation (2.45) is now

nij =
ςij
ςvM

. (2.77)

The evolution equation for the back stresses in terms of the Prager-Ziegler (Prager,

1956; Ziegler, 1959) linear kinematic work hardening model is

q̇ij =
2

3
Kε̇p

ij = Kα̇nij (2.78)

in three dimensions. In a more general setting, we can introduce a back stress func-

tion σB (δα) . If δσB (δα) represents incremental kinematic hardening, the incremental

change in the back stress is

δqij = δσBnij. (2.79)

In the combined hardening implementation, the back stress is also corotated as with

the other variables in Equation (2.20)

qt+δt = q̃t + δq. (2.80)

Considering rate independence, the general uniaxial condition in Equation (2.49) is

now

ςvM = σY (δα) where ςvM = σvM − σB (δα) . (2.81)

In the combined hardening case, the trial elastic state in Equation (2.54) is extended

by �rst freezing the back stresses:

qtrial
ij = qij|t and ςtrial

ij = σtrial
ij
′ − qtrial

ij . (2.82)

If the e�ective uniaxial stress is σvM = σY + σB, Equation (2.55) becomes:

σY + σB|t+δt + 3µδα = ςtrial
vM + σB|t , (2.83)

meaning the residual equation in combined hardening is
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Rf (δα) = ςtrial
vM − 3µδα− σY − δσB. (2.84)

This equation is solved again by Newton's method where now

DRf

(
{δα}k

)
= −3µ−Kk −Hk with K =

dσY

dδα
and H =

dδσB

dδα
. (2.85)

It is visible that the elastoplastic tangent modulus K in the isotropic case is simply

replaced by a combined elastoplastic tangent modulus K∗ = K + H. The consistent

tangent in the combined isotropic and kinematic hardening elastoplastic formulation

is therefore given for the three dimensional case as

∂σij = λ∗δij∂εkk + 2µ∗∂εij +

(
1

1 +K∗/3µ
− 3µ∗

)
nijnkl∂εkl (2.86)

where

µ∗ = µ
σY + δσB

σtrial
vM

, λ∗ = κ− 2

3
µ∗ and K∗ =

dσY

dδα
+
dδσB

dδα
. (2.87)

2.3.8 Numerical Implementation

The generic isotropic and combined material frameworks are implemented into an

Abaqus user material (UMAT) subroutine. This Fortran subroutine is called at all mate-

rial calculation points of elements where a speci�c material is assigned. This subroutine

can use or update solution dependent state variables. The use of an Abaqus user ma-

terial subroutine is outlined in Section 1.1.40 of the Abaqus user subroutine reference

manual.

Abaqus makes use of engineering strains in Voigt notation. The incremental strain

vector in three dimensions is therefore

DSTRAN = {δε} = {δε11, δε22, δε33, δγ23, δγ13, δγ12}T (2.88)

where δγ23 = δε23 + δε32 for example. In the stress and strain arrays, as well as the

consistent tangent matrix DDSDDE, the NDI direct components are stored �rst, followed

by the NSHR engineering shear components. In three dimensions, NDI=3, NSHR=3 and

DDSDDE is a 6× 6 matrix.
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The stresses are used as an input and output to the subroutine where the input

stress vector is already given in the corotational frame of Equation (2.20) if geometric

nonlinearities are taken into account. The utility subroutine ROTSIG is further available

within the user material subroutine to calculate corotated vectors as needed. In the

implemented combined hardening subroutine for example, corotated back stresses are

obtained by using the ROTSIG utility subroutine.

In Appendix A, the numerical implementation of the fully isotropic user material

framework using linear strain hardening is provided. Given that the model develop-

ments in subsequent chapters include temperature and rate e�ects, as well as solution

dependent state variables, provision is already made within the general framework.

The NSTATV state variables in the STATEV array is �rst duplicated into a temporary

TEMPSTATV array. A shear modulus is then determined from a SHEARMOD subroutine

before the trial elastic state is determined and elastic material consistent tangent is

assembled.

Given the initial assumption that the equivalent plastic strain increment is zero,

the yield stress is evaluated using the FISOTROPIC subroutine for the isotropic case.

This subroutine takes the equivalent plastic strain increment, time increment, temper-

ature as well as the material property and state variable arrays as input and returns

the isotropic yield stress σY as well as the sensitivity K in Equation (2.61). It also

potentially updates the temporary state variables as required.

If the yield condition is violated, the implementation uses Newton-Raphson to de-

termine the equivalent plastic strain increment as given in Equation (2.57). The stress

vector is updated using the yield stress and hydrostatic pressure while the consistent

tangent matrix DDSDDE is updated according to Equation (2.74) in the presence of plas-

tic �ow. Upon convergence, the state variable array is updated to take the values of

the converged temporary state variable array.

The linear isotropic strain hardening implementation in Appendix A requires four

material properties (NPROPS=4) given as input by the PROPS array. The �rst two

material properties are the shear modulus µ and Poisson's ratio ν, followed by the

initial yield stress σ0 and linear strain hardening modulusK. The SHEARMOD subroutine

simply returns the property values subject to ν ≤ 0.4999 in this case since the shear

modulus is assumed to be temperature independent. The FISOTROPIC subroutine �rst
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Figure 2.10: The isotropic hardening user material.

calculates the total equivalent plastic strain before calculating the yield stress. The

total equivalent plastic strain at the start of the increment is stored in the �rst entry

of the state variable array and at the end of the increment in TEMPSTATV.

A simple �ow chart showing the location of the subroutines called by the isotropic

hardening user material in Appendix A.1 is given in Figure 2.10. In the linear work

hardening case for this chapter, the user material framework calls the subroutines in

Appendix A.2 and Appendix A.3. In subsequent chapters, calls to the SHEARMOD and

FISOTROPIC subroutines are associated with di�erent �les. In each new development,

an updated layout will accompany the explanation to convey the modular implemen-

tation of the framework.

The combined hardening material framework is provided in Appendix B. As in the

isotropic case, the state variables are again updated from a temporary state variable

array while the SHEARMOD subroutine also accommodates a temperature dependent

shear modulus. In the combined hardening case, the �rst NDI+NSHR entries in the

STATEV and TEMPSTATV arrays contain the back stresses, corotated using the ROTSIG

utility subroutine over the rotation increment DROT. A subroutine CYCLREVERSAL is

introduced here to act on the state variables if cyclic reversal occurs. Load reversal is

checked in the current implementation by comparing the dot product of the current

e�ective stress and converged e�ective stress of the previous iteration or time step.
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Figure 2.11: The combined hardening user material.

Instead of the FISOTROPIC subroutine in the isotropic hardening case, the combined

hardening subroutine calls an FCOMBINED subroutine. Within FCOMBINED, the isotopic

yield stress σY and sensitivity K is determined as well as the back stress σB and

equivalent plastic strain sensitivity H. As in the isotropic case, it also potentially

updates the temporary state variables.

The linear combined strain hardening implementation in Appendix B requires �ve

material properties (NPROPS=5) given as input by the PROPS array. The �rst four

are the same as in the isotropic case while the �fth material property is the linear

hardening modulus for the equivalent back stress H. Given that the �rst six entries in

the state variable arrays are used for the back stresses in the three dimensional case,

the total equivalent plastic strain is stored in the seventh entry for the combined linear

hardening implementation in Appendix B. As in the isotropic case, Figure 2.11 shows

a layout of the appended subroutines called by the combined user material.

43



G.J. JANSEN VAN RENSBURG

(a) (b)

Figure 2.12: (a) The slender beam test problem with �xed and surface traction bound-
ary conditions. (b) The direction of the traction force is de�ned by two nodes A and
B on the traction surface.

2.4 Material Framework Veri�cation

To verify the user material subroutines implemented in Appendix A and B, a simple

test problem is simulated in Abaqus and compared using the internal plastic formula-

tion and user material subroutines. The test problem is modelled using only isotropic

hardening and only kinematic hardening. The di�erence in response illustrates two ex-

tremes of material modelling to highlight the importance and e�ect of each mechanism.

The aim of this section is to quantify the response of each hardening mechanism in

isolation, and in addition to verify the UMAT responses against the built in responses.

A slender beam with a square section of 1×1mm and a length of 20mm is modelled

with 160 eight noded brick elements. Each element has an initial dimension of 0.5×0.5×
0.5mm. The one side of the beam is �xed while the other side is subjected to a transient

surface traction as illustrated in Figure 2.12(a). The traction direction is de�ned by

two nodes on the traction surface labelled A and B in Figure 2.12(b). The initial

direction of the traction force is in the {x, y, z} direction {0,−0.447214, 0.894427}.
The test problem is evaluated over a 200s period using automatic time stepping

with a maximum time step size of 1s. The magnitude of the periodic surface traction

starts at 0N, ramping linearly to 1N at 50s before reversing to −1N at 150s and then

the traction is removed again so that it has a magnitude of 0N at 200s which is the end

of the analysis. The magnitude of the traction force over time is plotted in Figure 2.13.

The purely isotropic user material subroutine is tested using a shear modulus value
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Figure 2.13: Magnitude of the traction force

of µ = 4GPa and Poisson's ratio ν = 0.25 along with an initial yield stress σ0 = 50MPa

and linear strain hardening modulus K = 100MPa. The results are compared to

an Abaqus simulation using the *ELASTIC card and values of 10GPa for the Elastic

modulus E = 2µ (1 + ν) and ν = 0.25. The *PLASTIC card is then used where the

response is de�ned using the two points (50., 0.) and (150., 1.) for the stress as a function

of equivalent plastic strain.

The implementation of the combined hardening user subroutine is tested for the

kinematic hardening case using a material with the same elastic properties, but yield

de�ned using an initial yield stress σ0 = 50MPa, linear strain hardening modulus

K = 0MPa and linear hardening modulus for the back stress H = 100MPa. The

Abaqus input �le for the isotropic case is modi�ed by simply changing the *PLASTIC

card to *PLASTIC,HARDENING=KINEMATIC and leaving the de�nition of the stress as a

function of equivalent plastic strain as well as the rest of the input �le as is.

In Figures 2.14 to 2.23, the equivalent von Mises stresses are displayed on the

deformed beam for the isotropic and kinematic hardening cases using the built in

Abaqus plasticity formulations. At the start of the simulation, the beam is stress and

deformation free. At 30s the force magnitude is 0.6N and the beam has experienced

little deformation as visible in Figure 2.14. The base of the beam then acts as a plastic

hinge so that the beam undergoes a large amount of deformation up to the 50s/1N
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(a) (b)

Figure 2.14: Veri�cation example at 30s for the (a) Isotropic and (b) Kinematic Case

(a) (b)

Figure 2.15: Veri�cation example at 40s for the (a) Isotropic and (b) Kinematic Case

(a) (b)

Figure 2.16: Veri�cation example at 50s for the (a) Isotropic and (b) Kinematic Case
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(a) (b)

Figure 2.17: Veri�cation example at 100s for the (a) Isotropic and (b) Kinematic Case

(a) (b)

Figure 2.18: Veri�cation example at 120s for the (a) Isotropic and (b) Kinematic Case

(a) (b)

Figure 2.19: Veri�cation example at 130s for the (a) Isotropic and (b) Kinematic Case
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(a) (b)

Figure 2.20: Veri�cation example at 135s for the (a) Isotropic and (b) Kinematic Case

(a) (b)

Figure 2.21: Veri�cation example at 140s for the (a) Isotropic and (b) Kinematic Case

(a) (b)

Figure 2.22: Veri�cation example at 150s for the (a) Isotropic and (b) Kinematic Case
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(a) (b)

Figure 2.23: Veri�cation example at 200s for the (a) Isotropic and (b) Kinematic Case

mark as seen when comparing Figures 2.15 and 2.16. At 100s in Figure 2.17, the

residual force has been completely removed. The maximum von Mises stress from the

scalar bar in Figure 2.17(a) is 93.36MPa in the isotropic case compared to 90.47MPa

in Figure 2.17(b) meaning the results are not exactly the same in the isotropic and

kinematic cases. Up to this point, an increasing von Mises yield surface versus a

shifting yield surface results in similar results.

The load is reversed from 100s in Figure 2.18 to the 150s mark in Figure 2.22. The

response upon load reversal di�ers signi�cantly when comparing the two cases. The

isotropic hardening reduces the probability of further plastic deformation lower due to

the growing yield surface, whereas the kinematic hardening case has a lower yield value

upon load reversal and a plastic hinge is again responsible for the severe deformation

in the opposite direction as seen in Figures 2.19 to 2.22. At 200s, the surface traction

is again removed resulting in the �nal deformed beams in Figure 2.23.

The solutions using the implemented user materials are obtained and compared to

the Abaqus solution. The objectivity of the implementation is also checked by solving a

rotated version of the problem using the user materials. In this case an x axis rotation

of −30◦

Rx (−30◦) =

 1 0 0

0 cos (−30◦) − sin (−30◦)

0 sin (−30◦) cos (−30◦)

 =

 1 0 0

0 0.866 0.5

0 −0.5 0.866

 (2.89)
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is applied to both the purely isotropic and purely kinematic test problems before per-

forming the simulation.

In Figure 2.24, the equivalent plastic strains at the end of the simulation using

the (a) internal formulation and (b) user material subroutine are compared. In Fig-

ure 2.24(c), the equivalent plastic strain using the user material subroutine on the ro-

tated problem is presented. The maximum equivalent plastic strain in Figures 2.24(a)

is 0.5090 compared to 0.5091 in Figures 2.24(b) and again 0.5090 in Figures 2.24(c).

Apart from this very slight variation, the contours are essentially the same in the three

cases.

In Figure 2.25, the equivalent plastic strains at the end of the simulation using

the (a) internal formulation and (b) user material subroutine are again compared for

the kinematic hardening case. Figure 2.25(c) again presents the equivalent plastic

strain using the user material subroutine on the rotated problem. Here, the maximum

equivalent plastic strain values of 0.9304, 0.9304 and 0.9305 and contours are again

essentially the same in the three cases with only slight variations.

The displacement of the centre of the surface traction tip over the entire 200s is

plotted in Figure 2.26 for the isotropic hardening case. The black dots are the values

of the displacement components at the various time steps using the internal Abaqus

material formulation while the lines represent the three components of the displacement

vector over time using the user material subroutine. In Table 2.4, the �nal displacement

values in Figure 2.26 as well as those for the rotated problem are given. Comparing the

user material to the internal Abaqus solution, there is a 0.0394% di�erence while there

is a 0.0007% di�erence when the rotated problem is compared to the Abaqus solution.

Considering the comparisons in Figures 2.24 and 2.26 as well as the almost negligible

ABAQUS UMAT
−30◦ ROTATED

Extracted Back rotated

x Displacement -11.109 -11.100 -11.109 -11.109

y Displacement -8.9116 -8.9102 -0.7437 -8.9118

z Displacement 13.948 13.945 16.535 13.948

Table 2.4: Comparison of centre tip displacement over the simulation time for the
isotropic material subroutine validation.
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variation reported in Table 2.4, the isotropic user material subroutine implemented in

Appendix A appears to be accurate and the integration objective for use in large

deformation elastoplasticity.

The traction surface centre tip displacement over the entire 200s is also plotted

for the kinematic hardening case in Figure 2.27. The black dots are the values of the

displacement components at the various time steps using the internal Abaqus material

formulation while the lines again represent the three components of the displacement

vector over time, now using the user material subroutine implemented in Appendix B.

In Table 2.5, the �nal displacement values in Figure 2.27 as well as those for the

rotated kinematic hardening case are given. Using the �ve signi�cant numbers chosen

to populate Table 2.27 , there is no visible variation between the solutions.

Considering the comparisons in Figures 2.25 and 2.27 as well as the virtually iden-

tical solutions reported in Table 2.5, the handling of kinematic e�ects are accurate and

the integration is objective so that the user material subroutine may be used in large

deformation elastoplasticity.

This section instills con�dence in the implemented elastoplastic material framework

for both the isotropic and kinematic strain hardening components. The framework

serves as foundation for subsequent models developed in this thesis by simply replac-

ing the linear strain hardening subroutines by a di�erent FISOTROPIC or FCOMBINED

subroutine. The material response is altered in the next chapter for example to include

temperature and strain rate e�ects by implementing the Mechanical Threshold Stress

model (Follansbee and Kocks, 1998).

ABAQUS UMAT
−30◦ ROTATED

Extracted Back rotated

x Displacement -23.612 -23.612 -23.612 -23.612

y Displacement 8.4407 -8.4407 -0.1791 -8.4407

z Displacement -14.976 -14.976 -17.189 -14.976

Table 2.5: Comparison of centre tip displacement over the simulation time for the
kinematic material subroutine validation.
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(a) (b) (c)

Figure 2.24: Equivalent plastic strains obtained using (a) the internal Abaqus isotropic
hardening and (b) user material subroutine. (c) The rotated problem equivalent plastic
strains using the user material.
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(a) (b) (c)

Figure 2.25: Equivalent plastic strains obtained using (a) the internal Abaqus kinematic
hardening and (b) user material subroutine. (c) The rotated problem equivalent plastic
strains using the user material.
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Figure 2.26: Centre tip displacement over the simulation time for the isotropic material
subroutine validation.

Figure 2.27: Centre tip displacement over the simulation time for the kinematic mate-
rial subroutine validation.
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Chapter 3

Temperature and Strain Rate E�ects

In all the examples and implementation of Chapter 2, simple linear strain hardening

or back stress evolution is used. Real metals however do not have a perfect transition

from elastic to a linear strain hardening behaviour.

In this chapter, the development of the Mechanical Threshold Stress (MTS) model

is discussed using material test data of Oxygen free high conductivity Copper (OFHC

Cu) as an example. In Figure 3.1, some test data on OFHC Cu is demonstrated as

obtained by Tanner et al. (1999). In their tests, material samples were compressed

while maintaining a constant strain rate and temperature.

Figure 3.1 shows the material response for OFHC Cu at room temperature for

strain rates of 0.0004s−1, 0.01s−1, 0.1s−1 and 1s−1; material responses at 134◦C and

202◦C for a strain rate of 0.0004s−1; and the material response at 269◦C for a strain

rate of 0.01s−1, 0.1s−1 and 1s−1 respectively. Although their data set is far more

extensive, only these nine temperature and strain rate dependent response curves are

used in the hardening range of interest in this chapter. The data curves used here are

selected given that this chapter does not include very high strain rates (in the impact

or ballistics range) or material softening e�ects (thermal recovery or recrystallisation).

The Mechanical Threshold Stress model is described and implemented in this chapter

as an extension to the isotropic user material framework implemented into an Abaqus

user subroutine in Appendix A.
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Figure 3.1: Oxygen free high conductivity Copper data obtained by Tanner et al.
(1999).

3.1 The Kinetic Equation

Model speci�cs can �rst enter into play through a particular form of the kinetic equa-

tion. In the kinetic equation, equivalent plastic strain rate and the equivalent stress are

related, reducing the problem of constitutive modelling to a scalar operation (Estrin,

1996). The role the kinetic equation plays in the model framework is explained by

referring back to Equation (2.47)

From the work by Kocks (1976), a suitable mathematical form for h (•) in Equa-

tion (2.47) is the power-law. If α̇ represents the equivalent plastic strain rate ˙̄εp, then

α̇ = ε̇0

(σ
σ̂

)m
. (3.1)

In Equation (3.1), σ̂ is an internal stress like variable representing the material state

or threshold stress. This internal state variable can be dependent on temperature, in-

cremental plastic strain or other internal variables of state. The equation also contains

two additional material parameters ε̇0 and m. The factor ε̇0 is proportional to the
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density of mobile dislocations and can be modelled as a constant (Estrin and Mecking,

1984; Kocks, 1976, 1987; Mecking and Kocks, 1981).

Considering the thermodynamics and kinetics of slip, Kocks et al. (1975) models m

using

m =
V σ

kBT
. (3.2)

The temperature dependence of the plastic strain rate is then included with V the

activation volume, kB the Boltzmann constant and T the absolute temperature.

In the work by Follansbee and Kocks (1998), an alternate variant of the kinetic

equation in Equation (3.1), in which the Arrhenius form is preserved is

α̇ = ε̇0 exp

[
−4G0

kBT

(
1−

(σ
σ̂

)p)q]
. (3.3)

Here, 4G0 is the value of the Gibbs free activation energy at zero stress while the

exponents p and q are statistical constants that characterise the shape of the obstacle

pro�le (0 ≤ p ≤ 1 , 1 ≤ q ≤ 2). The exponents provide the required shape of the

equivalent plastic strain rate versus stress curve.

Given that the microstructure evolves during plastic deformation, a separate equa-

tion is needed to model the evolution of σ̂. In general form following Kocks (1976),

this can be written as
dσ̂

dα
= θ(σ̂, α̇, T ). (3.4)

The introduction of this microstructural evolution equation suggests that the rate of

change in σ̂ is a�ected by its current value subject to some rate and temperature sen-

sitivity. A concrete form of the evolution of σ̂ completes the constitutive formulation.

3.2 Kocks-Mecking work hardening

The development of the microstructure evolution equation in Equation (3.4) associated

with the Mechanical Threshold Stress model starts with reviewing the Kocks-Mecking

work hardening theory (Kocks et al., 1975; Kocks, 1976; Mecking, 1977). Dislocation

density, ρ, is introduced as a microstructural variable of state through the introduction

of the threshold stress with the relationship
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σ̂ =
1

2
Mµrb

√
ρ. (3.5)

Here, M is the average Taylor factor that accounts for the polycrystallinity of the

material (Kocks, 1976). M = σ/τ = γp/εp relates the shear stress τ and plastic shear

strain γp to the axial stress σ and axial plastic strain εp. We however use α and α̇ for

the scalarised equivalent plastic strain and strain rate instead of the one dimensional

values εp and ε̇p, so in this case Mα = γp.

In Equation (3.5), µr is a reference value of the elastic shear modulus and b is the

length of the Burger's vector. The evolution of the threshold stress in the presence of

plastic strain is developed from the evolution of the dislocation density.

The two main occurrences in the evolution of dislocation density is storage (dρ(+))

and recovery (dρ(−)), either with respect to a plastic strain increment or time. The

general form of an in�nitesimal incremental change in dislocation density is expressed

here as

dρ =
∑

dρ(+) −
∑

dρ(−). (3.6)

It is possible to have multiple storage and recovery terms to account for the various

mechanisms of dislocation density evolution. In this chapter however, only the two

main terms associated with the storage and recovery of forest dislocations are covered.

The �rst observation regarding the evolution of dislocation density is the assumption

that a mobile dislocation moves, on average, a distance L (the mean free path) before

it is either immobilised or annihilated. This mean free path is assumed much smaller

than the grain size of the material. The storage term considering this observation can

be expressed by noticing that a shear strain increment dγp = Mdα can be expressed

in terms of an immobilisation of mobile dislocations after travelling the distance of the

mean free path bLdρ. A storage increment in the dislocation density with respect to a

plastic strain increment is therefore given by

dρ(+) =
M

bL
dα. (3.7)

The mean free path between obstacles in this modelling approach is considered

as a statistical measure of forest dislocations and is proportional to obstacle spacing,
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resulting in a possible modi�cation of the storage term to

dρ(+) = Mk1
√
ρ dα (3.8)

where k1 is a constant that accounts for the proportionality of L ∝ 1/
√
ρ.

Dislocations are stored on the glide plane at impenetrable obstacles. They are

assumed to be annihilated when they leave the glide plane. The source of these anni-

hilations is either the cross-slip of screw dislocations or the climb of edge dislocations.

According to Estrin (1996), the cross-slip of screw dislocations is more prevalent at

low temperature ranges while the climb of edge dislocations is more prevalent in the

high temperature range that starts somewhere between half and two thirds of the ma-

terial melting temperature. During the deformation of moderate to low Stacking Fault

Energy (SFE) materials, like OFHC Copper, cross-slip onto di�erent glide planes are

inhibited by dislocations (Chaboche, 2008). This means that in some cases the ob-

served annihilation of dislocations may in fact be attributed to di�erent deformation

mechanisms. Use of the Kocks-Mecking theory and model derivatives in this thesis

does not take into account the explicit role of Stacking Fault Energy in the material

crystalline structure. Material parameters can be tuned to get as close as possible to an

observed material response even if the exact deformation mechanism is not explicitly

modelled or taken into account.

Dislocation annihilation reactions result in dynamic recovery rates that is quadratic

in dislocation density with respect to the time derivative while it is linear in ρ in terms

of a derivative with respect to strain (Estrin, 1996). A dynamic recovery component

in the incremental dislocation density evolution equation can be included as

dρ(−) = Mk2(α̇, T ) ρ dα. (3.9)

The recovery coe�cient k2 is strain rate and temperature dependent. Combining Equa-

tions (3.8) and (3.9), the Kocks-Mecking work hardening theory is obtained for the

evolution of dislocation density in the presence of plastic strain:

dρ

dα
= Mk1

√
ρ−Mk2(α̇, T ) ρ. (3.10)
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Nabarro et al. (1964) observed experimentally that the �ow stress τ̂ at a given

dislocation density, can be calculated for a speci�c temperature and strain rate through

the equation

τ̂ = τ̂a + αµrb
√
ρ, (3.11)

where τ̂a is the athermal portion of the �ow stress. Through the relationship for the

threshold stress in Equation (3.5), and the addition of a constant initial yield stress

value σ̂a = Mτ̂a at a given dislocation density, the yield stress σY for a reference

temperature and strain rate may be calculated using

σY (T ) = σ̂a + σ̂T , (3.12)

where σ̂T is now the thermal component of the yield stress.

Again using the relationship in Equation (3.5), the evolution of the thermal com-

ponent of the threshold stress in the presence of plastic strain is given by

dσ̂T
dα

=
Mµb

4
√
ρ

dρ

dα
. (3.13)

Now substituting Equation (3.10):

dσ̂T
dα

=
M2µbk1

4
−
M2µbk2(α̇, T )

√
ρ

4
, (3.14)

or in terms of the thermal component of the threshold stress:

dσ̂T
dα

=
M2µbk1

4
− Mk2(α̇, T )σ̂T

2
. (3.15)

If the new parameters

θ0 =
M2µbk1

4
and σ̂s (α̇, T ) =

2θ0

Mk2(α̇, T )
(3.16)

are introduced, Equation (3.15) can be written in terms of the Voce-law (Kocks et al.,

1998; Mourad et al., 2013)
dσ̂T
dα

= θ0

(
1− σ̂T

σ̂s

)
(3.17)
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where θ0 is now the initial hardening rate and σ̂s (α̇, T ) is the temperature and strain

rate dependent saturation stress.

3.3 The Mechanical Threshold Stress Model

The Mechanical Threshold Stress (MTS) model (Follansbee and Kocks, 1998) was

developed to describe the post yielding behaviour of metals. It has demonstrated the

ability to accurately model the e�ect of temperature and plastic strain rate on the post

yielding behaviour of metals.

In the MTS model, the internal material variable representing the material state

(σ̂) is regarded as the mechanical threshold as explained in the previous subsection.

This threshold value represents a theoretical maximum �ow stress at 0K. The material

�ow stress, σY, is obtained in this framework by scaling the mechanical threshold to

accommodate rate and temperature dependence. The yield stress in Equation (3.12)

was for a speci�c reference or threshold temperature. The MTS model on the other

hand uses temperature and rate dependent scaling factors to construct an expression

for the yield stress over a range of temperatures and strain rates.

Following Equation (3.11), the threshold �ow stress is separated into an athermal

σ̂a and k di�erent thermal components σ̂kT ,

σ̂ = σ̂a +
∑
k

σ̂kT . (3.18)

The athermal component σ̂a characterises the rate-independent interactions of dislo-

cations with long-range barriers. The thermal components σ̂kT characterise the rate-

dependent interactions of dislocations with short-range obstacles that can be overcome

with the assistance of thermal activation (Follansbee and Kocks, 1998).

At di�erent temperatures T and plastic strain rates α̇, the contributions to the �ow

stress σk are related to their threshold counterparts σ̂k through the scaling functions

Sk(α̇, T ), so that

σk = σ̂k
µ (T )

µr
Sk(α̇, T ). (3.19)

Here, µ (T ) and µr indicate the current and reference shear modulus values. The inter-
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action kinetics for short-range obstacles are described using an Arrhenius expression

while a phenomenological relation is used for the free energy function of stress (Kocks

et al., 1975).

Considering the scaling relationship between the �ow stress and theoretical thresh-

old values of a material, the equivalent �ow stress σY is expressed as

σY

µ
=
σ̂a
µ

+
∑
k

σk
µ

=
σ̂a
µ

+
∑
k

Sk(α̇, T )
σ̂k
µr
. (3.20)

In this model implementation, the same model to describe the temperature de-

pendence of the shear modulus is used as previously applied in conjunction with the

Kocks-Mecking work hardening theory (see for example Goto et al., 2000; Kok et al.,

2002 and Banerjee, 2007). The temperature dependence of the shear modulus is ex-

pressed using the model developed by Varshni (1970), which reads

µ(T ) = µr −
Dr

exp (Tr/T)− 1
. (3.21)

Here µr, Dr are empirically obtained parameters. Tr has to be well below the temper-

atures used while T is the absolute temperature.

The scaling functions of the threshold stress components Sk(α̇, T ) are derived from

the kinetic equation in Equation (3.3) and take the form

Sk(α̇, T ) =

[
1−

(
kBT

g0kµb3
ln
ε̇0k

α̇

)1/qk
]1/pk

, (3.22)

where g0k is the normalised activation energy for dislocations to overcome the obstacles.

In the standard MTS model there are two thermal components, i.e. σ̂k, k = 1, 2. Using

the notation σ̂1 = σ̂i and σ̂2 = σ̂ε, the �ow stress relation in Equation (3.20) changes

to
σY

µ
=
σ̂a
µ

+ Si(α̇, T )
σ̂i
µr

+ Sε(α̇, T )
σ̂ε
µr
. (3.23)

In Equation (3.23), σ̂i describes the non-evolving thermal portion of the yield stress

and σ̂ε describes the evolving interaction of mobile dislocations with the forest dislo-

cation structure.
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While Equation (3.23) describes the kinetics of the Mechanical Threshold Stress

framework, an equation for the evolution of σ̂ε is needed to complete the constitutive

formulation. With σ̂ε the evolving component of the threshold stress, the extension to

the general form of Equation (3.4) is

dσ̂ε
dα

= θ(σ̂ε, α̇, T ) = θ0 − θr(σ̂ε, α̇, T ), (3.24)

where θ0 is now the hardening due to dislocation accumulation and θr is the dynamic

recovery rate. The functional form of the hardening rate θ can be chosen to �t ex-

perimental data. Using the Kocks-Mecking theory of the previous subsection, Equa-

tion (3.24) can have the functional form of the Voce law in Equation (3.17). Popular

choices for alternative formulations as used by Chen and Gray (1996), Follansbee and

Kocks (1998) as well as Goto et al. (2000) is the hyperbolic tangent or power law forms

θ = θ0

1−
tanh

[
aσ̂ε
σ̂εs

]
tanh(a)

 or θ = θ0

(
1− σ̂ε

σ̂εs

)a
. (3.25)

The parameter a is a �tted constant with a = 1 applied to the second formulation

resulting in Equation (3.17). θ0 assumes the role of the initial hardening rate and

σ̂εs (α̇, T ) is the threshold saturation stress as de�ned by the Kocks-Mecking theory in

Equation (3.16). The hardening rate θ decreases with strain and saturates. Follow-

ing the work of Chen and Gray (1996), the threshold saturation stress σ̂εs (α̇, T ) is a

function of both strain rate and temperature, through

ln
α̇

ε̇0εs

=
g0εsµb

3

kBT
ln
σ̂εs
σ̂0εs

, (3.26)

where ε̇0εs, g0εs and σ̂0εs are empirically obtained constants. Other formulations of the

evolution equation are also possible within the Mechanical Threshold Stress model.

Instead of a constant value, temperature and rate dependence can be included to the

dislocation accumulation parameter as done by Mourad et al. (2013):

θ0 = A0 + A1 log(α̇) + A2

√
α̇− A3T + A4T

−A5 . (3.27)
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It is then also possible to extend the response beyond the saturation level by for-

mally including stage IV hardening. One such modi�cation used by Goto et al. (2000)

is

θ = θ0

[
1− tanh

(
aσ̂ε
σ̂εs

)]
+ θIV tanh

(
aσ̂ε
σ̂εs

)
, (3.28)

where a constant strain hardening rate of θIV is based on the experimental observation

of linear hardening during stage IV.

3.4 Numerical Implementation

Extending the isotropic user material framework in Appendix A, the Mechanical Thresh-

old Stress model is implemented numerically by the incrementally objective integration

of the hypoelastic(visco)plastic constitutive equations similar to that of Mourad et al.

(2013).

The temperature dependent shear modulus following Equation (3.21) is returned

by calling the SHEARMOD subroutine presented in Appendix C.1. The elastic properties

µr, Dr and Tr in Equation (3.21) as well as Poisson's ratio ν are passed to the material

subroutine using the �rst four entries in the PROPS array of user de�ned material

properties. The subroutine returns the shear modulus at the current temperature along

with Poisson's ratio to evaluate the trial elastic state. For Equation (3.21) to return a

valid shear modulus value, the current temperature should exceed the reference value

T > Tr. A logical check is therefore coded so that should T ≤ Tr, the reference shear

modulus value is returned µ = µr.

The Mechanical Threshold Stress model is also implemented into an isotropic hard-

ening subroutine FISOTROPIC that is called by the Abaqus user material subroutine in

place of the linear hardening version of the previous chapter. The yield stress function

FISOTROPIC for the MTS model is attached in Appendix C.2. Figure 3.2 shows the

layout of the appended subroutines called by Appendix A.1 in this implementation.

As in the linear hardening case presented in the previous chapter, the trial elastic

state is evaluated by assuming that there is no additional equivalent plastic strain

in the current increment, i.e. δα = 0. This means that an initial equivalent plastic

strain rate α̇ = δα/δt = 0 would be assumed for the trial elastic stress state. A zero
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Figure 3.2: The Mechanical Threshold Stress isotropic hardening user material.

plastic strain rate assumption causes problems when evaluating the scaling functions

in Equation (3.22). For this reason, the same reasoning as that of Mourad et al. (2013)

is followed. In the numerical implementation of Appendix C, a minimum allowable

equivalent plastic strain rate α̇min = 10−10 is assigned. Given the incremental equivalent

plastic strain and time step as inputs to the FISOTROPIC subroutine, the strain rate

used in the calculations where needed is determined by

α̇ = max

(
δα

δt
, α̇min

)
. (3.29)

In addition to the strain increment and the time step to estimate the strain rate,

FISOTROPIC is given the temperature at the end of the increment and a converged value

for the evolving thermal stress component at the start of the increment σ̂ε|t. It then

computes and returns the candidate threshold stress value at the end of the increment

σ̂ε|t+δt, yield stress σY|t+δt and sensitivities. These values are determined using fully

implicit backward Euler integration.

The numerical implementation uses a single state variable STATEV(1) = σ̂ε|t at the
start of the increment. The converged value of the evolving thermal stress at the end

of the current increment TEMPSTATEV(1) = σ̂ε|t+δt is then returned upon a call to the

FISOTROPIC subroutine for the next iteration.
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3.4.1 Determining the evolving thermal stress

Backward Euler implicit integration is �rst used to determine the value of the evolving

thermal stress component (σ̂ε) at the end of a speci�c time step. The plastic strain

rate, duration of the time increment and temperature over the time increment are taken

into account. The evolving thermal stress component at time t+ δt is given by

σ̂ε|t+δt = σ̂ε|t + δαθ( σ̂ε|t+δt , α̇|t+δt , T |t+δt) = σ̂ε|t + δα θ|t+δt . (3.30)

In this implementation, the value of θ|t+δt is computed from either the hyperbolic

tangent or power law form of Equation (3.25) at the end of the increment into consid-

eration. The implicit integration is done using Netwon-Raphson given an initial guess

σ̂ε|t+δt = σ̂ε|t and a residual equation based on Equation (3.30). The residual equation

and derivative to solve the evolving thermal stress component are

Rσ̂ε = σ̂ε|t+δt − σ̂ε|t − δα θ|t+δt and DRσ̂ε = 1− δα dθ

dσ̂ε

∣∣∣∣
t+δt

. (3.31)

If the hyperbolic tangent form of the hardening law in Equation (3.25) is chosen, the

derivative of the hardening law with respect to the evolving thermal stress component

is
dθ

dσ̂ε
=

−aθo
σ̂εs tanh(a) cosh2

(
aσ̂ε
σ̂εs

) . (3.32)

In the power law case on the other hand, the derivative is

dθ

dσ̂ε
=
−aθ0

σ̂εs

(
1− σ̂ε

σ̂εs

)a−1

. (3.33)

3.4.2 Analytical Gradients

The sensitivity of the calculated yield stress using Equation (3.23), given a di�erent

equivalent plastic strain increment as input, is required to solve the equivalent plastic

strain increment. This is done using Equations (2.57) and (2.58) in the user material

framework implemented in Appendix A. From Equation (3.23), the yield stress at the
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end of the current increment is

σY|t+δt = σ̂a +
µ
(
T |t+δt

)
µr

(
Si|t+δt σ̂i + Sε|t+δt σ̂ε|t+δt

)
. (3.34)

The derivative of the yield stress with respect to the equivalent plastic strain incre-

ment can be determined from the chain rule

dσY

dδα
=

µ

µr

[
∂Si
∂α̇

dα̇

dδα
σ̂i +

∂Sε
∂α̇

dα̇

dδα
σ̂ε + Sε

(
∂σ̂ε
∂δα

+
∂σ̂ε
∂α̇

dα̇

dδα

)]
, (3.35)

where dα̇/dδα = 1/δt when δα > 0 following from Equation (3.29).

The Arrhenius expression in Equation (3.22) is used for the MTS scaling functions.

The partial derivatives of these scaling functions with respect to the equivalent plastic

strain rate can be determined from

∂Sk
∂α̇

=
Γk

pkqkα̇

[
1−

(
Γk ln

(
ε̇0k

α̇

)) 1
qk

] 1−pk
pk
[
Γk ln

(
ε̇0k

α̇

)] 1−qk
qk

(3.36)

with ΓkT given by

Γk =
kBT

g0kµb3
. (3.37)

Given the implicit de�nition of the evolving thermal stress component at the end of

the increment in Equation (3.30), the partial derivative with respect to the incremental

equivalent plastic strain is

∂ σ̂ε|t+δt
∂δα

= θ|t+δt + δα
∂ θ|t+δt
∂δα

. (3.38)

Now, using the chain rule
∂θ

∂δα
=

∂θ

∂σ̂ε

∂σ̂ε
∂δα

. (3.39)

The partial derivative of the hardening formulation with respect to the evolving thermal

stress component ∂θ/∂σ̂ε is given by Equation (3.32) for the hyperbolic tangent and

by Equation (3.33) for the power law case. The partial derivative of the thermal stress

component with respect to the incremental plastic strain is then given by
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∂ σ̂ε|t+δt
∂δα

=
θ|t+δt(

1− δα dθ
dσ̂ε

∣∣∣
t+δt

) . (3.40)

Similarly, the partial derivative of the evolving thermal stress component at the end

of the increment with respect to the equivalent plastic strain rate is computed from

Equation (3.30) to give
∂ σ̂ε|t+δt
∂α̇

= δα
∂ θ|t+δt
∂α̇

. (3.41)

The �nal result follows from the chain rule:

∂θ

∂α̇
=

∂θ

∂σ̂ε

∂σ̂ε
∂α̇

+
∂θ

∂σ̂εs

∂σ̂εs
∂α̇

. (3.42)

In both hardening formulations (Equations (3.32) and (3.33)) under consideration,

the evolving thermal stress component over saturation stress fraction σ̂ε/σ̂εs is used,

i.e.
∂θ

∂σ̂εs
= − σ̂ε

σ̂εs

∂θ

∂σ̂ε
. (3.43)

Substitution into Equation (3.41) leads to

∂ σ̂ε|t+δt
∂α̇

= δα
dθ

dσ̂ε

∣∣∣∣
t+δt

∂ σ̂ε|t+δt
∂α̇

− δα
σ̂ε|t+δt
σ̂εs|t+δt

dθ

dσ̂ε

∣∣∣∣
t+δt

∂ σ̂εs|t+δt
∂α̇

. (3.44)

From Equation (3.44) and the derivative of the saturation stress in Equation (3.26)

with respect to the equivalent plastic strain rate we obtain

∂ σ̂ε|t+δt
∂α̇

= δα
dθ

dσ̂ε

∣∣∣∣
t+δt

(
δα

dθ

dσ̂ε

∣∣∣∣
t+δt

− 1

)−1 Γεsσ̂0εs σ̂ε|t+δt
ε̇0εs σ̂εs|t+δt

(
α̇

ε̇0εs

)Γεs−1

, (3.45)

with

Γεs =
kBT

g0εsµb3
. (3.46)

The gradients and numerical implementation of the model in Appendix C is now

tested. This is done using an arbitrary set of material parameters and a single call to

a one dimensional version of the user material framework that also uses the subroutine

in Appendix C.
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The value of the residual equation, analytical gradient as well as the estimated

equivalent plastic strain increment is reported for each iteration. A central �nite dif-

ference estimate of the sensitivity is also calculated within the one-dimensional test

environment by perturbing the estimated plastic strain by 10−8.

For this test, the material parameters for a purely virtual material are used:

� The elastic property values of µr = 10GPa, Dr = 100MPa and Tr = 180K in

Equation (3.21) and a Poisson's ratio of ν = 0.3 are used.

� The stress values in Equation (3.23) are chosen as σ̂a = 5MPa, σ̂i = 1MPa and

σ̂|α=0 = 0MPa.

� The scaling functions in Equation (3.22) are modelled using parameter values

kB/g0εb
3 = kB/g0ib

3 = 0.8MPa/K, pε = pi = qε = qi = 1 and ε̇0ε = ε̇0i = 107s−1.

� The implementation is tested using the power law hardening formulation in Equa-

tion (3.25b) with θ0 = 1GPa and a = 2.

� The saturation stress property values in Equation (3.26) are chosen as σ̂0εs =

500MPa, kB/g0εsb
3 = 2.5MPa/K and ε̇0εs = 1010s−1.

Assuming a time increment δt = 1s, temperature of T = 300K and one dimensional

incremental strain δε = 0.1, the residual value, equivalent plastic strain and sensitivities

for each iteration in the solution loop are given in Table 3.1. The �rst iteration has

no �nite di�erence estimated sensitivity since there is no yield stress value associated

with δα = −10−8.

The function call results in a resolved von Mises yield stress of σY = 21.329MPa and

evolving thermal stress value σ̂ε = STATEV(1) = 31.726MPa. Out of the 0.1 total strain

increment, the plastic strain increment is δα = 0.0992 as seen in Table 3.1. According

to the convergence of the residual and by comparison of the analytical sensitivity to

the �nite di�erence approximation in Table 3.1, the gradients are correctly derived and

numerically implemented.
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Iteration Residual Plastic Increment Analytical Sensitivity Finite Di�erence Estimate

1 2565.3224 0. 7.5E8 -

2 2564.4506 3.42041E-6 22222.308 22222.308

3 1176.8253 5.35342E-2 132.33881 132.33882

4 1.2973122 9.91192E-2 83.037994 83.037985

5 8.59911E-7 9.91695E-2 83.003841 83.003844

6 2.1316E-13 9.91695E-2 83.003841 83.003826

Table 3.1: Test on the convergence of the Mechanical Threshold Stress material sub-
routine in Appendix C.

3.5 Characterisation to Experimental Data

In this section, the Mechanical Threshold Stress model is �rst characterised using sys-

tematic linear regression, each time removing some of the unknown material parameters

by linear regression or making assumptions on a speci�c material parameter to allow

this approach. This is a classical method to obtain the material parameter values asso-

ciated with the MTS model as done in the papers by Goto et al. (2000); Kocks (2001);

Banerjee (2007) and Banerjee and Bhawalkar (2008) to name a few. The resulting

material parameter values are then tuned using numerical optimisation for a better �t

between the model predicted response and the data.

In the work by Tanner and McDowell (1999) from where the stress strain data

in Figure 3.1 is obtained, the temperature dependent shear modulus of OFHC Cu is

captured by the function

µ(T ) = 1000
[
47.093=

(
0.1429 + 0.0002763T 2

)0.5
]

MPa. (3.47)

From Tanner's Ph.D. Thesis (1998), and using Equation (3.47), there are two values

for the Copper shear modulus at �ve di�erent temperatures: µ (25◦C) = {42, 42.13};
µ (269◦C) = {38.11, 38.08}; µ (405◦C) = {35.94, 35.82}; µ (541◦C) = {33.46, 33.36}
and µ (691◦C) = {31.37, 31.07} in units of GPa. A reference temperature of Tr = 200K

is selected and a linear regression is performed to �t the shear modulus data points to

Equation (3.21). The result is depicted in Figure 3.3. From the intersection of the line

with the ordinate axis, the reference shear modulus is µr = 49.91GPa while the slope

corresponds to Dr = 3.29GPa.
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Figure 3.3: Linear regression through temperature dependent shear modulus data
points obtained from Tanner et al. (1999).

The stress strain curves in Figure 3.1 are manipulated by removing the elastic strain

from the total strains using the temperature dependent shear values. The elastic strain

εe = σ/E = σ/ [2µ (1 + ν)] is subtracted at each digitised data point where we assume

that ν = 1/3 as reported by Tanner (1998). On a plot of the stress as a function of

the remaining plastic strain, the yield stress for each data curve is interpolated from

the data assuming the initial yield stress corresponds to the stress value at εp = 0.005

as seen in Figure 3.4. The area of interest in the �gure typically only shows part of

the curves as a result of one or two data points apart from the origin resulting in what

could be observed as a kink in the respective curves.

In this material parameter �t, the athermal yield stress component in Equation (3.23)

is assumed σ̂a = 0MPa. We therefore assume that the yield stress values in Figure 3.4

are as a result of the constant thermal yield stress component σ̂i and the associated

temperature and strain rate dependent scaling function Si (α̇, T ) in Equation (3.23).

As done by many authors who use the Mechanical Threshold Stress model, a linear

regression is performed on the temperature and rate dependent yield stress values in
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Figure 3.4: Assumed initial yield stress values interpolated from the stress versus plastic
strain curves of the OFHC Cu data in Figure 3.1.

Figure 3.4 by �tting a line through the data points with values of [T/µ ln (ε̇i0/α̇)]1/qi

on the x−axis and values of [(σY − σ̂a) /µ]pi on the y−axis.

Given the general linear regression form y = Aix + Bi, we obtain the material

parameters from

a0i =

(
−Bi

Ai

)qi
where a0i =

g0ib
3

kB

. (3.48)

In Equation (3.48) a0i is introduced as a convenient grouping of material parameters

with values typically reported in K/MPa. The reference stress value is also determined

from σ̂i = µrA
1/pi
i .

In this characterisation, the values pi = qi = 1 and ε̇i0 = 107s−1 are assumed

resulting in the modi�ed Arrhenius Fisher plot displayed in Figure 3.5. From this plot,

the resulting equivalent material parameters are determined as a0i = 1.523K/MPa

and constant thermal stress component σ̂i = 23.29MPa. In Figure 3.5, there is an

unsatisfactory description of the data using linear regression. This is likely due to the

fact that the yield stress itself is not adequately captured. As seen in Figure 3.4, the
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3.5. CHARACTERISATION TO EXPERIMENTAL DATA

Figure 3.5: Linear regression to determine σ̂i and a0i = (g0ib
3) /kB.

yield stress is e�ectively estimated by simple interpolation on the �rst two data points.

The next step in the material characterisation is to characterise the rate of change

in the remainder of the stress as a function of the evolving thermal stress component

as well as temperature and rate dependent threshold stress. The scaling function and

already observed contributions are �rst removed from the stress-strain data. In this

section, we assume that a0ε = 2K/MPa where a0ε is again a convenient grouping of the

Boltzmann constant (kB), Burger's vector length (b) and normalised activation energy

(g0ε) in the evolving thermal stress scaling function as in Equation (3.48). The values

of the statistical quantities pε = qε = 1 are also assumed along with ε̇0ε = 107s−1.

The stress-strain data is modi�ed by removing the scaled constant thermal stress

component Siσ̂i and applying the evolving thermal stress component scaling function

values Sε based on the assumptions mentioned above at each data point. The rate of

change with respect to the plastic strain is then associated with the hardening function

in Equation (3.24).

The rate of change as a function of the remaining evolving thermal stress is given

in Figure 3.6. The hardening curves θ as a function of the remaining evolving stress σ̂ε
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Figure 3.6: Hardening rate θ as a function of the residual stress σ̂ε.

is used to determine an appropriate temperature and rate dependent saturation stress

value.

The saturation stress in each case is approximated by �tting a line through the entire

curve in Figure 3.6 and reading o� the intersection with the abscissa or x−axis. Satura-
tion stress values of 395.81MPa, 407.18MPa, 394.86MPa and 376.29MPa are estimated

from the room temperature curves given in descending strain rate order. A saturation

stress of 326.19MPa is determined from the 134◦C, 0.0004s−1 curve and 297.62MPa

from the 202◦C, 0.0004s−1 curve. Saturation stress values of 296.68MPa, 301.28MPa

and 289.43MPa are estimated for the 269◦C curves. Using Equation (3.26), values of

the reference saturation stress σ̂0εs and lumped material parameter a0εs = g0εsb
3/kB as

in Equation (3.48) is again determined using a modi�ed Arrhenius Fisher plot and lin-

ear regression. After estimating the temperature and strain rate dependent saturation

stress values σ̂εs from Figure 3.6, a linear regression is performed on [T/µ ln (ε̇0εs/α̇)]

versus [ln (σ̂εs)]. Assuming here that ε̇0εs = 1010s−1, the modi�ed Arrhenius Fisher plot

is displayed in Figure 3.7 resulting in σ̂0εs = 528.86MPa and a0εs = 0.5696K/MPa.

Assuming the material response follows the Voce hardening law in Equation (3.17),
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Figure 3.7: Linear regression to determine σ̂0εs and a0εs = (g0εsb
3) /kB.

the hardening curves in Figure 3.6 are now plotted against the saturation stress scaled

values σ̂ε/σ̂εs in Figure 3.8(a). Fitting a line through the data in a least squares

sense results in θ0 = 1574.83MPa at the intersection with the ordinate axis. Using

the material parameters as assumed and determined in this section with the initial

evolving stress component σ̂ε|t=0 = 0MPa, the model response at each of the rates and

temperatures corresponding to the experimental curves are evaluated numerically and

compared to the experimental data in Figure 3.8(b).

It is possible that alternate assumptions or greater care in extracting the saturation

stress values per curve for example might improve the overall �t between the modelled

and experimentally observed response in Figure 3.8. Successful material parameter

characterisation following the approach discussed thus far is then somewhat dependent

on the experience or insights of the person performing the characterisation, which is

not ideal.

Assuming that the strain hardening rather follows the modi�ed Voce law formu-

lations presented in Equation (3.25), an initial hardening rate θ0 = 4001.02MPa is

obtained assuming a = 2 and the hyperbolic tangent formulation, with the results pre-
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(a) (b)

Figure 3.8: Voce formulation initial hardening θ0 = 1574.83MPa in (a) and (b) response
compared to the experimental data.

(a) (b)

Figure 3.9: Hyperbolic tangent formulation initial hardening (a) and (b) response
compared to the experimental data using a = 2 and θ0 = 4001.02MPa.

sented in Figure 3.9. Figure 3.10(a) shows the initial hardening rate θ0 = 2566.7MPa

again obtained assuming a = 2, but using the power law formulation. Comparison

between the model and experimental response is presented in Figure 3.10(b).

To take the material parameter characterisation a step further and make it less

biased, numerical optimisation can be employed. The material parameters obtained in

the three di�erent cases are now assumed as initial conditions to an inverse problem.

Six of the material parameters are varied numerically until the best �t between the

model prediction and experimental data is obtained. Here, we use the downhill simplex

method as implemented in the optimisation modules of the Scienti�c Python (SciPy)

(Jones et al., 2001) libraries to perform the optimisation.

The six material parameters chosen by numerical optimisation in this chapter are
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(a) (b)

Figure 3.10: Power law formulation initial hardening (a) and (b) response compared
to the experimental data using a = 2 and θ0 = 2566.7MPa.

the constant thermal yield stress σ̂i, the reference saturation stress σ̂0εs, the grouped

material quantities a0i, a0ε and a0εs as well as the initial strain hardening θ0.

The chosen objective function is

fobj (x) =
∑
mn

[
σmn − σ (εmn,x, α̇m, Tm)

σmn

]2

, (3.49)

where σmn is the stress of the nth data point on the mth experimental data curve. The

stress σ (εmn,x, α̇m, Tm) is the value of the model predicted stress response at the same

total strain as the data point σmn using the constant strain rate and temperature associ-

ated with themth curve and the material parameter values x = {σ̂i, σ̂0εs, a0i, a0ε, a0εs, θ0}.
The �rst inverse problem is to characterise a case that concerns the Voce hardening

law in Equation (3.17) with the initial parameter values x0 = {23.29, 528.86, 1.523, 2, 0.5696,

1574.83}. The initial values result in an initial objective function value fobj (x0) =

5.1284. The �nal objective function value as a result of 502 iterations and 770 func-

tion evaluations is fobj (x∗) = 1.4863 where x∗ = {29.79, 515.5, 1.591, 1.011, 0.7018,

2039.49}. The initial response of Figure 3.8(b) is duplicated in Figure 3.11(a) to facil-

itate better comparison with the optimal �t in Figure 3.11(b). The same is then done

for the hyperbolic tangent and power law hardening formulations.

For the hyperbolic tangent hardening formulation, the initial parameter values are

x0 = {23.29, 528.86, 1.523, 2, 0.5696, 4001.02} and fobj (x0) = 6.221. After 359 it-

erations and 562 function evaluations the optimisation terminated successfully with
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Voce (3.17) Tanh (3.25a) Power (3.25b)
Regression Optimised Regression Optimised Regression Optimised

fobj 5.128 1.486 6.221 0.712 8.686 0.6941
σ̂i 23.29 29.79 23.29 16.35 23.29 20.67
σ̂0εs 528.86 515.5 528.86 710.9 528.86 689.12
a0i 1.523 1.591 1.523 1.684 1.523 1.402
a0ε 2 1.011 2 2.108 2 1.632
a0εs 0.5696 0.7018 0.5696 0.4522 0.5696 0.5011
θ0 1574.83 2039.49 4001.02 2880.99 2566.70 2611.94
a - - 2 2 2 2

Table 3.2: Objective function values associated with selected initial and optimised
MTS Parameters on OFHC Cu.

fobj (x∗) = 0.7117 and x∗ = {16.35, 710.9, 1.684, 2.108, 0.4522, 2880.99}.

The power law formulation on the other hand has an initial objective function

value fobj (x0) = 8.6864 where x0 = {23.29, 528.86, 1.523, 2, 0.5696, 2566.70}. After
410 iterations and 637 function evaluations the �nal material parameters are x∗ =

{20.67, 689.12, 1.402, 1.632, 0.5011, 2611.94} with fobj (x∗) = 0.6941.

The initial material parameter values are compared to the optimal material pa-

rameter values in Table 3.2. The model predicted response is also compared to the

experimental data curves in Figure 3.11 for both the initial material parameter values

and the optimal material parameter values. The �rst column of �gures in Figure 3.11

shows the response for the initial material parameter values. The second column is the

response as a result of material parameters determined with the help of the numerical

optimisation as outlined above.

Given a reasonable initial guess for the material parameters, the downhill simplex

method �nds the material parameter values that best reproduce the experimental data

curves with fairly little e�ort. It would therefore seem that the inverse problem using

the MTS model is fairly well posed within the bounds evaluated and assumptions made

in this chapter.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: (a) Initial and (b) optimal �t for the Voce hardening formulation. (c)
Initial and (d) optimal �t for the hyperbolic tangent hardening formulation with a = 2.
(e) Initial and (f) optimal �t for the power law Voce hardening formulation with a = 2.
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3.6 Temperature and rate dependent compression of

a cylindrical test specimen

Up to this point in the chapter, a single point integration is performed using a one

dimensional version of the material model framework calling the isotropic hardening

subroutine in Appendix C. The following section illustrates the di�erence in the ma-

terial point simulator compared to a �nite element analysis of axi-symmetric billet

compression as in Sections 2.1.2 and 2.2.

In this section, the problem is set up following Figure 2.4(b) in Abaqus. The billet

is modelled using a 20 × 20 grid of quadratic axi-symmetric elements while a rigid

analytical plane is used for the anvil contact surface. Hard normal contact between

the billet and anvil is modelled with a Coulomb friction coe�cient µC = 0.2.

Four di�erent problems are simulated that correspond to the experimental test data

for 1s−1 and 0.0004s−1 at 298K, 0.0004s−1 at 407K and 0.01s−1 at 542K. The billet

section modelled has a radius of 2.5mm and a half length of 5mm, meaning a 100%

reduction in length corresponds to a anvil displacement of 5mm × (exp(−1) − 1) =

−3.1606mm. This displacement is applied over 1s in the 1s−1 case, 100s in the 0.01s−1

case and 2500s in the 0.0004s−1 in 100 increments.

The material parameters for OFHC Cu characterised using the power law hardening

form with a = 2 in the last column of Table 3.1 is used since it produced the smallest

objective function value (fobj =0.6941). These material property values are:

� The elastic property values of µr = 49.91GPa, Dr = 3.29GPa and Tr = 200K in

Equation (3.21) and a Poisson's ratio of ν = 1/3 are used.

� The stress values in Equation (3.23) are σ̂a = 0MPa, σ̂i = 20.67MPa and σ̂ε|α=0 =

0MPa.

� The scaling function values in Equation (3.22) are chosen as a0i = g0ib
3/kB =

1.402K/MPa, a0ε = g0εb
3/kB = 1.632K/MPa, pε = pi = qε = qi = 1 and

ε̇0ε = ε̇0i = 107s−1.

� The power law hardening formulation in Equation (3.25b) is used with θ0 =

2611.94MPa and a = 2.
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(a)

(b)

Figure 3.12: Von Mises stress distributions after 100% reduction in length for (a) 1s−1

at 298K and (b) 0.01s−1 at 542K.

� The saturation stress property values in Equation (3.26) are σ̂0εs = 689.12MPa,

a0εs = g0εsb
3/kB = 0.5011K/MPa and ε̇0εs = 1010s−1.

In Figure 3.12, the von Mises stress distributions after 100% reduction in length is dis-

played for the hardest and softest of the material responses modelled. In Figure 3.12(a)

the 1s−1 at 298K results are given while (b) is the stress distribution in the 0.01s−1 at

542K case.

From the Abaqus results, the engineering strain values at each increment is deter-

mined from ε = 4L/L0 = uy/5, where uy is the prescribed anvil displacement in the

axial direction. This is transformed to the true strain value εtrue = ln (1 + ε). The
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(a) (b)

Figure 3.13: (a) Abaqus axi-symmetric simulation and (b) material point simulator
using the material parameters estimated for OFHC Cu compared to the experimental
test data.

total reaction force P at the mid plane nodes is also as extracted at each incremental

solution. The volume preserving area assumption is further used to calculate the true

stress.

The volumes V = V0 means AL = A0L0 is assumed at every data point where A0 is

the initial test specimen area and L0 the initial specimen length. The volume preserving

area A = A0L0/L is determined at each data point thanks to the known values of A0,

L0 and current length L = L0 +4L linked to the prescribed anvil displacement. The

approximate true stress value at each time increment is now calculated by

σtrue =
P

A
=

P

A0

× L0 +4L
L0

=
P

A0

(1 + ε) . (3.50)

In Figure 3.13(a) the true stress versus true strain curves for the four cases sim-

ulated are presented. In Figure 3.13(b) the comparison between the test data and

material point simulator also presented in Figure 3.11(f) is again given for convenient

comparison.
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The Abaqus simulation data with simple post processing to estimate the true stress

- true strain data compares well to the experimental test data and material point

simulator. If greater accuracy between the �nite element result and experimental test

data is required however, the characterisation using numerical optimisation can again

be performed. This time, �nite element evaluations can be performed instead of the

material point integration within the objective function evaluation.
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Chapter 4

Characterising Imperfect Compression

Data for Cemented Carbides

Material testing usually makes use of a simple geometry subjected to a simple load case.

The goal is to obtain uniform stress states so that simple analytical post processing

would produce stress - strain curves. Speci�c standards and procedures are in place

for these tests. If a compression test is performed under ideal conditions, experimental

data can be used to calibrate a material model with little e�ort.

However, in the case of hard material compression testing, the high sti�ness of

the specimen compared to the e�ective sti�ness of the test machine can result in a

material test that does not conform to the ideal. In this chapter, experimental data

(hydraulic cylinder displacement, load cell force data and strain gauge readings) for a

number of compression tests are available at di�erent temperatures for di�erent grades

of Cemented Tungsten Carbide (WC-Co) or hardmetal samples. The di�erent material

grades have varying particulate sizes, binder phase chemistry and percentage volume

fractions. The data and work in this chapter is subject to an ongoing memorandum

of understanding where the data is proprietary information and as such may not be

published as is. The alloy compositions and chemistry are therefore not reported and

in �gures where the data is presented, the values of the ordinate axis is often removed

or scaled to comply with the memorandum of understanding.

This chapter is divided into four main sections. In Section 4.1 the cemented Car-

bide data, the motivation for this work and the setup for a virtual experiment are
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discussed. Section 4.2 investigates the inverse material parameter identi�cation using

the Mechanical Threshold Stress (MTS) material model discussed in Chapter 3 and

implemented in Appendix C using �nite element analysis. The �nite element method

is used to simulate the unideal compression tests. The e�ective sti�ness of the test-

ing frame is included in the model and a nonuniform axial displacement is gradually

applied to the specimen as the test proceeds. This is done while keeping the average

rate of displacement constant. Using the available experimental data as a reference,

the current work aims to �nd the material model parameters, testing machine sti�ness

and displacement boundary conditions that best reproduce the experimental data by

solving an inverse problem on virtually constructed experimental data. Instead of using

a full �nite element simulation per function evaluation, Appendix D also investigates

point integration.

In Section 4.3 an industrial test case is modelled. In this simulation a six axis press

is modelled to illustrate plastic deformation during the compression of a pyrophyllite

high-pressure cell. The chapter is �nally concluded in Section 4.4. This chapter serves

as an illustration of characterising a material model using imperfect hard material

compression data. It is mainly demonstrated on virtual experimental data in this

document with characterisation on the actual data reserved for a di�erent document

that is con�dential in nature.

4.1 Experimental Data

The experimental data is obtained from compression tests where 3 strain gauge readings

are available at room temperature, along with hydraulic cylinder displacement and load

cell data. The strain gauges are �xed to the centre of the experimental test specimen,

120◦ apart. Higher temperature data is also available at 150◦C, 250◦C, 350◦C and

500◦C. At these elevated temperatures however, only a single extensometer strain

measurement is available.

The materials tested are used in high temperature and pressure applications. The

speci�c application, exact material compound and grade is proprietary information

and for this reason, �gure axes and material parameter values will be normalised. A

material test specimen similar to the one described by Dunlay et al. (1989) is used
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(a) (b) (c) (d)

Figure 4.1: Normalised experimental strains and load cell data at room temperature.
(a) Strains recorded by the strain gauges spaced evenly around the circumference of
the test section with (b) the load cell data of the same experiment. (c),(d) Strain gauge
measured strains of two other experiments.

for the experimental compression tests. This compression test specimen is essentially

a modi�ed version of a conventional cylindrical tensile specimen. The length of the

test section is reduced in an attempt to avoid buckling and shear deformation modes

during the compression test.

One of the demanding aspects of compression tests on these hard materials is the

very high compressive strength and sti�ness. The testing machine sti�ness, which

should ideally be orders of magnitude greater than that of the specimen, is inadequate

in this case. Experimental data indicates that for a typical test the hydraulic cylinder

displaces 1.4mm, while the specimen test section only decreases height by about 0.4mm.

Elastic deformation of the testing machine frame seems to account for the remaining

1.0mm displacement. From the strain gauge data of various room temperature com-

pression tests seen in Figures 4.1(a), (c) and (d) there appears to be some compressive

instability, eccentric load condition or equivalent bending moment present. Unfortu-

nately, data for only a single extensometer is available at elevated temperatures. From

all the room temperature data it seems plausible that the elevated temperature tests

may also have experienced a similar unideal loading condition, but this cannot be taken

into account due to the limited data.

In Figure 4.1, the room temperature data demonstrates that a nonuniform stress
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state develops during the compression test, possibly due to compliance of the test

frame. The data also indicates that the strain rate in the specimen is not constant,

even though the crosshead speed of the hydraulic cylinder is.

To investigate the possible e�ect the nonuniform stress state would have on the ac-

curacy of the material characterisation if ignored, the material model under isothermal

conditions is characterised to the room temperature data using simple post processing.

A representative material parameter set in the range of the characterised results is

then used in a �nite element analysis where the test specimen compression is modelled

subject to ideal and unideal boundary conditions. The virtual experimental data is

also described. The virtual problem setup will be used to investigate the accuracy,

e�ciency and potential cost of the characterisation strategies covered in this chapter.

4.1.1 Simple Room Temperature Characterisation

Strain gauge and load cell data for all �ve di�erent hardmetal grades are used in this

characterisation. If simple post processing of the data is performed, the average values

of the strain gauges at each time step are taken as the true strain values. The load

cell data divided by a volume preserving cylindrical area estimate at each time step is

taken as the true stress value. A plot of the stress strain curves of the �ve di�erent

grades, here just named grade A to E, are given in Figure 4.2(a).

Although the di�erent material grades vary in quite a few aspects, the elastic prop-

erties seem fairly identical when considering the room temperature data seen in Fig-

ure 4.2(b). The thick black line in this �gure is associated with an elastic modulus

of 636.5GPa. The expected elastic modulus range for pure Tungsten Carbide is 600-

686GPa according to the AZO Materials website (2002) with a Poisson's ratio of 0.2

to 0.22. Although the materials have a mainly Cobalt binder phase varying between

5-15%, the elastic modulus of the material in compression is therefore most likely at-

tributed to the Tungsten Carbide particles given the elastic modulus of pure Cobalt in

the 209GPa range.

The maximum compressive strength and plastic deformation have a greater spread

between the di�erent material grades. Using a Young's modulus of 636.5GPa, the

elastic strain component is removed from the total strain values resulting in the stress
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(a) (b) (c)

Figure 4.2: (a) The stress-strain relationship for the various grades of WC-Co using
the averaged strains. (b) The Elastic modulus determined by a linear regression on
the stress-strain data below 0.2% total strain. (c) The initial yield stress interpolated
at 0.1% plastic strain.

versus plastic strain curves in Figure 4.2(c). The initial yield stress for the di�erent

material grades are then estimated as the stress value at 0.1% plastic strain.

We assume that the isothermal material model used here follows the empirical

modi�cation for the Voce law (Kocks et al., 1998; Mourad et al., 2013) as given in

Equation (3.25), now reading

dσ̂

dεp

= θ0

(
1− σ̂

σ̂s

)a
. (4.1)

In this subsection, σ̂ is not scaled with temperature and rate e�ects using some form

of Equation (3.22) as in the full MTS model. Rather, an approximate characterisation

can be done, as in Section 3.5. The hardening rate is estimated as the slope of the

data in Figure 4.2(c). In Figure 4.3(a), the hardening rate for each grade is plotted on

the ordinate axis with the residual stress σ̂ = σY−σ0 on the abscissa. From this �gure

the saturation stress is determined as the approximate intersection with the abscissa

in each case resulting in the values reported in the legend.

Scaling each of the residual stress values with the saturation stress so that the values

on the abscissa are now σ̂/σ̂s results in Figure 4.3(b). On a plot of σ̂/σ̂s versus dσ̂/dεp,
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(a) (b)

Figure 4.3: (a) Hardening rate θ as a function of the residual stress σ̂ and (b) residual
stress over saturation stress σ̂/σ̂s.

the ideal Voce like behaviour should be a linear decline as opposed to the shape of the

curves in Figure 4.3(b). The �gure would therefore suggest that there is some stage IV

hardening present in the material response despite the fact that the maximum plastic

strain is in the range of 1.5% to 2.5%. This is likely due to the fact that the majority

of the deformation is attributed to the binder phase making up less than 15% of the

total material volume.

The power law case of Equation (4.1) applied to the cemented Carbide data is

illustrated in Figure 4.4. In these �gures, the power 1/2 and 1/3 is applied to the

estimated hardening rates in each case. The curves resulting from this procedure are

straighter in comparison to those in Figure 4.3(b). This indicates that the power law

modi�ed Voce formulation should be better equipped to model the stress response over

the observed plastic strain range.

The initial hardening rate is determined for each grade in the power law cases using

linear regression, as illustrated in Figure 4.5(a) and (b). A line is �t through the data

points in a least squares sense while the intersection with the abscissa is �xed at 1. The
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(a) (b)

Figure 4.4: Power law test on the cemented Carbide data for a power law formulation
with (a) a = 2 and (b) a = 3.

(a) (b)

Figure 4.5: The estimated initial hardening on the cemented Carbide data using linear
regression for a power law formulation using (a) a = 2 and (b) a = 3.
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value of the intersection with the ordinate axis is squared in (a) or cubed in (b) to give

the approximate initial hardening rate θ0. For the case a = 2, the initial hardening

rate ranges between 261.34GPa to 494.28GPa for the di�erent material grades while

the case a = 3 suggests a range of 398.86GPa to 772.93GPa. The overlay of the lines

with the data suggests that the initial hardening in the a = 2 case is underpredicted

while a straight line regressed through the data in the case a = 3 misses the observed

saturation. The characterisation does however give us an idea of the range of the

material parameter values for the typically observed material response. This is now

used in constructing an initial virtual experiment to investigate the possible e�ect the

unideal experimental data would have on the material parameter characterisation.

4.1.2 Characterisation Accuracy

The characterisation accuracy is investigated by conducting two virtual experiments

with the use of the �nite element method. In the ideal case the test specimen is sub-

jected to a uniform displacement that should result in the uniform stress state necessary

for simple post processing of forces and displacements into stress strain curves. An im-

perfect test case is then simulated where a varying displacement boundary condition

results in a strain distribution recovered around the circumference of the test specimen

centre that is similar to the actual experimental data in Figure 4.1. The stress strain

curves resulting from the same post processing is compared to investigate the potential

deviation from the ideal test case.

Figure 4.6 shows the dimensions of the test specimen as it is modelled. The central

35mm of the full 120mm test specimen is modelled with a material model that has

elastic properties as well as plastic behaviour using the modi�ed Voce law of Equa-

tion (4.1). Later on in this section, the test section material is modelled using the full

MTS material model. Due to the limitation of the testing frame, the full hydraulic

cylinder displacement cannot simply be applied as a boundary condition to the �nite

element test specimen. 5mm of arti�cial elastic material is therefore added to the ends

of the specimen. Hydraulic cylinder displacement can now be used as a boundary con-

dition while the sti�ness of the arti�cial material section can be changed during the

inverse analysis procedure to represent the testing machine compliance. By modelling
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Figure 4.6: Dimensions of the test specimen modelled. Only the central 35mm of the
test specimen is modelled along with a 5mm arti�cial elastic section on both ends to
represent the test frame compliance.

it in this way, the experimental hydraulic cylinder displacement can be applied to the

arti�cial material section. A correct choice of arti�cial material sti�ness would then

result in an e�ective strain rate and displacement experienced by the test specimen

that best resembles the conditions experienced during the actual test.

A �nite element model is set up by meshing the three dimensional geometry based

on the dimensions in Figure 4.6. The analysis is performed in CalculiX (Dhondt and

Wittig, 1998) using a model with 13056 degrees of freedom and of 3696 reduced inte-

gration 8 noded brick elements.

In the initial investigation, the elastic modulus of the material section is chosen

as 600GPa with a Poisson's ratio of 0.21. An initial yield stress of σ0 = 2GPa is

assigned with σ̂|εp=0 = 0. The post yielding behaviour of the model uses Equation (4.1)

with a = 2 along with an initial hardening rate θ0 = 600GPa and saturation stress

σ̂s = 4GPa. The arti�cial material sections are modelled with a Young's modulus of

30GPa and Poisson's ratio of 0.21.

Boundary conditions are applied to mimic two di�erent test cases. The �rst test case

models ideal compression where only a displacement in the axial direction is applied.

All 3 degrees of freedom are constrained for the nodes on the one side of the model

while only the two degrees of freedom associated with the radial plane of the geometry

(x and z axis) are constrained on the other side of the model. A displacement of -1mm
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is assigned in the axial direction (y axis) over 100 seconds in 5 second increments to

simulate the course of an ideal experimental test.

To model an imperfect or virtual test case, a variation from the ideal boundary

conditions is prescribed. The di�erent strain gauge data visible in Figures 4.1(a) and

(c) seem to deviate from each other early on in the experiment. From this observed

di�erence in the strain gauge data in a single compression test, a spatially varying

displacement boundary condition is included in the imperfect analysis instead of a

purely uniaxial displacement. In this case the upper and lower boundaries of the model

are subjected to a multi point constraint (MPC) boundary condition. Three master

points are assigned on each boundary: one in the centre of the plane (x and z values

equal to zero) and one at the nodes with the greatest x and z values respectively. The

degrees of freedom in the x and z direction are constrained as in the ideal case while

only the y values of the master nodes are prescribed explicitly. Given the prescribed

displacement value at the master nodes, all other points of the boundary condition have

an axial displacement subject to the MPC ensuring all the boundary nodes remain on

a plane. The axial displacement of the centre bottom node is zero while the other

nodes have total axial displacement values of 0.1mm and -0.1mm. The total axial

displacement of the upper central node is -1mm as in the ideal case while the master

nodes are assigned values of -1.1mm and -0.9mm to simulate an e�ective bending

moment at the boundaries that are equal in size but opposite in direction. The total

displacement is again applied in twenty 5 second increments.

The von Mises equivalent stress distributions at the end of the simulations are

visible in Figure 4.7. In Figure 4.7(a) the stress �eld as a result of the ideal test case is

presented where only a uniaxial displacement is prescribed. Figures 4.7(b) and (c) show

the stress distribution due to the slight variation from the ideal boundary conditions

as seen from the positive and negative x direction. Notice that the ideal compression

test has a near uniform axial stress of 425MPa in the test section, while the axial stress

in the test section of the unideal test varies between 182MPa and 479MPa.

Three elements 120◦ apart on the circumference of the centre of the model are cho-

sen to represent the three strain gauge locations. The strain histories at these locations

represent the data associated with the three strain gauges in the actual experiments

at room temperature. The strain histories for the ideal test case is presented in Fig-
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(a) (b) (c)

Figure 4.7: (a) von Mises equivalent stress distribution on the isothermal virtual ex-
periment for perfect uniaxial compression. (b) Front and (c) back view of the von
Mises equivalent stress distribution when a slight bend is included to mimic the true
experimental strain spread with the same average axial displacement as in the perfect
uniaxial compression case.
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(a) (b)

(c) (d)

Figure 4.8: Strain history of the three strain gauge locations on the virtual experiment
for the (a) ideal and (b) unideal virtual experiment simulations. Force history of the
(c) ideal and (d) unideal virtual experiment simulations.
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Figure 4.9: Comparison of the true stress - true strain curves obtained when simple post
processing is performed on a uniformly compressed and an imperfect test simulation.
The percentage error is determined by the di�erence between the two curves compared
to the ideal test case.

ure 4.8(a) with the strain histories of the imperfect test case in Figure 4.8(b). The

force histories of the two test cases are also presented in Figures 4.8(c) and (d).

The ideal and imperfect force and strain histories are used to construct stress versus

strain curves, and then compared. The average of the three strain values at a speci�c

time is taken as the engineering strain value ε and then transformed to the true strain

value εtrue = ln (1 + ε). Assuming the material is volume preserving, the total force P ,

initial test specimen area A0 and engineering strain are used as in Equation (3.50) to

approximate the true stress value at each time increment using

σtrue =
P

A0

(1 + ε) . (4.2)

In Figure 4.9, the true stress - true strain curves resulting from the typical post
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processing is given along with the percentage error when the curve using the imperfect

test case is compared to that resulting from ideal uniform compression. The curves

are similar in the elastic region while the initial yield prediction in the imperfect test

case is o� by about 4%. At the end of the curves there is a fairly constant increase in

error with increased strain of about 2% per 1% increase in total strain. The maximum

error in this case is in the range of about 5% with total strain values below 2%. If

it is necessary to characterise the material model with errors below this magnitude, a

di�erent strategy should be followed to achieve the desired precision.

4.1.3 Finite element based inverse analysis

Following the investigation in the previous subsection, a general boundary value prob-

lem setup is constructed and used here to characterise the material properties of one

of the material grades. The MTS material parameters are determined by an inverse

analysis using a �nite element simulation in Abaqus. The material response is pro-

vided by the MTS user material subroutine. The material parameters and boundary

conditions are sought that best replicate the experimental data using the same model

as constructed from Figure 4.6 in the previous subsection. The inverse analysis is per-

formed by comparing the experimental data to the results of a �nite element analysis

at 25◦C and 500◦C.

Given the added arti�cial elastic material sections, the hydraulic cylinder displace-

ment is used as an average uniaxial displacement boundary condition while the sti�ness

of the arti�cial material section can be changed during the inverse analysis procedure.

A correct choice of arti�cial material sti�ness would result in an e�ective strain rate

and displacement experienced by the test specimen that best resembles the conditions

experienced during the actual test. Instead of the MPC boundary conditions of the

initial investigation, the spatially varying displacement �eld applied to the arti�cial

material section in this instance is applied using a user displacement subroutine in

Abaqus. The boundary condition at a given time step is now de�ned by the two

boundary properties illustrated in Figures 4.10(a), (b) and (c). If the axial direction

is chosen as the y axis in the �nite element analysis, a top face node n experiences a y
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(a) (b) (c)

Figure 4.10: The two variables A and B that are used to describe the boundary dis-
placement at a speci�c time. (a) The maximal gradient of the displacement variation
is associated with the variable A. (b,c) The angle B de�nes the neutral axis where the
axial displacement is equal to the average displacement.

displacement of the form

yn = A(t) [sin(B(t))zn + cos(B(t))xn] + yhc(t), (4.3)

where t is the current fraction of time, t ∈ [0, 1] and yhc(t) is the experimental hydraulic

cylinder displacement as a function of this time fraction. xn and zn are the x and z

coordinates of node n. The displacement �eld variation A(t) and angle of the neutral

axis B(t) can also change as a function of the time fraction. In this characterisation

however the angle (and so the neutral axis of the bending moment) would remain

constant while the displacement �eld variation is linear over time A(t) = At. Similarly,

the y displacement �eld at a bottom face node is determined by

yn = −A(t) [sin(B(t))zn + cos(B(t))xn] . (4.4)

By modelling the top and bottom displacement �elds in this way, an equal and

opposite equivalent bending moment can be approximated at a speci�c fraction of the

total time.

From the data no constant thermal stress component σ̂i is assumed. The con-

stant thermal stress component of the mechanical threshold stress de�nition in Equa-

tion (3.23) therefore falls away. Neither kB nor b are used anywhere other than the

relationships kB/g0εb3 in Equation (3.22) and kB/g0εsb3 in Equation (3.26), so these two
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Parameter De�nition Type Value

σ̂a Equation (3.18) Variable

σ̂0εs Equation (3.26) Variable

kB/g0εb3 Equation (3.22) Variable

kB/g0εSb3 Equation (3.26) Variable

θ0 Equation (3.25) Variable

µr Equation (3.21) Variable

Dr Equation (3.21) Variable

σ̂ε|t=0 Equation (3.23) Constant 0MPa

Tr Equation (3.21) Constant 200K

ε̇0 Equation (3.22) Constant 106s−1

ε̇0εs Equation (3.26) Constant 106s−1

qε Equation (3.22) Constant 1

pε Equation (3.22) Constant 2/3

a Equation (3.25) Constant 2

Table 4.1: List of MTS material parameters regarded as either constant or optimisation
variables for use in the inverse analysis.

relationships are treated as single variables, as in Equation (3.48). In this parameter

identi�cation the hyperbolic tangent form of the hardening law in Equation (3.25)

is used. A list of the MTS material parameters used as optimisation variables and

constant parameters during this inverse material parameter characterisation is given

in Table 4.1.

The seven MTS material parameters are determined along with an arti�cial ma-

terial sti�ness at 25◦C and 500◦C respectively. Including the two boundary condition

variables A and B, 11 variables need to be determined by the inverse analysis.

The optimisation is performed using the unconstrained optimisation algorithm

fmin, available via the scipy.optimize (Jones et al., 2001) module in Python. fmin is

an implementation of the downhill simplex algorithm. Although the scipy.optimize

module does give access to arguably better numerical optimisation algorithms, this is a

very robust algorithm that only requires function value evaluations without additional

gradient information.

The objective function used in the inverse analysis optimisation procedure compares

the results of a �nite element simulation to experimental curves in a mean squared
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fashion. Given a set of parameter values, a room temperature analysis is set up which

includes the displacement �eld boundary conditions of Equations (4.3) and (4.4), as

well as the arti�cial material sti�ness. This problem is then solved using Abaqus.

The logarithmic strains at the three locations spread evenly around the centre

circumference of the �nite element test specimen are then compared to the strain

gauge data as a function of time. The load cell data is also compared to the total

vertical reaction force at the top face. The 500◦C/773K experiment is assumed to have

occurred under ideal circumstances, since only a single set of strain data is available

for comparison. A quarter model of the schematic visible in Figure 4.6 is used in this

case. The same uniaxial displacement over time is used as extracted from the hydraulic

cylinder displacement data for the 773K simulation. The average logarithmic strain

of the central element set and reaction force at the top face is then compared to the

strain and load cell data for the corresponding experiment. The inverse parameter

characterisation is done on the material test for the room temperature results depicted

in Figures 4.1(a) and (b). The converged results are displayed in Figures 4.11 and 4.12

respectively.

In Figures 4.11(a) and (b) as well as the actual strains over time in Figure 4.12(a), it

is visible that minimal bending is necessary to approximately replicate the distribution

of strains around the central circumference of the test section. The six curve �ts in

Figure 4.12(a) and (b) match well but could be improved. The mismatch is likely

due to inadequate parametrisation of the boundary conditions, in this case assumed

as constants in Equations (4.3) and (4.4), or an inadequate work hardening form. The

parameter identi�cation required 1'156 function evaluations to converge. Each function

evaluation required approximately 45s, making the inverse parameter identi�cation an

expensive exercise if done using the �nite element procedure (≈15h using a single

processor).

If the work hardening form is assumed adequate, a proper parametrisation of the

boundary conditions would further improve the material parameter estimation. How-

ever, the proper parametrisation is also unknown. One concern of this approach is that

a better �t to the experimental data might not necessarily imply a better approxima-

tion of the material stress-strain curve. It is conceivable that the complex boundary

condition allows a better �t to the data, but that both the true stress-strain curve and
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(d)

(a) (b) (c) (e)

Figure 4.11: (a) External and (b) centre section view of FEA results showing the von
Mises stresses at the end of the room temperature simulation where a bend is included
in the model. (c) The upper part of the uniaxial compression quarter model for 500◦C.
A detail of the von Mises stress in a uniaxial compression simulation is visible in (d)
with contours scaled so that the gradients can be seen in (e).

the true boundary condition are approximated with worse accuracy. In essence, the

inverse problem could be ill-posed where various combinations of stress-strain curves

with its associated boundary condition variation can �t the experimental data well.

In addition, a more complex boundary condition parametrisation would also require

additional unknowns which could result in an even more computationally expensive

procedure.

In the next section, a time varying boundary parameter A(t) is used to generate

virtual experimental data assuming the change is not linear over time. An inverse

analysis is then performed as if the shape of the more complex boundary condition

is not known and approximated by a piecewise linear approximation. This is done in

order to investigate the sensitivity and general invertibility of the material parameter

identi�cation problem.
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(a) (b) (c)

Figure 4.12: Resulting optimum �t of the FEA curves compared to the experimental
data. (a) The three strain gauge measurements as well as the extensometer data
compared to what the �nite element model predicts. (b) FEA and experimental forces
over time. (c) The MTS material response at 25◦C, 150◦C, 250◦C, 350◦C and 500◦C
for a constant strain rate of 0.0001s−1 given the material parameter values determined
by inverse analysis.

4.2 Simultaneous Estimation of Experimental and

Material Parameters

Two di�erent displacement �elds are used to set up two di�erent virtual experiments

at room temperature. These displacement �elds produce strain distributions that have

approximately the same order of magnitude di�erence at the end of the simulation

as seen in the actual experimental data. Since the values of the material parameters

used in the virtual experiment are known, an inverse analysis may be performed to

determine the accuracy with which these known parameters and boundary conditions

can be retrieved. Such an investigation gives important insight as to whether the

data available is su�cient to distinguish between the e�ects attributed to the work

hardening and the boundary conditions respectively.

As in the previous characterisation, the MTS parameter selections and variables in

Table 4.1 are used for this investigation. The material is modelled using the various
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parameter values obtained from the inverse material parameter estimation resulting in

the �t and response of Figure 4.12.

4.2.1 Virtual Experiment Data

The two sets of virtual experimental data are obtained using the same MTS material

parameters with a slightly di�erent boundary condition on the room temperature vir-

tual test. In both 25◦C virtual experiments, the angle B is set to a constant 4.5 radians

while the virtual hydraulic cylinder displacement is chosen as yhc = 1t, t ∈ [0, 1]. The

di�erent experimental boundary conditions are obtained by di�erent forms of A(t). In

the two virtual experiments, the form of A(t) in Equations (4.3) and (4.4) is chosen as

A(t) =
0.03× tanh(3t)

tanh(3)
and A(t) =

0.03× sinh(3t)

sinh(3)
. (4.5)

The curves that represent A(t) as a function of the time fraction are visible in

Figure 4.13. A 500◦C virtual experiment is also set up. This high temperature virtual

experiment is modelled as a perfect uniaxial compression test subject to a constant

hydraulic cylinder displacement rate. The hydraulic cylinder displacement yhc = 1t,

t ∈ [0, 1] is again used with a di�erent arti�cial material section sti�ness. After the

problems are solved using Abaqus, the following virtual data is extracted from each of

the 25◦C results:

� The logarithmic strain history of the central test section elements closest to the

0, 2/3π and 4/3π radian locations along the test section circumference. This

virtual data is chosen to represent the three strain gauges' histories in the original

experiments.

� The total vertical reaction force on the top arti�cial material section. This is

chosen to represent the experimental load cell data.

The normalised strain and force histories that result from the two forms of A(t) can be

seen in Figures 4.14(a) through (d). These histories are now used as virtual experimen-

tal data to further test the idea of simultaneously estimating material parameters and

boundary conditions by inverse analysis. A single set of high temperature FEA results
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Figure 4.13: Curves selected to represent two possible forms of A(t). These curves
represent the de�nition of A(t) in Equation (4.5), used for the displacement boundary
conditions in the virtual experiments.

is used to represent the high temperature experimental data. The total reaction force

is again used to represent the load cell data while the average of the central test section

element set logarithmic strain histories are used to represent the single extensometer

data of the original experiment.

4.2.2 Inverse Analysis

To test the invertibility of this type of problem, the MTS material parameters are

determined by again �tting force and strain curves to the 25◦C and 500◦C virtual

experiment data. This inverse analysis aims to recover both the elastic as well as

plastic behaviour of the material along with the arti�cial material sti�ness at the

di�erent temperatures and boundary conditions, making it a complex inverse parameter

identi�cation problem despite the seemingly simple geometry and setup.

Assuming no prior information is available on the shape of the displacement bound-

ary condition A(t) in Equation (4.5), the invertibility of the problem is inspected using

a piecewise linear approximation to A(t). First, a single linear time variation is used

to approximate the form of A(t). A piecewise linear approximation using three and

six intervals is then inspected. The straight line approximation requires one unknown,
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(a) (b) (c) (d)

Figure 4.14: Strain and force history of the three strain gauge locations on the virtual
experiment for the (a,b) sinh and (c,d) tanh form of the A(t) de�nition in Equa-
tion (4.5).

while the three intervals and six intervals piecewise linear approximations require three

and six unknowns respectively. The optimisation is again performed using the uncon-

strained optimisation algorithm fmin as in the �rst case.

Given a set of material and boundary condition parameters, a 25◦C �nite element

job is constructed and solved using Abaqus. The logarithmic strains at the same

locations along the circumference of the central test section is extracted the same way

as originally done to obtain virtual experiment data. These three strain histories are

compared to the virtual experiment data. The total reaction force at the top surface of

the inverse solution over time and that of the virtual experiment is compared. A �nite

element analysis for the 500◦C problem is also constructed and solved. The average

logarithmic strains and total force histories are again extracted from the results as were

done to initially obtain the virtual experimental data and compared to its corresponding

virtual experiment data set. Each of the four strain histories and two force histories

are compared by �rst normalising it so that the absolute maximum function value is

unity. The function value returned is the sum of the mean squared error of the six

normalised curve comparisons.
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4.2.3 Results

The form of A(t) is �rst approximated by a single linear time varying section. In this

�rst approximation, the A(t) approximation therefore only requires a single unknown.

This unknown along with the angle B, arti�cial material sti�ness at 25◦C and 500◦C as

well as the seven MTS material parameters are estimated simultaneously. The form of

A(t) is then approximated by three piecewise linear time varying sections that require

an additional two unknowns.

The single line and three piecewise approximation runs were given the same initial

guess for all of the corresponding parameters. The two additional parameters in the

three interval piecewise linear approximation were also chosen in such a way that the

initial approximation was still a straight line. In contrast, the six interval piecewise

linear approximation run was continued from the three interval result, taking the pa-

rameter values at the termination of the three piece result and adding three additional

points on the curve that approximates A(t). Inverse analyses using this single linear ap-

proximation, three interval piecewise linear and continued six interval piecewise linear

approximation to the form of A(t) are performed on both the sinh and tanh boundary

condition virtual experiments.

The results of the �nal approximation to the form of A(t) in the boundary displace-

ment description using a single, three and six interval piecewise linear approximation

are presented in Figure 4.15. The normalised parameter results at the end of each

optimisation run are presented in Table 4.2. Figure 4.16 shows the curves that result

from the analysis using the initial parameters while Figures 4.17 through 4.19 show

the inverse analysis results.

In Table 4.2 and Figure 4.17, it is visible that using too simple an approximation

on the boundary condition could result in an inadequate �t and material parameters

that are far from the desired accuracy. Here it seems that the material parameters are

exploited to compensate for the inadequate capture of the boundary condition. This

is also visible in the �t between the green dashed lines and the true material response

in Figures 4.20(a) through (d).

Not surprisingly, the higher the resolution used to approximate the form of A(t)

in the boundary description, the better the ability to capture the true form and the

material parameters. In Table 4.2 and Figure 4.20 it is also visible that an overall
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Sinh BC Virtual Experiment Tanh BC Virtual Experiment

Piecewise Linear Approximation Piecewise Linear Approximation

1 Linear 3 Linear 6 Linear 1 Linear 3 Linear 6 Linear

Variable #: 11 13 16 11 13 16

Iterations: 2,200 2'601 + 2'444 1'395 2'602 + 1'356

F Value

Initial: 3.504E-2 3.504E-2 1.776E-4 8.321E-2 8.321E-2 2.017E-4

Final: 3.936E-3 1.776E-4 1.346E-5 9.121E-3 2.017E-4 5.107E-6

Parameter

E298K
∗ 1.03226 0.99988 1.00019 0.95957 0.99953 0.99997

E773K
∗ 1.00581 1.00026 1.00200 0.93575 0.99155 0.99993

µr
∗ 0.78729 0.99029 0.99992 1.98992 1.06192 0.99770

Dr
∗ 0.45060 0.97611 1.01220 1.54866 0.72243 0.99628

σ̂a
∗ 0.02085 0.97637 0.98440 1.18953 0.29522 1.01126

σ̂0εs
∗ 1.15135 0.99636 0.99641 1.27623 1.15835 0.99869

θ0
∗ 2.85187 1.04099 1.02566 0.29879 1.22473 0.99488

kB/g0εb3∗ 0.25332 1.10369 1.04966 0.30701 0.83581 0.95063

kB/g0εSb3
∗ 3.22614 0.96475 1.10172 0.17437 0.52390 0.99750

Table 4.2: Normalised parameter identi�cation results and details of the inverse anal-
yses performed on the sinh and tanh virtual experiments.
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(a) (b)

Figure 4.15: The two forms of A(t), used in the virtual experiment displacement bound-
ary condition compared to the optimum approximations found by using either a single
line, three or six piecewise linear approximation. (a) The sinh and (b) tanh virtual
experiment results.

improvement on the accuracy of the material parameter identi�cation is achieved when

the inverse analysis has the ability to better capture the true boundary condition. Good

correspondence is visible between the true material response (black lines) and that

determined at the end of the six interval piecewise linear approximation (red dashed

lines) in Figure 4.20.

In this work it seems that the inverse problem does not present major issues in

simultaneously determining the material properties and test conditions. Although

the actual form of the displacement boundary condition that would best replicate

the experimental data is unknown, it has been demonstrated that a piecewise linear

approximation can produce su�cient accuracy.

Ideally, a �ne boundary condition parametrisation should be utilised during the

identi�cation of material parameters on real experimental data. This however intro-

duces additional unknowns and could make the optimisation a time consuming proce-

dure. An extended integration point based inverse material parameter identi�cation

is considered as an alternative to the full �nite element based inverse analysis in Ap-

pendix D. This method makes use of three cylinder approximations with a linearly
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(a) (b) (c) (d)

Figure 4.16: Initial �t on the sinh and tanh virtual experimental data. (a) The strain
history and (b) force history �t on the sinh virtual experiment. (c) The strain history
and (d) force history �t on the tanh virtual experiment.

(a) (b) (c) (d)

Figure 4.17: Resulting optimum �t determined by inverse analysis on the sinh and
tanh virtual experimental data using a linear approximation of A(t). (a) The strain
history and (b) force history �t on the sinh virtual experiment. (c) The strain history
and (d) force history �t on the tanh virtual experiment.
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(a) (b) (c) (d)

Figure 4.18: Resulting optimum �t determined by inverse analysis on the sinh and
tanh virtual experimental data using a three piecewise linear approximation of A(t).
(a) The strain history and (b) force history �t on the sinh virtual experiment. (c) The
strain history and (d) force history �t on the tanh virtual experiment.

(a) (b) (c) (d)

Figure 4.19: Resulting optimum �t determined by inverse analysis on the sinh and
tanh virtual experimental data using a six piecewise linear approximation of A(t). (a)
The strain history and (b) force history �t on the sinh virtual experiment. (c) The
strain history and (d) force history �t on the tanh virtual experiment.
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(a) (b)

(c) (d)

Figure 4.20: The MTS material response at 25◦C, 150◦C, 250◦C, 350◦C and 500◦C for
a constant strain rate of 0.0001s−1. (a) The various materials approximated using the
sinh form of A(t) virtual experiment with detail of the initial yield stress in (c). (b)
The various materials approximated using the tanh form of A(t) virtual experiment
with detail of the initial yield stress in (d). The approximated material responses are
plotted over the response of the actual material with known property values in black.
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interpolated strain �eld through the test section using the experimental data values at

each data point. The three cylinder point integration method in Appendix D provides

a less time intensive option than using the full �nite element procedure and results in

characterised material behaviour that is closer to the true response than the simple

post-processing alternative.

4.3 Compression of a high pressure high temperature

capsule

With the temperature and rate dependent response of the cemented Carbide material

characterised, plastic deformation of these materials during an industrial process can

now be modelled. As an example, the plastic deformation in the anvils during the

compression of a Pyrophyllite high-pressure capsule is modelled in this section.

A cubic-anvil high pressure apparatus (CHPA) is modelled following the work done

by Li et al. (2007) and Han et al. (2009). The CHPA makes use of six cubic anvils,

actuated by three pairs of hydraulic rams. The anvils have a square tip, forming a cubic

cavity during operation. In reality, a preformed capsule or capsule-gasket assembly is

compressed in this cavity during the high pressure high temperature (HPHT) synthesis

of diamond or manufacture of diamond hardened tools (see for example Wang et al.,

2010 or Sano-Furukawa et al., 2014).

The purpose of the capsule is to transmit the applied pressure to a speci�c area of

interest and is therefore made from a pressure transmitting medium such as Magnesium

oxide and Pyrophyllite (Wang et al., 2011). A typical preformed capsule, anvil and six

axis assembly is displayed in Figure 4.21.

The anvil dimensions in Han et al. (2009) are modelled in this example. In their

�nite element simulation, the anvil geometry is split into four sections and a single

section modelled using perfect plasticity. Li et al. (2007) modelled an octant of the full

assembly. They assigned linear elastic behaviour to the anvils while investigating the

deformation and pressure distribution in the capsule. The anvil material in this work

is modelled using the calibrated MTS model. This allows insight into possible failure

mechanisms of the anvils.
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(a)

(b) (c)

Figure 4.21: (a) High pressure capsule, (b) anvil design and (c) six axis assembly of
the CHPA.

A 120mm long anvil section is modelled with a radius of 60mm and 44×44mm

anvil size. The anvil is bevelled at 41.5◦ followed by an edge at 46◦relative to the anvil

working surface. The anvil dimensions are displayed in Figure 4.22(a). The capsule is

55×55×55mm without the gasket and has an overall dimension of 70×70×70mm with

the gasket included. The capsule is preformed with the same material used for capsule

and gasket. The dimensions of the anvil preformed capsule is visible in Figure 4.22(b).

4.3.1 Model

According to Fontanari et al. (2006), the yield behaviour of Pyrophyllite follows the

Mohr-Coulomb model

τ = c− σ · tan (φ) , (4.6)

where τ is the shear stress, σ the normal stress, c is the cohesive strength of the material

and φ the angle of internal friction. The Mohr-Coulomb model is a standard model
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(a) (b)

Figure 4.22: Dimensions of the (a) cemented Carbide anvil and (b) Pyrophyllite cap-
sule.

available in Abaqus and can therefore be used to model the capsule in this study using

material parameter values to represent Pyrophyllite.

In our simulation a bulk modulus of 220GPa and Poisson's ratio of 0.12 is assumed,

taken from the work by Li et al. (2007). The elastic modulus modelled is therefore

E = 3κ (1− 2ν) = 3× 220× (1− 0.24) = 501.6GPa. Further following the study done

by Li et al. (2007), a cohesive strength value of 13.87MPa, angle of internal friction

equal to 20.68◦ and dilation angle of 0◦ is further used to model the capsule.

The cemented Tungsten Carbide anvils are modelled using the user material frame-

work with the MTS hardening subroutine. The material parameter values obtained

from the inverse material parameter estimation resulting in the �t and response of

Figure 4.12 is again used in this study. The example problem is modelled assuming a

uniform temperature of 1000K throughout the anvil.

An octant of the full assembly is modelled to exploit the symmetry of the problem.

The quarter anvil geometry is represented using 14209 ten noded tetrahedral elements

(C3D10) while an eighth of the preformed capsule is modelled using 2156 reduced

integration linear brick elements (C3D8R). An isometric and side view of the meshed

assembly are visible in Figure 4.23.

Three hard normal contact interactions are de�ned between a master surface on the
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(a) (b)

Figure 4.23: Mesh of the cubic-anvil high pressure apparatus assembly. (a) Isometric
view and (b) side view of the meshed octant representation.

anvil section and and slave surface on the associated side of the high-pressure capsule.

Again following Li et al. (2007), a contact friction coe�cient of µfrict = 0.75 is further

attributed to the interaction between the anvil and capsule.

The z direction displacements on the xy plane are constrained for the nodes asso-

ciated with that symmetry plane. This is also done for the y direction in the xz and

x direction in the yz planes. The applied force boundary condition at the application

surface of the anvil geometries are prescribed in Abaqus as a total distributed load

boundary condition.

A linear ramp from 0N to 2000kN is applied to the end of each quarter anvil

geometry over 3000 seconds, solved using automatic time stepping with an initial step

size of 1s and maximum allowable step size of 30s. The results are obtained in 108

solution increments.

4.3.2 Results

Results of the �nite element simulation are displayed in Figure 4.24 for the end of the

CHPA compression modelled. The maximum von Mises stresses in this example are in

the range of 1.77GPa to 1.93GPa in Figure 4.24(a). According to Figures 4.24(a) and

(c), the highest stresses and plastic deformation happen around the centre of the anvil
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below the bevel depth at about 18mm to 30mm below the surface of the anvil.

In Figure 4.24(b) the stress values along the centre of the anvil are given. This is

plotted as a function of the distance from the anvil working surface. Figure 4.24(b) can

therefore be seen as a plot of the values at the bottom of the anvil in Figure 4.24(a)

with the distance from the contact surface used as the x axis. In this �gure a maximum

von Mises stress of 1.92GPa is reported at a distance of approximately 24mm below

the contact surface.

Figure 4.24(d) shows the stress gradients on the surface of the anvil. The gradients

on the face vary from 236.76MPa at the centre of the face to 1.08GPa at the edge and

1.22GPa at the corner of the anvil working surface.

The pressure distribution in the capsule is inhomogeneous according to Figure 4.25(a),

with pressures ranging from 2.42GPa in the centre to 2.15GPa at the surface in the

nx = {1, 0, 0} or x direction. In Figure 4.25(b) the pressure values are plotted from

the centre of the capsule in three directions for a better visualisation of the pressure

distribution, namely:

� the x direction or nx = {1, 0, 0},

� the xy direction or nxy =
{√

1/2,
√

1/2, 0
}
and

� the xyz direction or nxyz =
{√

1/3,
√

1/3,
√

1/3

}
.

This plot again shows the inhomogeneity in the pressure distribution with the x and xy

values directly comparable to the contour values in the same direction in Figure 4.25(a).

According to Figure 4.25(b), there is a fairly homogeneous pressure for a radius of

approximately 5mm from the centre of the capsule at 2.42GPa. The pressure drops

to about 2.15GPa at the centre of the anvil surface and peaks at about 2.77GPa at a

distance of 26.57mm in the xyz direction, i.e. {x, y, z} = {18.8, 18.8, 18.8}.
The ideal setup should result in a more homogeneous pressure throughout the

pressure distribution medium with minimal plastic deformation in the anvil. Di�erent

anvil and capsule geometries as well as capsules assembled from di�erent materials

(Wang et al. (2010) use a capsule assembled from various components made from

Pyrophyllite, Steel, Dolomite, Graphite, Molybdenum and MgO for example) can be

tested and developed while also including the temperature and rate dependent plastic
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(a) (b)

(c) (d)

Figure 4.24: Results obtained from a �nite element analysis on an octant of the CHPA
assembly modelled. (a) Von Mises stress contours in the yz plane. (b) Von Mises
stress values in the centre of the anvil plotted as a function of distance from the
working surface. (c) Equivalent plastic deformation in the yz plane. (d) Von Mises
stress viewed from the anvil working surface.
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(a) (b)

Figure 4.25: Pressure distribution (a) in the assembly modelled and (b) along speci�c
directions in the high pressure capsule.

deformation of the cemented Carbide anvil using the MTS model with parameter values

identi�ed in this chapter. This however is not included in the scope of this thesis with

subsequent chapters rather investigating and implementing additional material models

and problems.

4.4 Conclusions

The focus of the work done in this chapter was directed at the improved characterisation

of hardmetal material parameter values in the case of non-ideal experimental test data.

In this chapter, the concept of simultaneous material and time varying boundary

value estimation is introduced and investigated using �nite element analyses within the

optimisation loop. From the investigation the proposed procedure seems satisfactory in

more accurately determining the material property values than the original procedure.

The piecewise linear case illustrated that improved accuracy could be achieved, even

when the correct parametrisation is unknown. It does however come at an increased

computational cost.

Using the MTS model to describe the rate and temperature dependent plastic

deformation in cemented Tungsten Carbide, industrial processes where this material is

used can be studied and improved. Much like the example in Section 4.3, the e�ect

119



G.J. JANSEN VAN RENSBURG

of di�erent boundary conditions, anvil and high pressure cell design can be studied in

the industrial HPHT process for example.

The Mechanical Threshold Stress model used in this and the previous chapter is

a dislocation density based model where the choice of state variable is a stress-like

quantity. In the following chapter, an alternative state variable choice is introduced

and other dislocation density based extensions to the model foundation are discussed

and implemented.
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Chapter 5

Dislocation Density Based Modelling

Extensions

The plastic response considering temperature and rate e�ects for the metallic materials

in Chapters 3 and 4 are well represented using the Mechanical Threshold Stress model.

This model does not however describe phenomena such as the Bauchinger e�ect or

recrystallisation. State variable based model extensions that capture or mimic the

material response in the presence of large strains, thermal recovery, cyclic loading and

recrystallisation are therefore investigated and discussed in this chapter.

In Chapter 3, the development and implementation of the Mechanical Threshold

Stress model was discussed with a phenomenological description on the work hardening

of the evolving thermally activated stress component. The work hardening followed the

original or a modi�ed Voce-like functional form. In this chapter, the model framework

is expanded by �rst introducing the dislocation density ratio as an alternative internal

state variable choice following the modelling approach described by Estrin (1996).

Thermal recovery of statistically stored dislocations and the e�ect of geometrically

necessary dislocations in the case of small grain sizes or in the stage IV hardening

regime are used to supplement the original Kocks-Mecking work hardening theory

within the dislocation density based model framework.

The state variable based constitutive model framework is also extended in the

case of cyclic deformation by introducing additional state variables to represent the

equivalent back stress as well as a statistical wall dislocation density ratio. The latter

121



G.J. JANSEN VAN RENSBURG

dislocations are modelled to inject back into the bulk statistically necessary dislocation

density state variable once load reversal occurs.

A continuum based model for material response in the case of multiple waves of

static and dynamic recrystallisation is introduced at the end of this chapter. This is

presented as an extension to the isotropic plasticity state variable based constitutive

model framework similar to the work by Brown and Bammann (2012). The driving

forces, grain boundary mobility and interfacial subgrain surface area between unre-

crystallised and recrystallised subgrains are used to model and predict the material

response during recrystallisation.

5.1 Dislocation density based model variation

In the Mechanical Threshold Stress (MTS) model implementation of Chapter 3, an

evolving threshold stress value σ̂ = 1
2
Mµb

√
ρ was chosen as the internal state variable.

Recalling Section 3.2, the temperature and rate dependent evolution of the internal

stress value in the presence of additional equivalent plastic strain according to the

Kocks-Mecking work hardening theory can take the form

dσ̂

dα
=
Mµb

4
√
ρ

dρ

dα
where

dρ

dα
= Mk1

√
ρ−Mk2(α̇, T ) ρ. (5.1)

Introducing the initial work hardening θ0 as well as the temperature and rate de-

pendent saturation stress σ̂s (α̇, T ) in Equations (3.16) leads to the Voce law in Equa-

tion (3.17). This means that the evolution of the threshold stress value could be

expressed as a function of itself. An alternative choice on internal state variable could

also be considered following the dislocation density based modelling approach of Estrin

(1996). While the initial value of the true dislocation density values (ρ0 = ρ|εp=0) make

the choice of dislocation density itself a di�cult choice for an internal state variable,

a stress like constant σ0 = 1
2
Mµb

√
ρ0 can be introduced so that the threshold stress

value is now determined from

σ̂ε = σ0
√
%. (5.2)

This modi�cation introduces the dislocation density ratio variable % = ρ
ρ0
, a new in-

ternal state variable with typical initial value %|εp=0 = 1. The constitutive formulation
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may now be completed by using the theory on dislocation density based modelling to

evolve the dislocation density ratio in the process of plastic deformation instead of the

threshold stress directly. By introducing C1 = Mk1/
√
ρ0 and C2 (α̇, T ) = Mk2 (α̇, T ),

evolution of the threshold stress value from Equation (5.1) may now take the form

dσ̂ε
dα

=
σ0

2
√
%

d%

dα
where

d%

dα
= C1

√
%− C2(α̇, T ) %. (5.3)

In the description of the dislocation density based model used by Estrin (1996), a

kinetic equation of the form in Equation (3.1) is used while we will stay with the form in

Equation (3.3) used to construct the MTS model scaling functions in Equation (3.22).

Assuming that the non-evolving thermal portion of the yield stress is negligible (σ̂i = 0)

along with the introduction of Equation (5.2), the temperature and rate dependent �ow

stress for the model takes the form

σY = σ̂a + Sε(α̇, T )
µ

µr
σ0
√
%. (5.4)

The yield stress here is now a function of the dislocation density ratio internal state

variable %. The evolution of the dislocation density ratio in Equation (5.3) is equivalent

to the evolution equation constructed by combining the accumulation and annihilation

contributions from Equations (3.8) and (3.9) with the introduction of C1 and C2. While

C1 is a constant, a formulation for the annihilation function C2 (α̇, T ) is still needed to

complete the model description. Estrin (1996) uses an annihilation function

C2 (α̇, T ) = C20

(
α̇

ε̇02

)1/n

, (5.5)

where C20 and ε̇02 are material constants while n may take di�erent values for di�erent

temperatures. An alternative formulation may be constructed by considering Equa-

tions (3.16) and (3.26) so that the annihilation function is equivalent to the work by

Chen and Gray (1996) and the MTS model of Follansbee and Kocks (1998). Using

these equations:
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C2 (α̇, T ) =
2θ0

σ̂s (α̇, T )
and σ̂s (α̇, T ) = σ̂0s exp

[
kBT

g0sb3µ
ln

(
α̇

ε̇0s

)]
, (5.6)

so that the dynamic recovery is rather modelled by the annihilation function

C2(α̇, T ) = C20 exp

[
− T

a02µ
ln

(
α̇

ε̇02

)]
. (5.7)

In this function C20 = 2θ0/σ̂0s is a constant while ε̇02 ≡ ε̇0s for subscript consistency.

The parameter a02 is again the convenient grouping of constants and parameters a02 =

g0sb
3/kB much like Equation (3.48) with g0s the normalised activation energy, b the

magnitude of the Burgers' vector length and kB = 1.38064852Ö10−23m2kgs−2K−1 the

Boltzmann constant.

To illustrate the response of the alternative dislocation density based formulation

compared to that of the MTS model, the temperature and rate dependence of the

two model cases are illustrated here with arbitrary material parameter values. In both

cases, the temperature dependent shear modulus is modelled using Equation (3.21) with

µr = 100GPa, Dr = 10GPa and Tr = 200K and a Poisson's ratio of 0.3. The athermal

�ow stress component is σ̂a = 10MPa while the threshold stress scaling function is

modelled using a reference strain rate value ε̇0 = 107s−1. The scaled activation energy

parameter a0ε = 2K/MPa and statistical constant values of pε = 1
2
and qε = 3

2
are

assumed. In equation form, this means that for both models

µ(T ) = 105 − 104

exp (200/T)− 1
and σY = 10 +

µ

105

[
1−

(
T

2µ
ln

107

α̇

)2/3
]2

σ̂. (5.8)

In the MTS model, Voce hardening is modelled using an initial hardening rate

θ0 = 5GPa while the temperature and rate dependent saturation stress parameters are

σ̂0εs = 1000GPa, ε̇0εs = 1010s−1 and a0εs = 0.2Kms2kg−1. The initial state variable

value is set to σ̂|0 = 0MPa.

In the alternative formulation, a reference stress value σ0 = 100MPa is used so that

σ̂ = 100
√
%. From Equation (3.16) along with the de�nitions of σ0 = 1

2
Mµb

√
ρ0 and

C1 = Mk1/
√
ρ0 , an accumulation constant C1 = 2θ0/σ0 = 100 is chosen. The annihila-
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Temperature and rate dependence of the Mechanical Threshold Stress
material model. Temperature dependence is illustrated for various temperatures at
(a) ε̇ = 0.0001s−1 and (b) ε̇ = 1000s−1. Rate dependence is illustrated for di�erent
strain rates at (c) 25◦C and (d) 250◦C. (e) Deformation at ε̇ = 1s−1 for temperatures
starting at 200◦C for the �rst 0.3 strain, 25◦C up to 0.6 strain followed by 500◦C up to
completion. (f) Deformation at 25◦C with rates changing from 10000s−1 to 0.00001s−1

followed by 10s−1 up to completion.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: Temperature and rate dependence of the dislocation density based model.
Temperature dependence is illustrated for various temperatures at (a) ε̇ = 0.0001s−1

and (b) ε̇ = 1000s−1. Rate dependence is illustrated for di�erent strain rates at (c)
25◦C and (d) 250◦C. (e) Deformation at ε̇ = 1s−1 for temperatures starting at 200◦C
for the �rst 0.3 strain, 25◦C up to 0.6 strain followed by 500◦C up to completion.
(f) Deformation at 25◦C with rates changing from 10000s−1 to 0.00001s−1 followed by
10s−1 up to completion.
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tion function in Equation (5.7) is modelled using parameter values C20 = 2θ0/σ̂0s = 10,

a02 = 0.2Kms2kg−1 and ε̇02 = 1010s−1. The temperature and rate dependence of the

two di�erent models using the material parameter values stated are presented in Fig-

ures 5.1 and 5.2. In Figure 5.1(a) the MTS material model response at a constant

strain rate of 10−4s−1 is given for 25◦C, 100◦C, 200◦C, 300◦C, 400◦C and 500◦C while

(b) shows the response at 103s−1. The rate dependence is illustrated at (c) 25◦C and

(d) 250◦C for strain rates 104s−1, 10s−1, 10−2s−1 and 10−5s−1 while (e) and (f) shows

what happens if the temperatures and strain rates vary during the straining process.

In Figure 5.2, the alternative dislocation density model response is given for the same

temperature and strain rates for comparison.

By design, the two di�erent choices of internal state variable based model formu-

lation produce similar responses in terms of temperature and rate dependence as well

as the initial work hardening and saturation stress values. The initial value of the

reference threshold stress is zero in the Mechanical Threshold Stress formulation while

the choice of σ0 = 100MPa and %0 = 1 means that the reference threshold stress is

σ̂ = 100MPa in the alternative dislocation density ratio based formulation. The result

of this is visible at the onset of plasticity with a similar initial yield stress value in

each of the MTS responses while there is a distinct temperature and rate dependent

distribution of the initial yield stress values in the alternative formulation.

A bene�t of the dislocation density ratio based constitutive equations lies in the ease

with which it can be extended to model additional physical phenomena as discussed in

the subsections to follow.

5.2 Geometrically necessary dislocations and stage IV

hardening

Grain size e�ects are modelled in the limit where the density of geometric obstacles

is much larger than that of the obstacles caused by other dislocations in the popula-

tion (Estrin, 1996). The modelling of geometric e�ects are necessary to model materials

with small grain sizes, many precipitates or in the case of large plastic strains. In this

case a second mean free path Lg is identi�ed which is related to the spacing between
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geometric obstacles or grain boundaries. If a direct e�ect of the geometric obstacles on

the �ow stress is disregarded, the only e�ect these obstacles have will be on the rate

of dislocation density evolution. The storage term associated with these geometrically

necessary dislocations can be expressed as an extension to the incremental change in

dislocation density in Equation (3.6) by:

dρ(+) =
M

bLg
dα. (5.9)

In the dislocation density ratio based model used by Estrin (1996), the geometric

mean free path is taken as the spacing between grain boundaries or other geometric

obstacles with a stabilised obstacle structure. Considering the form of the dislocation

density ratio evolution in Equation (5.3), this model introduces the constant C =

M (ρ0bLg)
−1. The alternative model formulation in Section 5.1 is therefore expanded

in the case of stable small grain sizes or closely spaced geometrical obstacles through

the addition of this constant to the dislocation density ratio evolution equation

d%

dα
= C + C1

√
%− C2(α̇, T ) %. (5.10)

A further modi�cation is necessary in the more general case where the geometric

substructure does not remain constant as in the case with stage IV hardening during

excessive straining. While the statistically determined mean free path relates to the

total dislocation density through Ls ∝ 1/
√
ρ, the geometrically determined mean free

path Lg may be related to the average slip plane lattice incompatibility λ̄ following the

work by Acharya and Beaudoin (2000) and Kok et al. (2002). The relationship between

the geometrically determined mean free path and average lattice incompatibility can be

modelled in the same way as the statistical mean free path by Lg ∝ 1/
√
λ̄. Considering

the nett dislocations are arranged in a linear fashion on the other hand, Acharya

and Beaudoin (2000) used the relationship Lg ∝ 1/λ̄, leading more generally to the

empirical statement by Kok et al. (2002):

Lg ∝
(

1

λ̄

)rg
(5.11)
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where the parameter 1/2 ≤ rg ≤ 1 is introduced.

A stress like variable related to the slip plane lattice incompatibility has been used

by Kok et al. (2002) as well as Brown and Bammann (2012). The latter work also used

it in conjunction with recrystallisation. The numerical model considered here however

can make use of the inverse geometrically determined mean free path or the average

lattice slip plane incompatibility as an internal state variable within the dislocation

density ratio framework. The storage term associated with geometrically necessary

dislocation in Equation (5.9) can take the form

dρ(+) =
M

b
λ̄rg dα. (5.12)

Instead of Equation (5.10), a more general form of the dislocation density ratio evolu-

tion equation is now given by

d%

dα
= Cgλ̄

rg + C1
√
%− C2(α̇, T ) % (5.13)

where Cg = M/ (ρ0b). Further, Kok et al. (2002) observed that the evolution of the

average slip plane lattice incompatibility is inversely proportional to the grain size dx.

Using the proportionality constant Cλ, an evolution equation for this parameter is

dλ̄

dα
=
Cλ
dx

. (5.14)

The addition of the large strain model extension is illustrated in Figure 5.3 using the

same temperature and strain histories as used in the results of Section 5.1. The same

material property values giving the material response illustrated in Figure 5.2 is used

but this time including the additional average slip plane lattice incompatibility internal

state variable with evolution Equation (5.14) and Cλ/dx = 1. The dislocation density

ratio evolution equation is described by Equation (5.13) instead of Equation (5.3) with

Cg = 1000 and rg = 1.

In the �gures, the e�ect of the geometrically necessary dislocation extension is

visible. Instead of saturating as in the response visible in Figure 5.2, the response

rather approaches a constant strain hardening state. In the original MTS model a

similar e�ect is achieved by modifying the Voce hardening law as in Equation (3.25).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Temperature and rate dependence of the model including geometrically
necessary dislocations. Temperature dependence is illustrated for various temperatures
at (a) ε̇ = 0.0001s−1 and (b) ε̇ = 1000s−1. Rate dependence is illustrated for di�erent
strain rates at (c) 25◦C and (d) 250◦C. (e) Deformation at ε̇ = 1s−1 for temperatures
starting at 200◦C for the �rst 0.3 strain, 25◦C up to 0.6 strain followed by 500◦C up to
completion. (f) Deformation at 25◦C with rates changing from 10000s−1 to 0.00001s−1

followed by 10s−1 up to completion.
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Formal inclusion of the geometrically necessary dislocations however now have greater

physical meaning and signi�cance.

5.3 Thermal recovery

Inclusion of thermal recovery terms in the dislocation density ratio evolution equation

are also possible. The thermal annihilation of dislocations depend on the dislocation

density and temperature. Applied incrementally, the change in dislocation density is

time dependent. An additional annihilation term in Equation (3.6) can take the general

from

dρ(−) = rs(
√
ρ, T ) dt. (5.15)

From the work by Estrin (1996), a possible phenomenological expression for the thermal

recovery coe�cient rs may be expressed as

rs = r0 exp

(
− U0

kBT

)
sinh

(
β
√
ρ

kBT

)
. (5.16)

In this expression, the static or thermal recovery is driven by the stress determined by

the square root of the current dislocation density while U0, β and r0 are constants. In his

explanation, Estrin (1996) only mentions the possible formulation in Equation (5.16) as

a reasonable ansatz but it is not demonstrated. Various other choices are also possible

for the form of the thermal recovery component of the dislocation density evolution

equation. An alternative approximation used by Song and McDowell (2012) within a

dislocation density framework reads

dρ(−) = k3(T )ρr3 dt, (5.17)

where r3 is a constant and k3 is temperature dependent. The subscripts here are added

for consistency regarding this term as the next component in Equation (3.10). An

Arrhenius form for k3 is assumed with

k3 = k30 exp

(
−Qself

RT

)
, (5.18)
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where k30 is a constant and Qself is the activation energy associated with self di�usion.

Using the formulation by Song and McDowell (2012) as a further extension to the

dislocation density ratio evolution equation, the rate form of Equation (5.13) is now

%̇ = α̇
(
Cgλ̄

rg + C1
√
%− C2(α̇, T ) %

)
− C3(T )%r3 . (5.19)

The constant C30 = k30ρ
r3−1
0 is introduced here while a03 = Qself/R is associated with

the scaled activation energy for self di�usion. The static or thermal recovery term is

therefore modelled using

C3(T ) = C30 exp

(
−a03

T

)
. (5.20)

The thermal recovery extension in Equation (5.19) is illustrated in Figure 5.4 again

using some of the temperature and strain histories as used in the results of Section 5.1.

The same material property values giving the material response illustrated in Figure 5.2

is again used without the large strain e�ects that resulted in Figure 5.3, i.e. Cg = 0

in this case. The thermal recovery constants used are C30 = 10s−1, a03 = 5000K and

r3 = 1.

In Figure 5.4, the e�ect of thermal recovery is visible in the higher temperature

and lower strain rate cases as expected. The thermal recovery e�ect is time dependent

and therefore illustrated in the case where there is variable holding times at higher

temperatures before continued straining. Three cases are illustrated in Figure 5.5.

The model is displayed for a case where the material is strained to 50% at ε̇ = 10−4s−1,

T = 25◦C and then an additional 50% at ε̇ = 10−4s−1, T = 250◦C after three di�erent

hold times of 1 minute, 20 minutes and a full day at 250◦C.

The constitutive model formulated and demonstrated up to this point considers the

isotropic case where the von Mises yield surface radius changes due to an incremental

plastic strain increment or as a function of time. This model can be implemented into

an isotropic hardening subroutine as in the Mechanical Threshold Stress case presented

in Appendix C. Before expanding on the numerical implementation of the formulated

model however, the purely isotropic model is instead seen as a special case or model

variant where the full model also includes kinematic hardening e�ects. In the following

section, the inclusion of cyclic e�ects are considered and motivated again using the

work done by Estrin (1996).
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(a) (b)

(c) (d)

Figure 5.4: Temperature and rate dependence of the thermal recovery extended dislo-
cation density ratio model. Temperature dependence is illustrated for various temper-
atures at (a) ε̇ = 0.0001s−1 and (b) ε̇ = 1000s−1. Rate dependence is illustrated for
di�erent strain rates at (c) 25◦C and (d) 250◦C.
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(a) (b)

Figure 5.5: The e�ect of waiting time between additional straining at a higher temper-
ature for the (a) original and (b) thermal recovery extended dislocation density ratio
model. The model is �rst strained to 50% at 25◦C and 0.0001s−1. It is then left at
250◦C for 1min, 20min or 24 hours before further straining at 250◦C and 0.0001s−1.

5.4 Cyclic e�ects

The constitutive equations developed for monotonic deformation are not fully equipped

to produce the macroscopic mechanical response observed in cyclic deformation. From

a microstructure-based standpoint, Estrin (1996) attributes some of the characteristic

responses observed in cyclic deformation to what he calls a channel-like dislocation

structure that forms under cyclic loading. The dislocation structure is viewed as a

system of channels or regions of low dislocation density, separated by parallel narrow

walls with a high density of segmented edge dislocations. Adjoining walls are linked by

mobile screw dislocation segments or loops within the channels. The screw segments

drag along the edge segments of the loop, changing the edge density. When an applied

stress presses the edge segments against the walls, the wall dislocation density increases.

Should the stress be reversed, the increased edge density increment can be recovered.

This happens in the motion of the screw segments in the opposite direction if not woven

into the dislocation structure of the walls or irreversibly trapped due to thermally

activated jog formation.

With part of the dislocations recoverable in the event of load reversal, it is neces-

sary to distinguish between truly immobilised and recoverable stored dislocation den-
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sity. When the applied stress drops below the internal stress acting in the walls, the

immobilised edge dislocations bulge out between the pinning points and inject mobile

screw dislocations into the lower dislocation density regions. The generation of mobile

screw dislocations is another process that can be taken into account. Following Estrin

(1996), the dislocation dynamics considered in the channel-like structure may be cast

into the constitutive equations of the isotropic model discussed in previous sections.

The edge dislocation density immobilised in the walls are identi�ed with the dislo-

cation density ratio internal state variable of the isotropic model formulation %. The

evolution of this dislocation density ratio therefore follows Equation (5.19). The den-

sity of dislocations trapped in the walls but partially recoverable upon stress reversal

is included with the introduction of an additional dislocation variable ρr. As with the

dislocation density ratio internal state variable % = ρ/ρ0, the non-dimensional form of

the partially recoverable part of the dislocation density ratio is given by the internal

state variable $ = ρr/ρ0. Since ρr is a subset of ρ, the internal state variable $ is

a subset of the total dislocation density ratio internal state variable %. If the average

channel width scales with 1/
√
%, the inversely proportional storage rate of $ is given

by (Estrin, 1996):

$̇ = α̇ (C4
√
%− C2(ε̇p, T )$)− C5(T )$. (5.21)

Apart from the aforementioned storage rate, this rate equation includes a dynamic

recovery term C2(ε̇p, T )$ while C5(T )$ represents the recoverable edge density loss

rate due to thermally activated jog formation. The last term is time rather than strain

dependent and can take the form of the Arrhenius expression involving the activation

energy for jog formation. If a05 = Qjog/R is used as a parameter representing the scaled

activation energy associated with jog formation:

C5(T ) = C50 exp

(
−a05

T

)
. (5.22)

Given that the dislocation density variable $ is recovered upon each stress reversal,

an internal state variable update in the case of this event is needed that satis�es the

condition

% := %−$ and $ := 0. (5.23)
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(a) (b)

Figure 5.6: Cyclic behaviour of the dislocation density ratio based model at 25◦C and
1s−1 (a) without and (b) with partially recoverable wall dislocation density upon load
reversal. The

In Figure 5.6(a) the cyclic response of the model with parameter values given in

Section 5.1 is illustrated at 25◦C. The response starts at ε = 0 and is cycled with

a strain amplitude of 50% at 1s−1. The recoverable dislocation density ratio internal

state variable is then added and evolved using Equation (5.21) with C4 = 100 and

C5 = 0s−1 resulting in the reset of % = 1 at each load reversal. The cyclic response in

the case where the dislocation density ratio is reset is given in Figure 5.6(b).

To account for the curvature of the mobile dislocation segments in the channels, Es-

trin (1996) introduces a back stress σB into his chosen one dimensional kinetic equation.

The evolution of the one dimensional back stress is considered to obey the equation

dσB

dα
= C6

√
%− C7σB, (5.24)

introducing the two new parameters C6 and C7. The model response given the back

stress extension is visible in Figure 5.7. In Figure 5.7(a) the cyclic response using

C6 = 50MPa, C4 = C7 = 0 and C5 = 0s−1 is demonstrated while the recoverable

dislocation density ratio is activated for Figure 5.7(b) using C4 = 100, C6 = 50MPa,

C5 = 0s−1 and C7 = 0.

The numerical implementation makes use of the constitutive model described by

Equations (5.4), (5.19), (5.21) and (5.24). This model is implemented as an FCOMBINED
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(a) (b)

Figure 5.7: Behaviour of the dislocation density ratio based model with back stress
evolution at ε̇ = 1s−1 and 25◦C. The cyclic behaviour (a) without and (b) with
partially recoverable wall dislocation density upon load reversal is illusrated.

hardening subroutine that can replace the linear combined work hardening model ver-

i�ed in Section 2.4. Appendix E contains the Fortran code for the implementation

discussed in the following section.

5.5 Numerical Implementation

Using the combined hardening user material framework in Appendix B, the disloca-

tion density ratio based constitutive model is implemented numerically into Fortran

subroutines given in Appendix E.

As with the MTS model implementation, the temperature dependent shear modu-

lus following Equation (3.21) is again used in conjunction with dislocation density ratio

based model. The shear modulus is therefore again returned by calling the SHEARMOD

subroutine presented in Appendix C.1. The elastic properties µr, Dr and Tr in Equa-

tion (3.21) as well as Poisson's ratio ν are still passed to the material subroutine using

the �rst four entries in the PROPS array of user de�ned material properties. The sub-

routine returns the shear modulus at the current temperature along with Poisson's

ratio to evaluate the trial elastic state.

The dislocation density ratio based combined hardening model is implemented into

a combined hardening subroutine FCOMBINED that is called by the Abaqus user material
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Figure 5.8: The dislocation density based combined hardening user material.

subroutine. This function replaces the linear combined hardening version of Chapter 2.

The yield and back stress function FCOMBINED for the implemented model is attached

in Appendix E.1 while E.2 is a subroutine called in the case of load reversal. The

load reversal subroutine alters the internal state variables to satisfy Equation (5.23).

Figure 5.8 shows the layout of the appended subroutines called by Appendix B.1 in

this implementation.

The combined hardening subroutine uses four internal state variables (ISVs) namely:

� the average slip plane lattice incompatibility λ̄,

� the main contributing dislocation density ratio %,

� the partly recoverable wall dislocation density ratio $,

� the equivalent back stress variable σB, since it is a function of itself according to

Equation (5.24).

Given that the numerical combined elasto-plastic framework in Appendix B makes use

of the STATEV array to store the 4 ≤ NTENS ≤ 6 components of the shift tensor, the
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four ISVs used by the FCOMBINED subroutine are stored in the seventh to tenth entry

of the STATEV array

{
λ̄; %; $; σB

}
= {STATEV(I) for I ∈ [7, 8, 9, 10]} . (5.25)

As in the linear hardening and MTS cases, the trial elastic state is evaluated by

assuming that there is no additional equivalent plastic strain in the current increment

δα = 0. Given the incremental equivalent plastic strain and time step used as inputs

to the FCOMBINED subroutine, the strain rate used in the calculations where needed

is again determined using the rationale explained with the aid of Equation (3.29).

The subroutine is given an estimate of the incremental plastic strain δα, strain rate

using Equation (3.29), temperature at the end of the increment and ISV values at the

start of the current increment. The candidate ISV values at the end of the increment,

yield stress σY|t+δt, back stress σB|t+δt, and sensitivities resulting in K = dσY/dα and

H = dσB/dα are then solved. These values are returned in order to solve the equivalent

incremental plastic strain using Newton's method on Equation (2.84).

5.5.1 Determining the average slip plane lattice incompatibility

The incremental change in average slip plane lattice incompatibility is determined from

Equation (5.14). The updated value at time t+ δt is simply

λ̄
∣∣
t+δt

= λ̄
∣∣
t
+ δα

Cλ
dx

. (5.26)

5.5.2 Calculating the evolving dislocation density ratio values

Backward Euler implicit integration is used taking the incremental plastic strain δα,

plastic strain rate α̇, duration of the time increment δt and temperature T into account.

Using the rate of evolution from Equation (5.19), an incremental change in the main

evolving dislocation density ratio ISV (%) is determined so that the value at time t+ δt
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is given by

%|t+δt = %|t + δα
(
Cg λ̄

rg
∣∣
t+δt

+ C1

√
%|t+δt − C2(α̇, T ) %|t+δt

)
− δtC3(T ) %r3 |t+δt

= %|t + δθ%|t+δt . (5.27)

Here, δθ%|t+δt = δθ%

(
λ̄
∣∣
t+δt

, %|t+δt , δα, δt, α̇, T
)
is a function of mainly the dislocation

density ratio at the end of the increment %|t+δt since the other values are treated as

constants in the solution loop.

The implicit integration is done using Newton-Raphson given an initial guess %|t+δt =

%|t and a residual equation R% = %|t+δt− %|t− δθ%|t+δt based on Equation (5.27). The

sensitivity

DR% = 1− δα
(
C1 %

−1
∣∣
t+δt
− C2(α̇, T )

)
+ δtC3(T )r3 %

r3−1
∣∣
t+δt

(5.28)

is used to solve for the unknown value of the dislocation density ratio internal state

variable. Upon solving for %|t+δt, the partially recoverable wall dislocation density ratio
is updated. Using Equation (5.21) for the incremental change, implicit integration of

this ISV results in

$|t+δt = $|t + δα
(
C4

√
%|t+δt − C2(ε̇p, T ) $|t+δt

)
− δtC5(T ) $|t+δt . (5.29)

The value of the recoverable dislocation density ratio is given by reworking the

update equation to

$|t+δt =
$|t + δαC4

√
%|t+δt

1 + δαC2(ε̇p, T ) + δtC5(T )
. (5.30)

5.5.3 Updating the yield and equivalent back stress

In the numerical implementation of Appendix E, the yield stress is calculated using

Equation (5.4). This means that once the value of the evolving dislocation density

ratio at the end of the time step is solved, the resulting yield stress value is

σY|t+δt = σ̂a +
µ (T )

µr
σ0 Sε|t+δt

√
%|t+δt. (5.31)
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Using Equation (5.24) for the incremental change, the equivalent back stress is

determined from

σB|t+δt = σB|t + δα
(
C6

√
%|t+δt − C7 σB|t+δt

)
. (5.32)

The back stress value at the end of the increment is thus calculated using

σB|t+δt =
σB|t + δαC6

√
%|t+δt

1 + δαC7

. (5.33)

The shift tensor q in the combined hardening numerical framework implemented

in Appendix B is set to evolve incrementally as in Equation (2.79) with δσBn. Upon

load reversal the incremental change in the equivalent back stress is also reversed. In

this numerical implementation, the one dimensional equivalent back stress variable is

therefore reversed when the subroutine in Appendix E.2 is called in order to facilitate

a possible reduction or sign change in the incremental shift tensor calculation using

Equation (5.33)

5.5.4 Sensitivities

The Newton-Raphson scheme is used to solve the absolute slip rate or consistency pa-

rameter and so the incremental equivalent plastic strain increment δα from the residual

in Equation (2.84). The method requires the isotropic and kinematic stress component

sensitivities K = dσY/dδα and H = dσB/dδα. The sensitivity of the calculated yield

stress using Equation (5.31) and equivalent back stress using Equation (5.33) given a

di�erent equivalent plastic strain increment as input is therefore determined in this

subsection.

The derivative of the yield stress with respect to the equivalent plastic strain in-

crement can be determined using the chain rule. For notational brevity the time

speci�cation at the end of the increment is dropped on the relevant variables so that

σY ≡ σY|t+δt for example. The sensitivity is given by

dσY

dδα
=

µ

µr

[
∂Sε
∂α̇

dα̇

dδα
σ̂ε + Sε

dσ̂ε
dδα

]
=

µ

µr
σ0

[
∂Sε
∂α̇

√
%

δt
+ Sε

1

2
√
%

d%

dδα

]
, (5.34)
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where dα̇/dδα = 1/δt when δα > 0 following Equation (3.29) and dσ̂ε/dδα is deter-

mined from Equation (5.3). Still using the Arrhenius expression for the scaling function

in Equation (3.22), the partial derivative of the scaling function with respect to the

equivalent plastic strain rate is again determined from Equation (3.36).

The back stress sensitivity with respect to the equivalent plastic strain increment

using Equation (5.33) is
dσB

dδα
=
∂σB

∂δα
+
∂σB

∂%

d%

dδα
. (5.35)

The �rst partial derivative with respect to the incremental plastic strain is now calcu-

lated using

∂σB

∂δα
= C6

√
% (1 + δαC7)−1 − C7 (σB|t + δαC6

√
%) (1 + δαC7)−2 . (5.36)

Only the time value of σB|t is speci�ed since all other variables of interest are taken at

the end of the increment. The second component of Equation (5.35) is given by

∂σB

∂%

d%

dδα
=

δαC6

2
√
%(1 + δαC7)

d%

dδα
. (5.37)

Both Equations (5.34) and (5.35) further only require the sensitivity of the main

dislocation density ratio ISV with respect to the incremental plastic strain to com-

plete the calculation. Given the implicit de�nition of the evolving dislocation density

ratio internal state variable with δθ% ≡ δθ%|t+δt at the end of the increment in Equa-

tion (5.27), the derivative with respect to the incremental equivalent plastic strain

is
d%

dδα
=
∂δθ%
∂δα

+
∂δθ%
∂α̇

dα̇

dδα
+
∂δθ%
∂%

d%

dδα
+
∂δθ%
∂λ̄

dλ̄

dδα
. (5.38)

Inspecting the individual components, the partial derivative of the incremental

update δθ% with respect to the equivalent plastic strain is

∂δθ%
∂δα

= Cgλ̄
rg + C1

√
%− C2(α̇, T )%. (5.39)

Taking the dynamic recovery function in Equation (5.7) as the only rate dependent
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part of the incremental update gives

d

dα̇
C2(α̇, T ) = − C20T

α̇a02µ
exp

[
− T

a02µ
ln

(
α̇

ε̇02

)]
. (5.40)

The second component of Equation (5.38) is therefore

∂δθ%
∂α̇

dα̇

dδα
= −δα

δt
%
d

dα̇
C2(α̇, T )

=
C20T%

a02µ
exp

[
− T

a02µ
ln

(
α̇

ε̇02

)]
. (5.41)

The last component of Equation (5.38) is determined by inspecting Equations (5.26)

and (5.27) so that
∂δθ%
∂λ̄

dλ̄

dδα
= δαrgCgλ̄

rg−1Cλ
dx

. (5.42)

The third component of Equation (5.38) has the same quantity d%/dδα as we are

interested in. Rearranging the equation with this component on the left means that

the left hand side of the equation is changed to

d%

dδα
− ∂δθ%

∂%

d%

dδα
=

(
1− ∂δθ%

∂%

)
d%

dδα
= DR%

d%

dδα
(5.43)

with DR% already calculated in Equation (5.28). The dislocation density ratio sen-

sitivity with respect to the incremental equivalent plastic strain is �nally calculated

from

d%

dδα
=

(
Cgλ̄

rg + C1
√
%− C2(α̇, T )%+

C20T%

a02µ
exp

[
− T

a02µ
ln

(
α̇

ε̇02

)]
+δαrgCgλ̄

rg−1Cλ
dx

)
/DR%.

(5.44)

The gradients and numerical implementation of the combined hardening model in

Appendix E are now tested. This is done using an arbitrary set of material parameters

and a single call to a one dimensional version of the user material framework that

also uses the subroutine in Appendix E. The value of the residual equation, analytical
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gradients as well as the estimated equivalent plastic strain increment are reported for

each iteration. A forward �nite di�erence estimate of the isotropic and kinematic sen-

sitivities is also calculated within the one-dimensional test environment by perturbing

the estimated plastic strain by 10−8.

For this test, the virtual material parameters used are:

� The elastic property values of µr = 100GPa, Dr = 0MPa and Tr = 200K in

Equation (3.21) and a Poisson's ratio of ν = 0.3 are used.

� The stress values in Equation (5.4) are chosen as σ̂a = 0MPa and σ0 = 1000MPa.

� The scaling function values in Equation (3.22) are chosen as a0ε = kB/g0εb
3 =

0.2K/MPa , pε = qε = 1 and ε̇0ε = 106s−1.

� The average slip plane lattice incompatibility evolves following Equation (5.26)

with Cλ/dx = 1, while Cg = 100 and rg = 0.5 in Equation (5.27).

� Dislocation accumulation is taken into account with C1 = 100 in Equation (5.27).

� Dynamic recovery parameter values in Equation (5.7) are C20 = 10, ε̇02 = 106s−1

and a02=2K/MPa.

� Back stress evolution according to Equation (5.24) is modelled using C6 = 105MPa

and C7 = 500.

� No thermal recovery or recoverable dislocation density is included meaning C30 =

0s−1 in Equation (5.20), C40 = 0 in Equation (5.21) and C50 = 0s−1 in Equa-

tion (5.22).

Assuming a time increment δt = 1s, temperature of T = 500K and one dimensional

incremental strain δε = 0.1, the residual value, equivalent plastic strain and sensitivities

for each iteration in the solution loop are given in Table 5.1. The function call results

in a resolved von Mises yield stress of σY = 3135.67MPa of which the back stress

contribution is σB = 776.79MPa

Out of the 0.1 total strain increment, the plastic strain increment is δα = 0.0874

as seen in Table 5.1. According to the convergence of the residual and by comparison
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Isotropic Kinematic

Iteration Residual
Plastic

Analytical
Finite

Analytical
Finite

increment Di�erence Di�erence

1 25805.902 0 2437768.8 2436598.9 99067.947 99067.499

2 25628.511 1.0331E-5 28240.801 28240.800 12002.086 12002.083

3 22617.137 9.1737E-3 16902.784 16902.784 5391.4768 5391.4767

4 825.56331 8.4503E-2 16605.431 16605.431 5286.0136 5286.0135

5 0.5917212 8.7427E-2 16605.220 16605.220 5285.9391 5285.9389

6 2.99298E-7 8.7430E-2 16605.221 16605.220 5285.9391 5285.9389

7 2.8422E-12 8.7430E-2 16605.221 16605.219 5285.9391 5285.9389

Table 5.1: Test on the convergence of the dislocation density based combined hardening
model material subroutine in Appendix E.

of the analytical sensitivity to the �nite di�erence approximation in Table 5.1, the

gradients are derived and implemented correctly.

With con�dence in the implementation, the model implemented in Appendix E is

now calibrated on experimental data in the following section using a one dimensional

combined material framework.

5.6 Model calibration on cyclic data:

The combined hardening dislocation density ratio model is applied here to describe

the cyclic deformation data for Alloy 800H and Inconel 738LC. The material data is

digitised from the chapter in �Uni�ed Constitutive Laws of Plastic Deformation� written

by Estrin (1996).

Two cycles on the Alloy 800H is digitised and �t using the model. The deformation

is modelled at 1123K and a strain rate of 2 × 10−3s−1. The model response �t to

the digitised data is presented in Figure 5.9. The elastic parameter values of µr =

60GPa, ν = 0.3 and Dr = 0GPa so that µ = µr are used. The athermal stress

component σ̂a = 0MPa is used while the reference stress parameter σ0 = 734.41MPa.

Scaling factor parameter values are a0ε = 0.7424K/MPa, pε = 0.5, qε = 1.5 and

ε̇0ε = 107s−1. The other material parameter values are Cg = 0 C30 = 0s−1, C1 = 43.302,

C20 = 32.469, a02 = 4.497K/MPa, ε̇02 = 107s−1, C4 = 10.589, C5 = 1.34 × 10−8s−1
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Figure 5.9: Cyclic data for Alloy 800H (Estrin, 1996) versus the implemented model
prediction.

with the parameters associated with the back stress evolution C6 = 64897.42MPa and

C7 = 628.34. The exact thermal properties, such as a05 for example, are not taken

into account given only a single temperature is used during the characterisation. This

means that any combination of C50 and a05 resulting in C5 = C50× exp (−a05/1123) =

1.34× 10−8s−1 would result in the same response.

There is a good �t despite setting Cg = 0µm and therefore ignoring the e�ect of λ̄ on

the dislocation density accumulation. This is because the alloys have very low carbon

content. The small volume fraction of carbides that form nucleate exclusively as �lms

on the grain boundaries and therefore do not partake in most deformation processes

apart from intergranular fracture. If more data is available at di�erent rates and

temperatures during the model characterisation, the parameter values could have other

values. This example only used a single curve during the parameter characterisation

however and therefore can not take these e�ects into account.

Variable strain rate monotonic data at 1123K as well as an experimental cyclic

response at ε̇ = 10−3s−1 and 1123K for the Inconel 738LC material are digitised and

therefore available during the characterisation in the second example. In Figure 5.10,
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(a) (b)

Figure 5.10: (a) Cyclic and (b) monotonic variable strain rate data for Inconel 738LC
Estrin (1996) versus model prediction using the monotonic data for material parameter
characterisation.

µr 50GPa σ0 4410.47MPa Cg 0µm C30 0s−1

ν 0.3 a0ε 0.9392K/MPa C1 22.23 C4 0.0039

Dr 0GPa pε 0.2551 C20 75.67 C5 2.197×10−7s−1

Tr 200K qε 0.755 a02 0.478K/MPa C6 30329.65MPa

σ̂a 277.184MPa ε̇0ε 107s−1 ε̇02 107s−1 C7 180.11

Table 5.2: Material parameter values for Inconel 738LC resulting in the model response
in Figure 5.10.

the model prediction is presented along with the data. This is done for a case where

the parameter characterisation is performed using mainly the monotonic variable rate

data visible in Figure 5.10(b). For this reason the results in Figure 5.10(b) are in good

agreement with the data. The material parameter values that result in the responses

in Figure 5.10 are presented in Table 5.2.

The calibrated material parameter values are then used as initial condition in an-

other calibration exercise where all of the cyclic data points are used. Only some of the

cyclic data points are digitised from the relevant �gure in Estrin (1996). In his �gure

there are three cycles seemingly identical to the �rst. In the characterisation, three

cycles are modelled and compared to the data points of the digitised cyclic data. These

data points are e�ectively given three times the weight of the remaining data points

used during the characterisation process. The alternative material parameter values
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(a) (b)

Figure 5.11: (a) Cyclic and (b) monotonic variable strain rate data for Inconel 738LC
Estrin (1996) versus model prediction using all of the data points.

µr 50GPa σ0 1685.59MPa Cg 0µm C30 0s−1

ν 0.3 a0ε 0.9169K/MPa C1 6.697 C4 0

Dr 0GPa pε 0.1106 C20 7.217 C5 2.23×10−9s−1

Tr 200K qε 0.3271 a02 7.817K/MPa C6 123238.78MPa

σ̂a 116.08MPa ε̇0ε 107s−1 ε̇02 107s−1 C7 336.34

Table 5.3: Material parameter values for Inconel 738LC resulting in the model response
in Figure 5.11.

obtained upon inclusion of the cyclic data in the comparison are now in Table 5.3.

The response using these material parameter values are given in Figure 5.11. The

monotonic responses no longer �t the data as well as in Figure 5.10(b), but remain

within reasonable accuracy while the modelled cyclic response is in better agreement

with the data.

The back stress and yield stress values over the cycle modelled in Figure 5.11(a) are

presented in Figure 5.12. The di�erence between the equivalent back stress variable

in red and shift value (black stars) using a one dimensional model framework are

illustrated. The equivalent back stress applied incrementally using Equation (5.24)

while taking the �ow direction into account is also illustrated. In this one dimensional

example, reversing the equivalent back stress internal state variable upon load reversal

in the numerical implementation produces an equivalent response in the shift tensor as

if the plastic strain increment would have a directional component. This happens due
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(a) (b)

Figure 5.12: The equivalent back stress internal state variable, shift variable and yield
surface radius corresponding to the cyclic deformation in Figure 5.11 plotted as a
function of (a) strain and (b) time. The equivalent stress is also plotted as a function
of time in green.

to the fact that the shift is incrementally applied following δq = δσBn, as explained in

Section 2.3.7.

The directional yield stress value σYn is shown in blue with the e�ective stress

also displayed in Figure 5.12(b) over the time period using a green line. If there is no

incremental plastic strain during a deformation increment it is visible that the yield

stress value is simply equal to the athermal stress value σY = σ̂a = 116.08MPa.

The model does not capture the response of the Inconel 738LC as well as that of

the Alloy 800H. Alloy 800H is a solid solution hardened Ni-Cr-Al-Ti alloy while In-

conel 738LC is a super alloy that is both hardened by solid solution and gamma prime

precipitate γ′ Ni3Al (Guzman et al., 2012). The latter therefore has more complex

deformation mechanisms not built into the model presented. The extended disloca-

tion density ratio based model built on the MTS framework is only well equipped to

model and predict the cyclic responses of materials in cases where the implemented

deformation mechanisms dominate. In the following section, an isotropic version of

this dislocation density based modelling approach is extended to also include recrys-

tallisation.
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5.7 Recrystallisation

During recrystallisation, new grains nucleate and grow to replace the worked mi-

crostructure of a strained material (Haessner, 1978; Humphreys and Hatherly, 1995).

At elevated temperatures, subgrains expand at the expense of neighbouring subgrains

with a higher level of stored energy. As grain and subgrain boundaries move, the dis-

location structure associated with the higher energy is swept away, e�ectively leaving

behind recrystallised material with a lower dislocation density (Doherty, 2005).

Early fundamental work in modelling recrystallisation was done by Johnson and

Mehl (1939), Avrami (1939) and Kolmogorov (1937), commonly referred to as the

Johnson-Mehl-Avrami-Kolmogorov or simply JMAK model. This model is based on

the assumptions that recrystallised nuclei form randomly within the pre-existing mi-

crostructure and that these nuclei grow at a constant, isotropic rate. Using the Avrami

form, the evolution of the fraction of recrystallised material fx can be modelled over

time using

fx(t) = 1− exp (−Btn) . (5.45)

In this model, B is a function that takes into account the shape of the subgrains

as well as the constant nucleation rate and constant growth rate while n is a constant.

Nucleation distribution tends to rather occur nonrandomly. It usually happens at

preferred sites such as prior grain boundaries, edges, corners and other inhomogeneities.

The growth rate also varies, meaning the ideal JMAK behaviour is rarely exhibited by

real materials (Humphreys and Hatherly, 1995; Chen et al., 2002). Further work on

the JMAK model was done by Cahn (1956) for example, to take the saturation of

grain boundary nucleation into account as well as the e�ect of the grain boundary

surface area per unit volume. Roberts et al. (1979) replaced the time dependence in

Equation (5.45) by a strain dependence representing the instantaneous time taken for

the dynamic recrystallisation process.

Many models capable of both static and dynamic recrystallisation further have ki-

netics or some form of critical recrystallisation criteria that depends explicitly on strain

or strain rate (Pietrzyk, 2002; Roucoules et al., 2003; Svyetlichnyy, 2007). Considering

�nite element analyses where transient loading conditions are modelled with the pos-

sibility of nonuniform and variable strain rate, such models are usually not su�ciently
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general.

The criteria used to determine the onset of recrystallisation is sometimes a value

associated with critical strain or critical stored energy. Assuming the stored energy

is only a function of dislocation density, a critical value of dislocation density may

be used for the onset of recrystallisation as done by Bailey and Hirsch (1962). An

alternative could be the critical size of subgrain dimensions associated with a stable

nucleus (Sandström and Lagneborg, 1975; Roberts and Ahlblom, 1978).

A recrystallisation model similar to the one validated by Brown and Bammann

(2012) is implemented. The model has the ability to simulate multiple waves of re-

crystallisation. Various recrystallised and unrecrystallised volume fractions can exist

simultaneously. This model di�ers from the JMAK form and no critical value is asso-

ciated with the onset of recrystallisation. The recrystallisation is instead based on the

mobility of grain and subgrain boundaries. The driving force behind the recrystallisa-

tion is provided by the stored energy in the dislocation structure.

The recrystallisation is implemented as an extension to the isotropic dislocation

density ratio based model formulation. The model combines the Kocks-Mecking work

hardening theory implemented using a dislocation density ratio internal state variable

that evolves following Equation (5.19), with the theory accompanying the recrystallised

volume fraction growth rate formulation used by Brown and Bammann (2012).

In the following subsection the theory used to develop the multiple cycle recrystalli-

sation model is covered. The numerical implementation of the theory into a material

subroutine useful for �nite element analysis is then discussed. The numerical discussion

includes the management of state variables, how multiple recrystallisation cycles may

be tracked as well as the analytical sensitivities required. The model parameters are

�t to Cobalt data between 600◦C and 900◦C as well as a large range of strain rate and

temperature data from monotonic compression tests on oxygen free high conductivity

Copper.

5.7.1 Modelling theory

The process of recrystallisation is typically broken up into three sections. Nucleation

mainly occurs during an incubation time before recrystallisation is really detected.
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This is followed by an increasing rate of recrystallisation up to a point where growing

subgrains impinge on the potential growth of one another. The recrystallisation process

over time during isothermal annealing is commonly represented by a plot of the total

volume fraction of recrystallised material (0 ≤ fx ≤ 1) as a logarithmic function

of time. The process has a sigmoidal form as is usually the case with a di�usive

interface description formulation in the kinetics of phase transformations (Humphreys

and Hatherly, 1995).

Instead of a JMAK type model using Equation (5.45), the more general evolution of

the recrystallised volume fraction is solved. From the work by Cahn and Hagel (1962),

the recrystallised volume fraction growth rate is

ḟx = Axvx. (5.46)

In this growth rate equation, Ax is the interfacial area between recrystallised and

unrecrystallised regions. This is multiplied by the average boundary velocity of the

interface sweeping through the unrecrystallised region, vx.

The rate of interface migration can be expressed by the driving pressure P for

boundaries with a speci�c energy and mobility M (Furu et al., 1995; Doherty et al.,

1997; Huang and Humphreys, 1999). Average grain boundary velocity is simply calcu-

lated using

vx = MP. (5.47)

As the material deforms, the average misorientation angle θ̄ across the geometrically

necessary subgrain boundaries increase, which in turn increases the mobility of the

boundaries. Chen et al. (2002) use the empirical form

M̄ = M0 exp

(
−QM

RT

)[
1− exp

(
−CM

(
θ̄

θm

)rM)]
(5.48)

to express the average subgrain boundary mobility M̄ in terms of the average misorien-

tation angle. In this expression, M0, CM and the exponent rM are constants. θm is the

misorientation angle associated with a high angle boundary while R is the universal

gas constant and QM the activation energy for grain boundary mobility.
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Brown and Bammann (2012) replaced the misorientation angle ratio with a stress

like variable related to the mean free path of geometrically necessary dislocations. This

stress like variable is used as internal state variable in their model to capture geometric

e�ects. In the dislocation density ratio based model implementation used here, the

internal state variable equivalent is the average slip plane lattice misorientation λ̄

introduced in Equation (5.12).

Chen et al. (2002) observed the relationship between the e�ective subgrain diameter

d̄x, misorientation θ̄ and Burger's vector length b

d̄xθ̄ ∝ b. (5.49)

We now assume that the average distance between geometrically necessary disloca-

tions is mainly as a result of subgrain boundaries. Under this assumption, the mean

free path of geometrically necessary dislocations is proportional to the mean subgrain

boundary diameter Lg ∝ d̄x. Using Equation (5.11), the relationship between the

average misorientation angle and the average slip plane lattice misorientation is

θ̄ ∝
(
λ̄
)rg

. (5.50)

The misorientation angle ratio of Equation (5.48) is now replaced in the current context

by the internal state variable associated with the average lattice slip plane incompati-

bility. This results in the approximation for the average subgrain boundary mobility

M̄ = M0 exp

(
−QM

RT

)[
1− exp

(
−CMθλ̄

rMθ
)]
. (5.51)

The constant CMθ and exponent rMθ values now di�er from the original formulation to

accommodate the various proportionalities. The driving force for the motion of the ge-

ometrically necessary boundaries is the stored energy in the dislocation structure. The

expression of the stored energy in the average assembly as used by Chen et al. (2002)

is considered. According to Humphreys and Hatherly (1995), the pressure driving the

subgrain boundary growth can in it's simplest form be expressed as P = µb2ρ/2. This

assumes that the boundary energy e�ects on the driving force are negligible. Consider-

ing the dislocation density ratio used as evolving internal state variable in the current
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framework, the pressure is calculated by

P =
1

2
µb2ρ0%. (5.52)

The evolution rate of the recrystallised volume fraction can now be modelled in the

current setting with % and λ̄ as internal state variables. Including the above mentioned

theory into a single expression, the rate of recrystallisation is rewritten by introducing

new functions and constants

ḟx = Ax%CRx0CRxT (T )CRxλ

(
λ̄
)
. (5.53)

The function is rewritten so that CRx0 e�ectively contains all the pre-exponential con-

stants. Similarly CRxT (T ) contains the temperature dependence in a single function

CRxT (T ) = µ (T ) exp
(
−a0Rx

T

)
. (5.54)

Here, a0Rx is again the convenient grouping of the activation energy and universal gas

constant as done in Equation (5.20). The function CRxλ

(
λ̄
)
contains the geometric

e�ects in the rewritten function

CRxλ

(
λ̄
)

= 1− exp
(
−CRxλ0λ̄

rRxλ
)
, (5.55)

where CRxλ0, and rRxλ replaces the constant CMθ and exponent rMθ in Equation (5.51)

for subscript consistency.

For the grain boundary interfacial area between the recrystallised and unrecrys-

tallised volume fractions, Speich and Fisher (1966) proposed the empirical relation

Ax ∝ fx(1− fx) based on their extensive experiments on nickel. Brown and Bammann

(2012) then assumed the altered form Ax ∝ fax (1− fx)b, with the exponents a and b.

During static recrystallisation, the dislocation density in the unrecrystallised phase

of the material may decrease due to static or thermal recovery as per Equation (5.17).

The volume fraction associated with the recrystallised phase of the material could also

increase. This is e�ectively visible as softening of the bulk material. Dynamic re-

crystallisation is more complex as both the unrecrystallised and recrystallised material

volume fractions continue to harden in the presence of added plastic strain. The ma-
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terial can also recrystallise numerous times and contain multiple cycles or waves of

recrystallisation simultaneously (Luton and Sellars, 1969; Sandström and Lagneborg,

1975; McQueen and Jonas, 1975). Considering multiple cycles of recrystallisation, a

volume fraction fxi now represents the material volume fraction that has undergone i

cycles of recrystallisation.

As in the model by Brown and Bammann (2012), fxi − fxi+1
represents the total

volume fraction of material that has been recrystallised i + 1 times. The original

unrecrystallised material has a volume fraction fx0 = 1 and each volume fraction now

has it's own set of internal state variables. The variables %xi and λ̄xi here represent the

internal state variables associated with the material volume fraction fxi − fxi+1
.

The altered form of the grain boundary interfacial area Ax ∝ fax (1− fx)b is used in

Equation (5.53). If CRx0 is di�erent from the original value, it still contains all of the

pre-exponential constants while resolving the proportionality in the grain boundary

interfacial area formulation. The evolution of the �rst recrystallisation cycle volume

fraction is now determined from the rate equation

ḟx1 = %x0CRx0CRxT (T )CRxλ

(
λ̄x0

)
f rRxa

x1
(1− fx1)

rRxb . (5.56)

The internal state variables associated with the original unrecrystallised material vol-

ume fraction are %x0 and λ̄x0 . rRxa and rRxb are the exponents used in the empirical

relation of the interfacial grain boundary area again renamed for consistency. For

additional recrystallisation cycles, the fraction of fx1undergoing a second cycle of re-

crystallisation for example is fx2/fx1 while the volume fraction (fx1 − fx2)/fx1 has only

recrystallised once. Following Brown and Bammann (2012), the interfacial area per

total material volume is therefore proportional to

Ax2 ∝ fx1

(
fx2

fx1

)rRxa
(

1− fx2

fx1

)rRxb

. (5.57)

Some regions within the recrystallised volume fraction fx1 − fx2 would have newly

recrystallised due to the dislocation structure contained in fx0 − fx1 . Earlier recrys-

tallised regions on the other hand have already hardened to motivate the additional

recrystallisation cycle. A model simply using the relation in Equation (5.57) would

155



G.J. JANSEN VAN RENSBURG

therefore under predict the volume fraction evolution rate if homogenised values of %x1

and λ̄x1 are used. Once the �rst recrystallisation cycle has completed, fx1 ≈ 1. In this

case no new dislocation free zones are added to the volume fraction region fx1 − fx2 .

It would only then become more homogeneous with continued deformation. Brown

and Bammann (2012) accounted for this observation with the introduction of a scaling

function 1 + c(1 − fx1) that decreases to one as fx1 ≈ 1. Using this scaling function

correction, the recrystallised volume fraction growth rate is generalised in the current

context as

ḟxi+1
= %xiCRx0CRxT (T )CRxλ

(
λ̄xi

)
g(fxi , fxi+1

) (5.58)

where

g(fxi , fxi+1
) = fxi

(
fxi+1

fxi

)rRxa
(

1−
fxi+1

fxi

)rRxb

(1 + CRxc (1− fxi)) . (5.59)

Given a time increment δt, the �rst (fx1) and second (fx2) volume fractions can both

progress, meaning region fx1−fx2 will increase by δfx1 and decrease by δfx2 . Assuming

recrystallisation removes the dislocation structure, the dislocation density ratio within

a newly recrystallised portion δfx1 should be reset. If the region fx1(t)− fx2(t)− δfx2

hardens or recovers as if no recrystallisation occurs, the dislocation density ratio at

t+ δt is given using rate Equation (5.19):

{%x1}
t+δt
fx1 (t)−fx2 (t)−δfx2

≈{%x1}
t
fx1 (t)−fx2 (t) +(

α̇
(
Cgλ̄

rg
x1

+ C1
√
%x1 − C2(α̇, T ) %x1

)
− C3(T )%r3x1

)
δt.

(5.60)

Now using the rule of mixtures:

{%x1}
t+δt
fx1 (t+δt)−fx2 (t+δt) =

fx1(t)− fx2(t)− δfx2

fx1(t)− fx2(t) + δfx1 − δfx2

{%x1}
t+δt
fx1 (t)−fx2 (t)−δfx2

. (5.61)

Substituting Equation (5.60) into Equation (5.61), the general form of the dislocation

density ratio evolution can be rewritten by taking the limit δt → 0 and substituting

i = 1 in the same way as Brown and Bammann (2012):

%̇xi = α̇
(
Cgλ̄

rg
xi

+ C1
√
%xi − C2(α̇, T ) %xi

)
− C3(T )%r3xi

− ḟxi

fxi − fxi+1

%xi . (5.62)
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Doing the same for the internal state variable associated with the average slip plane

lattice incompatibility:

˙̄λxi = α̇Cλx −
ḟxi

fxi − fxi+1

λ̄xi , (5.63)

where Cλx is a constant related to Cλ/dx in Equation (5.14) for a speci�c grain size.

In the presence of recrystallisation, the equivalent threshold stress of Equation (5.2) is

calculated using the average dislocation density ratio

%̄ =
nx−1∑
i=0

%xi

(
fxi − fxi+1

)
, (5.64)

where nx is the total number of recrystallisation cycles.

5.8 Numerical Implementation

The MTS model was implemented in Appendix C as an extension to the isotropic

hardening user material framework in Appendix A. Similarly, the dislocation density

ratio based constitutive model with recrystallisation is implemented numerically into

Fortran subroutines given in Appendix F. The temperature dependent shear modulus

following Equation (3.21) is still used and returned by calling the SHEARMOD subroutine

presented in Appendix C.1.

The model is implemented into an isotropic hardening subroutine FISOTROPIC called

by the Abaqus user material framework. A residual subroutine RGET is used to deter-

mine the recrystallised volume fraction and internal state variable values per volume

fraction. The yield stress function FISOTROPIC for the implemented model is attached

in Appendix F.1 while F.2 is the subroutine called to solve the internal state variables

per volume fraction. Figure 5.13 shows the layout of the appended subroutines called

by Appendix A.1 in this implementation.

The internal state variables are solved using fully implicit Backward Euler integra-

tion. The model integrates the various values incrementally with previous converged

ISV values stored in the STATEV vector and updated at the end of the increment. Other

values that are useful in an analysis apart from the internal state variables needed in

the recrystallisation and density ratio based evolution include the accumulated volume
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Figure 5.13: The dislocation density based isotropic hardening user material with
recrystallisation.

fraction averaged equivalent plastic strain. An internal state variable for the equivalent

plastic strain is also assigned per recrystallisation volume fraction αxi . This is done to

keep track of the equivalent plastic strain that accumulates and is reset by each wave of

recrystallisation. If a speci�c recrystallisation volume fraction fxi is active, the plastic

strain increment δα is added to the internal state variable

αxi |t+4t = αxi|t + δα. (5.65)

The values of the volume fraction averaged plastic strain and misorientation can be

calculated as in Equation (5.64) by

ᾱ =
nx−1∑
i=0

αxi

(
fxi − fxi+1

)
and ¯̄λ =

nx−1∑
i=0

λ̄xi

(
fxi − fxi+1

)
. (5.66)

The total length of the state variable array (NSTATV) is set in the Abaqus input �le

with the *DEPVAR card. In this implementation, the volume fraction averaged equiva-

lent plastic strain, dislocation density ratio and average slip plane lattice misorientation

are stored in the �rst three entries of the state variable array STATEV(1:3). Tracking

the evolution of the equivalent plastic strain, dislocation density ratio, average slip
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plane lattice misorientation as well as volume fraction for each recrystallisation cycle

means four entries in the STATEV array need to be allocated per volume fraction. This

means that given the maximum number of possible recrystallising volume fractions

(NRRX= nx), the total length of the STATEV array (NSTATV) as given by the material

de�nition in the Abaqus input �le should be at least DEPVAR=4*NRRX+3 so that enough

memory is allocated to the problem. The previous converged values of the volume frac-

tion averaged quantities as well as the ISV values at the end of the previous increment

are stored in the state variable array sent as input and then returned at the end of the

current increment as

STATEV(1 : 4 ∗ NRRX + 3) =
{
ᾱ, %̄, ¯̄λ, αx0 , %x0 , λ̄x0 , fx1 , ..., αxnx−1 , %xnx−1 , λ̄xnx−1 , fxnx

}
.

(5.67)

Following Brown and Bammann (2012), it makes no sense evolving and updating

the ISV values for the original volume fraction %x0 and λ̄x0 once it has been fully

recrystallised. This happens when the �rst recrystallised volume fraction in the state

variable array de�ned above approaches unity fx1 ≈ 1. If this is the case, the state

variable values associated with the �rst recrystallised volume fraction is shifted so that

it is now associated with the new default volume fraction. If this is the case, the

previous converged values in the state variable array may alternatively be considered

as

STATEV(7 : 4 ∗ NRRX + 3) =
{
fx0 ≈ 1, αx0 , %x0 , λ̄x0 , fx1 , ..., αxnx−2 , %xnx−2 , λ̄xnx−2 , fxnx−1

}
.

(5.68)

To reduce the amount of allocated memory required, an internal state variable shift

applied to the STATEV array would result in a new state variable array where

STATEV(4 : 4 ∗ NRRX + 3) = {OLD_STATEV(8 : 4 ∗ NRRX + 3), 0, 0, 0, 0} . (5.69)

In this implementation, the potential state variable array shift happens before calcu-

lating the stresses associated with the current time increment and additional evolution

of the ISV's.
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5.8.1 Plasticity and internal state evolution

Considering the temperature at the end of a speci�c time increment solved, the shear

modulus and kinetic equation scale function are �rst evaluated as given in Equa-

tions (3.21) and (3.22). To determine the yield stress from Equation (5.4), the threshold

stress value and therefore average dislocation density ratio at the end of the current

increment is required as in Equation (5.64). The numerical implementation needs to

cycle through each of the recrystallised volume fractions, evolving the associated in-

ternal state variables and then adding the contribution to the the average dislocation

density ratio.

The maximum number of volume fractions to track is set with nx =(NSTATV-3)/4.

The value of NSTATV is set using the *DEPVAR card in the Abaqus input �le, used to

allocate the memory required. The volume fractions are e�ectively fully recrystallised

and internal state variables shifted once fx1 > 0.999 in the implementation presented.

Internal state variable updates also only cycle through each of the following volume

fractions as long as the conditions fxi+1
> 0.001 and i+1 ≤ nx are met to save on com-

putational time. This is di�erent from the implementation by Brown and Bammann

(2012) in that they evolve all volume fraction state variables, even before it contributes

to the overall material response.

Given that the implementation cycles through the volume fractions, a single variable

is used for values of the volume fractions, rates and internal state variables needed

within the speci�c cycle evaluated. The values are stored to the temporary state

variable array before continuing to the next cycle. In the next cycle, the same variables

now e�ectively just point to alternate entries of the state variable array. Here, we use

the subscripts xc and xn to represent the variables associated with the current c = i

and next n = i+ 1 volume fractions.

To start the �ow rule evaluation, the values associated with the default volume

fraction i = 0 are set from the known conditions fx0 = 1 and ḟx0 = 0, meaning fxc = 1

and ḟxc = 0. The volume fraction averaged quantities are also initialised with ᾱ = 0,

%̄ = 0 and ¯̄λ = 0. A vector x =
{
%xi , λ̄xi

}
t+δt

represents an estimate of the internal state

variable values associated with the current volume fraction. The construction of the

various residuals and solutions necessary to solve the internal state variable evolution

is constructed next.
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Considering that from Equation (5.48) the misorientation fractional value θ̄/θM
should be below unity, Equation (5.55) is evaluated so that

CRxλ = 1− exp (−CRxλ0 min ([x2, 1])rRxλ) . (5.70)

The recrystallised volume fraction growth associated with the next volume fraction

fxn is calculated by �rst setting the estimated variable value equal to the previous

converged value fxn =
{
fxi+1

}
t

= STATEV(4 ∗ i + 7). The minimum value fxn ≥ 10−4

is introduced in the presented implementation in order to avoid a zero interface surface

area when using Equation (5.59). This condition assumes that nucleation has already

happened. fxn is now the current estimate of
{
fxi+1

}
t+δt

, and the validity of this

estimate is determined by evaluating the residual:

fRx = fxn −
{
fxi+1

}
t
− δtḟxn, (5.71)

where the rate using Equation (5.58) is determined by

ḟxn = x1CRx0CRxT (T )CRxλ (x2) gx(fxc, fxn). (5.72)

Should the residual equation be violated, the updated estimate on the following

volume fraction is solved using Newton's method:

{fxn}k+1 = {fxn}k −

(
1− x1CRx0CRxT (T )CRxλ (x2)

{
dgx

dfxn

}k)−1

{fRx}
k (5.73)

with
dgx

dfxn

=rRxa

(
fxn

fxc

)rRxa−1(
1− fxn

fxc

)rRxb

(1 + CRxc (1− fxc))

− rRxb

(
fxn

fxc

)rRxa
(

1− fxn

fxc

)rRxb−1

(1 + CRxc (1− fxc)) .

(5.74)

Once the value of the next volume fraction is solved, the residuals on the two ISV

estimates can be determined using the evolution rates of Equations (5.62) and (5.63),
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resulting in the residual equations

fR1 (x1, x2) =x1 − %xi |t − δα
(
C0x

rg
2 + C1

√
x1 − C2(α̇, T )x1

)
+ δtC3(T )xr31 +

δt
ḟxc

fxc − fxn (x1, x2)
x1 = 0 (5.75)

and

fR2 (x1, x2) =x2 − λ|t − δαCλ + δt
ḟxc

fxc − fxn (x1, x2)
x2 = 0. (5.76)

The internal state variable updates are solved by using the initial guess x ={
%xi , λ̄xi

}
t

= {STATEV(4 ∗ i + 5, 4 ∗ i + 6)}, sent in to the RGET subroutine in Appendix
F.2. The residual values and sensitivities are returned to the FISOTROPIC subroutine.

The values are updated using the Newton-Raphson scheme

{x}k+1 = {x}k −
[
{F′R}

k
]−1

{fR}k (5.77)

where F ′R ij = ∂fRi/∂xj are the components of the Jacobian matrix. Considering the

numerical implementation, the inverse of matrix F′R is constructed directly using

[F′R]
−1

=
1

det(F′R)

[
F ′R 2,2 −F ′R 1,2

−F ′R 2,1 F ′R 1,1

]
(5.78)

with det(F′R) = F ′R 1,1F
′
R 2,2−F ′R 1,2F

′
R 2,1. The partial derivatives of the residual equa-

tions that make up the components of the Jacobian matrix are:

∂fR1

∂x1

=1− δα
(

1

2
C1x

−1/2
1 − C2

)
+ δtr3C3x

r3−1
1 + δt

ḟxc

fxc − fxn

+ δtx1
ḟxc

(fxc − fxn)2

dfxn

dx1

,

∂fR1

∂x2

=− δαrgCgxrg−1
2 + δtx1

ḟxc

(fxc − fxn)2

dfxn

dx2

,

∂fR2

∂x1

=δtx2
ḟxc

(fxc − fxn)2

dfxn

dx1

,

∂fR2

∂x2

=1 + δt
ḟxc

fxc − fxn

+ δtx2
ḟxc

(fxc − fxn)2

dfxn

dx2

. (5.79)
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The derivatives of the next volume fraction with respect to the current internal

state variable estimates are determined from the residual in Equation (5.71) as:

dfxc

dx1

=δtCRx0CRxT (T )CRxλ (x2) gx(fxc, fxn)

(
1− δtx1CRx0CRxT (T )CRxλ (x2)

dgx

dfxn

)−1

dfxc

dx2

=δtx1CRx0CRxT (T )(fxc, fxn)
dCRxλ

dx2

(
1− δtx1CRx0CRxT (T )CRxλ (x2)

dgx

dfxn

)−1

(5.80)

and

dCRxλ

dx2

=

rRxλCRxλ0x
rRxλ−1
2 [1− exp (−CRxλ0x

rRxλ
2 )] if x2 ≤ 1,

0 otherwise.
(5.81)

Before possibly moving to the next volume fraction, the current volume fraction

contribution to the equivalent dislocation density is needed. This is updated along

with the contribution to the yield stress sensitivity required to resolve the �ow rule

residual and solve the equivalent plastic strain increment. The contribution to the

average dislocation density ratio is calculated as in Equation (5.64) by updating the

value of the equivalent dislocation density ratio variable

%̄ = %̄+ x1 (fxc − fxn) . (5.82)

The sensitivity of the yield stress with respect to the equivalent plastic strain in-

crement is determined by

dσY

dδα
=

µ

µr

[
σ0

√
%̄

δt

dSε
dα̇

+
Sεσ0

2
√
%̄

d%̄

dδα

]
. (5.83)

The de�nition of the scaling factor in Equation (3.22) still leads to:

dSε
dα̇

=
T

α̇pεqεa0εµ

(
T

a0εµ
ln

(
ε̇0ε

α̇

))1/qε−1
[

1−
(

T

a0εµ
ln

(
ε̇0ε

α̇

))1/qε
]1/pε−1

. (5.84)

In Appendix F.2, the contribution of the scaling factor to the yield stress sensitiv-

ity is calculated at the end of the recrystallisation cycle evaluations. The equivalent
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dislocation density ratio sensitivity is determined upon inspection of Equation (5.64)

by
d%̄

dδα
=

nx−1∑
i=0

[
d%xi

dδα

(
fxi − fxi+1

)
+ %xi

(
dfxi

dδα
−
dfxi+1

dδα

)]
. (5.85)

From the �rst volume fraction condition with fx0 = 1, it is evident that dfx0/dδα = 0.

The incremental contribution to the average dislocation density ratio sensitivity added

at each cycle means that given the initialised variable value d%̄/dδα = 0, the sensitivity

is updated within each cycle evaluation in the same way as in Equation (5.82) by

d%̄

dδα
=

d%̄

dδα
+
dx1

dδα
(fxc − fxn) + x1

(
dfxc

dδα
− dfxn

dδα

)
(5.86)

where dfxc/dδα = 0 for the �rst volume fraction. Given the residual Equation (5.71)

with ḟxn now a function of x according to Equation (5.72):

dfxn

dδα
=
∂fxn

∂x1

dx1

dδα
+
∂fxn

∂x2

dx2

dδα
+
∂fxn

∂fxc

dfxc

dδα
. (5.87)

The sensitivities of x1 and x2 with respect to equivalent plastic strain increment are

approximated in the presented implementation by again using the residual equations

for the evolution of the internal state variables in Equations (5.75) and (5.76).

Following the example in Equation (5.27), the updated internal state variable as-

sociated with the dislocation density ratio evolution in Equation (5.75) is given by

x1 = %xi |t + δθx1|t+δt , (5.88)

where δθx1|t+δt = δθx1 (δα, δt, α̇, T, x1, x2) is a function e�ectively solved using the

residual subroutine RGET. During a call to the RGET subroutine, δθx1|t+δt is mainly seen

as a function of the x1 and x2 values at the end of the increment since the other values

are e�ectively constant during a speci�c solution loop.

Further sensitivities are however required so that the equivalent plastic strain can

be determined from within the user material framework. The total derivative of x1

with respect to the equivalent plastic strain using Equation (5.88) is determined from
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the chain rule

dx1

dδα
=
∂δθx1
∂δα

+
∂δθx1
∂α̇

dα̇

dδα
+
∂δθx1
∂fxc

dfxc

dδα
+
∂δθx1
∂x1

dx1

dδα
+
∂δθx1
∂x2

dx2

dδα
. (5.89)

The derivative of the equivalent strain rate with respect to incremental plastic strain

is dα̇/dδα = 1/δt. The value of dfxc/dδα is equal to zero in the �rst volume fraction due

to fxc = fx0 = 1. If not in the �rst volume fraction it is carried over from the preceding

volume fraction calculation. The equivalent plastic strain increment sensitivity in this

case is taken as the sensitivity of the next volume fraction as determined in the previous

solution loop, i.e. dfxc/dδα|fxi+1
= dfxn/dδα|fxi .

Rearranging Equation (5.89) and noting that (1− ∂δθx1/∂x1) ≡ ∂fR1/∂x1 and

−∂δθx1/∂x2 ≡ ∂fR1/∂x2 in Equations (5.79) implies

∂fR1

∂x1

dx1

dδα
+
∂fR1

∂x2

dx2

dδα
= Γx1 (5.90)

where Γx1 contains all of the sensitivity components in Equation (5.89) not associated

with x1 and x2:

Γx1 =
∂δθx1
∂δα

+
∂δθx1
∂α̇

dα̇

dδα
+
∂δθx1
∂fxc

dfxc

dδα
. (5.91)

Doing the same as in Equation (5.90) for dx2/dδα leads more generally to the system

of equations
∂fRi
∂x1

dx1

dδα
+
∂fRi
∂x2

dx2

dδα
= Γxi . (5.92)

For the �rst residual equation (i = 1) the right hand side of Equation (5.92) is

Γx1 ≡ −
∂fR1

∂δα
− ∂fR1

∂α̇

dα̇

dδα
− ∂fR1

∂dfxc

dfxc

dδα

= C0x
rg
2 + C1

√
x1 − C2x1 − α̇

dC2

dα̇
+ x1

[
δt

ḟxc

(fxc − fxn)2 −
1

fxc − fxn

]
dfxc

dδα
, (5.93)

with dC2/dα̇ in Equation (5.40).

The second residual has no equivalent plastic strain rate dependence. The approx-
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imate derivative of this residual equation with respect to plastic strain gives

Γx2 ≡ −
∂fR2

∂δα
− ∂fR2

∂dfxc

dfxc

dδα
= Cλ + x2

[
δt

ḟxc

(fxc − fxn)2 −
1

fxc − fxn

]
dfxc

dδα
. (5.94)

The values of ∂fRi/∂xj in Equation (5.92) are the same components used to construct

the matrix needed in Equation (5.77). The relevant derivatives of the current volume

fraction internal state variables with respect to equivalent plastic strain are then given

by
dx1

dδα
=

1

det(F′R)

(
F ′R 2,2Γx1 − F ′R 1,2Γx2

)
(5.95)

and
dx2

dδα
=

1

det(F′R)

(
F ′R 1,1Γx2 − F ′R 2,1Γx1

)
. (5.96)

These equations are used to approximate the current volume fraction contribution to

the average dislocation density ratio sensitivity with respect to equivalent plastic strain.

The equivalent plastic strain for the current volume fraction is αxc = STATEV(4 ∗ i
+4) + δα. The volume averaged equivalent plastic strain and average slip plane lattice

misorientation are updated in the same way as the equivalent dislocation density in

Equation (5.82):
ᾱ =ᾱ + αxc (fxc − fxn) ,

¯̄λ =¯̄λ+ x2 (fxc − fxn) .
(5.97)

Once all of the current volume fraction contributions are accounted for, the current

volume fraction values are stored in the associated temporary state variable locations

TEMPSTATEV(4 ∗ i + 4) =αxc

TEMPSTATEV(4 ∗ i + 5) =x1

TEMPSTATEV(4 ∗ i + 6) =x2

TEMPSTATEV(4 ∗ i + 7) =fxn.

(5.98)

A check is performed to see whether additional volume fractions are considered by

evaluating i ≤ NRRX − 1. In the implementation here, di�erent from the implementa-

tion by Brown and Bammann (2012), fxn ≥ 0.001 is also evaluated since it makes no
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sense to spend computational power to evaluate the next volume fraction if it does not

contribute to the global response. If both these conditions are met, the variables are

updated for the next volume fraction evaluation with fxc = fxn, ḟxc = ḟxn, dfxc/dδα =

dfxn/dδα and i = i+1. Setting the initial guess x = {STATEV(4 ∗ i + 5, 4 ∗ i + 6)} sub-
ject to x1 ≥ 1 and x2 ≥ 10−4, the evaluation of the next volume fraction is considered

by again starting at Equation (5.70).

To test the gradients and numerical implementation of the isotropic hardening

model with recrystallisation in Appendix F, a single increment is now modelled and

analysed using an arbitrary set of material parameters. This is done using a simple

one dimensional version of the user material framework that also uses the subroutine

in Appendix F.

The value of the residual equation, analytical gradients as well as the estimated

equivalent plastic strain increment are reported for each iteration. Components and

sensitivities on the various nested solution loops are also reported for the �nal iteration.

A forward �nite di�erence estimate of various sensitivities are also calculated within

the one dimensional test environment by perturbing the estimated plastic strains or

relevant values by 10−8.

Material parameters of an arbitrary virtual material used to test the implementation

is:

� The elastic property values of µr = 50GPa, Dr = 0MPa and Tr = 200K in

Equation (3.21) and a Poisson's ratio of ν = 0.3 are used.

� The temperature and rate dependent scaling function in Equation (3.22) is mod-

elled with a0ε = 0.5K/MPa, pε = 1, qε = 1 and ε̇0ε = 107s−1.

� The athermal yield stress component and reference stress values using Equa-

tion (5.4) are σ̂a = 0MPa and σ0 = 1000MPa.

� The evolution of λ̄ according to Equation (5.63) is modelled using Cλx = 1.

� The parameters associated with the evolution of the dislocation density ratio in

Equation (5.62) are Cg = 100, rg = 1, C1 = 100, C20 = 10, a02 = 2K/MPa,

ε̇02 = 1010s−1and C30 = 0s−1
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Iteration Residual
Approximate Finite Plastic Variation

Sensitivity Di�erence Increment from �nal

1 13000.0 9.455E9 - 0. 8.511E-2

2 12875.5 7.021E5 6.992E5 1.342E-6 8.511E-2

3 12392.6 16975.49 16975.26 1.503E-2 7.008E-2

4 9861.02 7260.04 7255.09 8.212E-2 2.989E-3

5 409.91 7048.15 7042.58 8.511E-2 2.439E-6

6 0.3342 7047.98 7042.41 8.511E-2 9.99E-11

7 1.37E-5 7047.98 7042.41 8.511E-2 4.02E-15

8 5.52E-10 7047.98 7042.41 8.511E-2 -

Table 5.4: Test on the convergence of the equivalent plastic strain increment using the
dislocation density based model with recrystallisation in Appendix F.

� The pre-exponential constant in Equation (5.53) is CRx0 = 1s−1. From Equa-

tion (5.54), a0Rx = 10000K while CRxλ0 = 1 and rRxλ = 2 in Equation (5.55).

� Equation (5.59) is modelled using rRxa = 0.2, rRxb = 1.2 and CRxc = 10.

A single call to the one dimensional user material is made using a total strain incre-

ment δε = 0.1, temperature of T = 800K and time increment of δt = 1s. To investigate

various aspects of the recrystallisation implemented, a second volume is activated as-

suming fx1 = 0.1. The internal state variables associated with the unrecrystallised

volume fraction are assigned initial values %x0 = 10 and λ̄x0 = 0.2 while the internal

state variables associated with the �rst volume fraction recrystallised are initialised

using %x1 = 1 and λ̄x1 = 10−4.

The solution is obtained to within a tolerance of 10−8 in eight iterations as illus-

trated in Table 5.4. The equivalent plastic strain increment converges to a solution of

δα =0.08511. Three volume fractions are active at the end of the increment with fx1

increasing from 0.1 at the start to 0.3083 at the end of the increment while fx2=0.0066

is activated during the increment. The internal state variable values at the end of the

increment are %x0 = 28.196 and λ̄x0 = 0.285 for the unrecrystallised volume fraction

while %x1 = 10.711 and λ̄x1 = 0.050 as well as %x2 = 8.578 and λ̄x2 = 0.042. The

function call results in a yield stress of 1934.89MPa attributed to the volume fraction

averaged dislocation density ratio %̄ = 22.791.
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(a)

Volume ∂δθx1/∂δα+ ∂δθx2
/∂δα dx1/dδα dx2/dδα dfxn/dδα

Fraction ∂δθx1
/∂α̇× 1/δt

fx0 AN 216.541 1.000 181.174 1.000 2.235

FD 216.541 1.000 181.174 1.000 2.235

fx1
AN 202.088 1.000 140.489 0.576 0.253

FD 202.088 1.000 140.489 0.576 0.253

fx2
AN 192.896 1.000 119.087 0.483 6.54E-3

FD 192.896 1.000 119.087 0.483 6.54E-3

(b)

Volume dx1/dδα dfxn/dδα Equation (5.86)

Fraction AN FD AN FD AN FD % Di�erence

fx0 181.174 181.174 2.235 2.235 62.299 62.299 -

fx1
123.311 122.962 0.225 0.228 58.900 58.762 0.234

fx2
122.609 119.496 6.28E-3 6.46E-3 2.511 2.547 1.423

TOTAL 123.710 123.607 0.083

Table 5.5: Comparison between analytically approximated (AN) and �nite di�erence
(FD) sensitivity components for the dislocation density based model with recrystalli-
sation. (a) Individual components and solution to the system of equations in Equa-
tion (5.92) internally using dfxc/dδα = 0. (b) Components of the equivalent dislocation
density sensitivity used in Equation (5.86).

There is an approximate 0.079% di�erence between the sensitivity using Equa-

tion (5.83) and the �nite di�erence approximation according to Table 5.4. If the

sensitivities are determined and implemented correctly, this slight variation could be

partially attributed to the various conditional statements implemented to avoid zero

value denominators and only evolve state variables of volume fractions between 0.001

and 0.999. The di�erence may also be partially explained by the multiplicative accu-

mulation of variations as a result of the nested solution loops.

Table 5.5 contains values of analytical and �nite di�erence sensitivity components

for comparison. These values are reported at the end of the evaluation. Table 5.5(a)

shows a breakdown of individual components as well as the solution to the system of

equations in Equation (5.92). Equation (5.92) is investigated here within each volume

fraction loop in the code by calls to the RGET subroutine meaning the �nite di�erence

component of dfxc/dδα can't be compared. Because of this reason Table 5.5(a) illus-

trates the sensitivity comparisons for a case where dfxc/dδα = 0 removes the last term
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in Equation (5.91). The values tabulated include the solutions to dx1/dδα in Equa-

tion (5.95) and dx2/dδα in Equation (5.96) as well as the e�ective value of dfxn/dδα in

Equation (5.87) for all the active volume fractions considered at the end of the incre-

ment under the test condition dfxc/dδα = 0. Partial derivatives of the internal state

variables x1 and x2 with respect to the incremental plastic strain using Equation (5.93)

and Equation (5.94) with Cλ = 1 are also compared.

The contribution of various components to the equivalent dislocation density sensi-

tivity in Equation (5.86) is given in Table 5.5(b). Here the origin of the slight di�erence

between the analytical and �nite di�erence sensitivity in Table 5.4 is again visible for a

case where dfxc/dδα = 0 is not enforced. The �nite di�erence contributions to dx1/dδα

and dfxn/dδα in Table 5.5(b) now di�ers from the values in Table 5.5(a) because of

the inclusion of these other sensitivities. The fx1 �nite di�erence value of dx1/dδα is

now 122.962 instead of 140.489 when dfxc/dδα was ignored while the fx0 values are the

same in the two tables since dfxc/dδα = 0 is true for this case with fxc ≡ fx0 = 1 .

While the analytical and �nite di�erence sensitivities for the �rst and second volume

fractions are closely similar, the di�erence gets larger for each next volume fraction

contribution calculated. As illustrated in Table 5.5(b) the origin of the 0.079% di�er-

ence in Table 5.4 is found due to the 0.083% di�erence between the �nite di�erence and

approximated sensitivity of the second term of Equation (5.83). There is possibly an

additional sensitivity not taken into account for the volume fractions further down the

line or a small numerical error gets compounded by each subsequent volume fraction

contribution. Fortuitously, the contribution is small enough that a su�ciently accurate

sensitivity is used resulting in a satisfactory rate of convergence.

In Table 5.6, the convergence of the solution to x1, x2 and fxn using the RGET

subroutine in Appendix F is illustrated. This is done to �nd the solution of the internal

state variables associated with fx1 , i.e. x1 ≡ %x1 , x2 ≡ λ̄x1 and fxn ≡ fx2 using the �nal

strain increment value δα =0.08511.

Convergence of the recrystallised volume fractions fx1 and fx2 are �nally reported

in Table 5.7. The iterations indicate the convergence of fx1 using δα =0.08511 as well

as %x0 = 28.196 and λ̄x0 = 0.285 while fx2 is solved using %x1 = 10.711 and λ̄x1 = 0.050.

Comparison of the �nite di�erence and analytical sensitivities indicate that the solution

is correctly implemented following Equations (5.73) and (5.74).
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Iteration Residual Solution Sensitivity Analytical Di�erence

1 fR1
-6.78984 x1 1.00000 ∂fR1

/∂x1 -1.53418 -1.53417

fR2
-8.511E-2 x2 1.00E-4 ∂fR1

/∂x2 -8.51132 -8.51132

‖fR‖ 6.79037 fxn 1.00E-3 ∂fR2/∂x1 0.00000 0.00000

∂fR2
/∂x2 1.67783 1.67783

2 fR1
-7.71686 x1 3.70714 ∂fR1

/∂x1 0.51907 0.51907

fR2 1.864E-4 x2 5.073E-2 ∂fR1/∂x2 -7.89961 -7.89963

‖fR‖ 7.71686 fxn 2.657E-3 ∂fR2
/∂x1 5.735E-5 5.732E-5

∂fR2
/∂x2 1.68987 1.68987

3 fR1 12.8683 x1 18.5645 ∂fR1/∂x1 1.78652 1.78657

fR2
1.681E-4 x2 5.011E-2 ∂fR1

/∂x2 12.8093 12.8094

‖fR‖ 12.8683 fxn 1.148E-2 ∂fR2
/∂x1 7.778E-5 7.779E-5

∂fR2/∂x2 1.75931 1.75931

4 fR1 0.95271 x1 11.3599 ∂fR1/∂x1 1.48829 1.48825

fR2
1.790E-5 x2 5.033E-2 ∂fR1

/∂x2 -1.28178 -1.28179

‖fR‖ 0.95271 fxn 6.960E-3 ∂fR2
/∂x1 7.106E-5 7.112E-5

∂fR2/∂x2 1.72327 1.72327

5 fR1
1.234E-2 x1 10.71978 ∂fR1

/∂x1 1.44916 1.44910

fR2
2.374E-6 x2 5.035E-2 ∂fR1

/∂x2 -2.15244 -2.15251

‖fR‖ 1.234E-2 fxn 6.572E-3 ∂fR2/∂x1 7.024E-5 7.015E-5

∂fR2
/∂x2 1.72021 1.72021

6 fR1
2.310E-6 x1 10.7113 ∂fR1

/∂x1 1.44862 1.44863

fR2 4.38E-11 x2 5.035E-2 ∂fR1/∂x2 -2.16361 -2.16365

‖fR‖ 2.310E-6 fxn 6.567E-3 ∂fR2
/∂x1 7.023E-5 7.022E-5

∂fR2
/∂x2 1.72017 1.72017

dfR1/dδα 201.969 202.026

7 fR1
7.55E-14 x1 10.7113 ∂fR1

/∂x1 1.44862 1.44861

fR2
2.08E-17 x2 5.035E-2 ∂fR1

/∂x2 -2.16362 -2.16365

‖fR‖ 7.55E-14 fxn 6.567E-3 ∂fR2/∂x1 7.023E-5 7.022E-5

∂fR2/∂x2 1.72017 1.72017

Table 5.6: RGET residuals and convergence for internal state variables associated with
fx1 using δα =0.08511.
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Volume
Iteration Residual

Fraction Sensitivity

Fraction Value Analytical Di�erence

fx1 1 -0.22806 0.10000 0.84796 0.84796

2 7.557E-2 0.36896 1.26292 1.26292

3 1.020E-3 0.30912 1.22681 1.22681

4 2.464E-7 0.30829 1.22622 1.22622

5 1.44E-14 0.30829 1.22622 1.22622

fx2
1 -3.905E-3 1.000E-3 0.23417 0.234167

2 1.019E-2 1.768E-2 0.95339 0.95339

3 3.620E-4 6.989E-3 0.86139 0.86139

4 1.804E-6 6.569E-3 0.85264 0.85264

5 4.92E-11 6.567E-3 0.85260 0.85260

Table 5.7: Convergence of the recrystallised volume fractions fx1 and fx2 .

From the various convergence histories and sensitivity comparisons tabulated, the

subroutines implemented in Appendix F are considered su�ciently accurate. The

model is now characterised on experimental data for Cobalt and Copper.

5.9 Model calibration on recrystallisation data

The model outlined and implemented into an isotropic numerical framework is now

characterised to data where dynamic recrystallisation is prevalent.

The �rst data set is digitised from a paper on aspects of dynamic recrystallisation

in Cobalt at high temperatures by Kapoor et al. (2009). The true stress as a function

of true plastic strain for Cobalt at 600◦C, 700◦C, 750◦C, 800◦C, 900◦C and 950◦C is

extracted from the paper for strain rates of 100, 10−1 and 10−2.

The material parameter values that result in the �t displayed in Figure 5.14 are as

follow:

� The elastic properties using the shear model relationship in Equation (3.21) are

µr = 81815MPa, Dr = 6519MPa, Tr = 200K and a Poisson's ratio of ν = 0.31.

� The temperature and rate dependent scaling function in Equation (3.22) is mod-

elled with a0ε = 1.924K/MPa, pε = 2/3, qε = 3/2 and ε̇0ε = 107s−1.
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� The athermal yield stress component and reference stress values using Equa-

tion (5.4) are σ̂a = 0MPa and σ0 = 83.7MPa.

� The average slip plane lattice incompatibility is a�ected by a constant that can

be calibrated in both Equations (5.55) and (5.62) where it plays a role and so the

evolution of λ̄ according to Equation (5.63) is simply modelled using Cλx = 1.

� The parameters associated with the evolution of the dislocation density ratio in

Equation (5.62) are Cg = 584.64, rg = 1, C1 = 156.61, C20 = 7.566, a02 =

0.496K/MPa, ε̇02 = 1010s−1, C30 = 12121.95s−1, a03 = 39274.9K and r3 = 7.346.

� The recrystallisation parameters are �nally CRx0 = 1562.08s−1 for the pre-exponential

constant in Equation (5.53), a0Rx = 21049.20K in Equation (5.54) with CRxλ0 =

8.442 and rRxλ = 2.321 in Equation (5.55).

� The equivalent interfacial subgrain boundary area function in Equation (5.59) is

modelled using rRxa = 0.0797, rRxb = 1.339 and CRxc = 19.415.

These material parameter values are found using numerical optimisation and may not

be exactly those of Cobalt found in literature. The parameter values are selected

automatically to �t the data curves during a characterisation procedure similar to the

one outlined at the end of Section 3.5.

An illustration of the form of the recrystallised volume fraction and calculated

equivalent dislocation density is presented in Figure 5.15. Multiple recrystallised vol-

ume fractions are visible in Figure 5.15(a) as well as an internal state variable shift at

two occasions. These shifts happen once the �rst volume fraction fx1 is bigger than

0.999 as explained in the second paragraph of �5.8.1.

The contribution of each recrystallised volume fraction dislocation density ratio %xi

to the equivalent dislocation density ratio %̄ according to Equation (5.64) is demon-

strated in Figure 5.15(b). In this speci�c example, the equivalent dislocation density

ratio and therefore the equivalent stress has a multiple peak response that approaches

a steady state solution. This type of response is also visible in some of the digitised

experimental data.

In Chapter 3, the MTS model is described and calibrated to Oxygen free high

conductivity Copper data digitised from a Ph.D. thesis by Tanner (1998). Some of
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(a)

(b)

(c)

Figure 5.14: Numerical model (solid line) calibrated to the true stress vs. true plastic
strain data for Co at di�erent temperatures and strain rates of (a) 1s−1, (b) 0.1s−1and
(c) 0.001s−1 from Kapoor et al. (2009).
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(a) (b)

Figure 5.15: (a) Recrystallised volume fractions and (b) volume fraction averaged dislo-
cation density ratio using the recrystallisation model calibrated to the cobalt dynamic
recrystallisation data when modelled at 800◦C and a strain rate of 0.1s−1.

the data digitised from this document is given in Figure 3.1 for room temperature at

various strain rates, 134◦C and 202◦C at a strain rate of 0.0004s−1 as well as three

di�erent strain rates at 269◦C.

Other data also digitised from the experimental work done by Tanner is not used

during the characterisation exercise in Section 3.5 since the material undergoes soften-

ing and recrystallisation. Given the dislocation density based model with the extension

to include recrystallisation, the bigger set of copper data is now characterised.

The material parameters resulting in the �t to the Copper data in Figure 5.16 are:

� µr = 43.8GPa, Dr = 4.7GPa, Tr = 252K and ν = 1/3 for the elastic properties

using the shear model relationship in Equation (3.21).

� a0ε =2.1037K/MPa, pε = 1, qε = 2 , and ε̇0ε =106s−1 for the temperature and

rate dependent scaling function in Equation (3.22).

� The athermal yield stress component is σ̂a =12.519MPa and reference stress is

σ0 = 17.295MPa using Equation (5.4).

� Cλx = 1 is used for the evolution of λ̄ according to Equation (5.63).
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(a)

(b)

Figure 5.16: Numerical model (colored lines) calibrated to Tanner and McDowell's
OFHC copper data (1999) for di�erent strain rates and temperatures. (a) Di�erent
temperature responses at ε̇ = 0.0004s−1. (b) Modelled rate dependence at 25◦C, 269◦C
and 541◦C.
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� Cg = 6378.74, rg = 0.769, C1 = 278.87, C20 = 11.773, a02 = 0.904K/MPa,

ε̇02 = 4.0112 × 1012, C30 = 83.07s−1, a03 = 6370.675K and r3 =0.8079 for the

dislocation density ratio evolution in Equation (5.62).

� CRx0 = 9346.62s−1 in Equation (5.53), a0Rx =17633.796K in Equation (5.54)

while CRxλ0 = 47.247 and rRxλ = 3.87 in Equation (5.55). rRxa = 0.1424, rRxb =

1.7677 and CRxc = 393.44 in Equation (5.59).

These simulations con�rm the ability of the extended model to capture the complex

material response due to recrystallisation.
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Chapter 6

Roughing of a Steel Alloy.

Austenite grain growth is an important factor that determines the �nal microstruc-

ture and mechanical properties of the product. The dislocation density based model

with recrystallisation is used in this chapter to investigate the through thickness mi-

crostructural variation due to di�erent roll reduction schedules. The behaviour of a

high strength low alloy (HSLA) steel is modelled during hot rolling or roughing.

The model is �rst characterised on experimental test data for compressive tests

performed on cylindrical test specimens. The test data has various amounts of straining

with various interpass times between each additional compression. In the times between

reduction the material undergoes static recrystallisation.

The data and material are discussed in the �rst subsection of this chapter. The

material is a C-Mn-Nb-Ti-V microalloyed steel. Extensive data is available on mainly

the hardening, recovery and static recrystallisation of the alloy in the austenite (γ-Fe)

phase. The material model presented in Section 5.7 is characterised to this available

steel data. The recrystallisation model parameters are identi�ed that best represent

the static recrystallisation observed in the experimental material response using a ma-

terial point based simulation. In Section 6.3 one of the compression experiments is

modelled in more detail using an axi-symmetric �nite element analysis in Abaqus. The

global stress - strain results from the �nite element simulation compares well to the

experimental data.

A single roll pass is also modelled in Abaqus for di�erent amounts of reduction.

The microstructural variation through the thickness of a steel slab is of interest when
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modelling the hot rolling process. There is however no grain size data available for the

alloy under investigation. Nevertheless, a normal grain growth model is introduced in

Section 6.5 and calibrated to grain growth data on similar HSLA steels. Should experi-

mental grain size data on the alloy of interest become available at a later stage, this will

allow calibrating the developed grain growth model for the alloy under investigation.

Finally, di�erent roll reduction schedules are simulated in Abaqus. The microstruc-

tural variation using the stress and strain states as well as the grain growth model is

compared and investigated as a result of these di�erent schedules.

6.1 Data and Problem description

The in�uence of the strain sequence during hot slab rolling or roughing was investigated

by Maubane et al. (2014) for a plain carbon, C-Mn-V and C-Mn-Nb-Ti-V microalloyed

steel. The data was made available for the work done in this chapter. The alloy

chemistry considered is given in Table 6.1.

The reheating and roughing experiments were conducted in a Bähr deformation

dilatometer. They used a constant austenising temperature, constant soaking time,

various heating rates and roughing strain sequences. Information on six di�erent rough-

ing sequences or reduction schedules for which experimental tests were done is given

in Table 6.2. Each of the reductions were performed at a slightly higher strain rate

compared to one before. The cylindrical specimens tested were approximately 10mm

high with a diameter of 5mm.

In Table 6.2, the six di�erent schedules are indicated with upper case roman nu-

merals I to V I. The �rst schedule consists of 14 reductions of 7% each. The reduction

rates start at 0.3s−1 for the �rst 7% and then increases with 0.2s−1 each next reduction

to end at a rate of 2.9s−1 for the fourteenth pass. During the sequence, the temper-

ature slowly decreases to represent the cooling down of the metal slab. Schedule II

consists of 10 reductions of 10% each while schedule III consists of 6×15% reductions.

Additional schedules tested experimentally repeated the 7%, 10% and 15% reduction

sequences op to a point followed by one �nal reduction of 40%.

Some of the schedules were performed multiple times with di�erent waiting or

interpass times between additional straining. Three di�erent data sets are available
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% C % Mn % Si % Nb % Ti % V % Al N [ppm] S [ppm]

0.134 1.5 0.38 0.04 0.025 0.028 0.049 55 41

Table 6.1: C-Mn-Nb-Ti-V microalloyed steel chemistry

Schedule

Reduction ε̇[s−1] T [◦C] I II III IV V V I

R1 0.3 1150 0.07 0.10 0.15 0.07 0.10 0.15

R2 0.5 1145 0.07 0.10 0.15 0.07 0.10 0.15

R3 0.7 1140 0.07 0.10 0.15 0.07 0.10 0.15

R4 0.9 1135 0.07 0.10 0.15 0.07 0.10 0.15

R5 1.1 1130 0.07 0.10 0.15 0.07 0.10 0.40

R6 1.3 1125 0.07 0.10 0.15 0.07 0.10

R7 1.5 1120 0.07 0.10 0.07 0.40

R8 1.7 1115 0.07 0.10 0.07

R9 1.9 1110 0.07 0.10 0.40

R10 2.1 1105 0.07 0.10

R11 2.3 1100 0.07

R12 2.5 1095 0.07

R13 2.7 1090 0.07

R14 2.9 1085 0.07

Table 6.2: Nominal engineering strain roughing sequences for which experimental data
is available
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Figure 6.1: The change in length and temperature once 1150◦C was reached for three
di�erent Schedule V I experiments with varying interpass time. Run 1 - solid line; Run
2 - dashed line; Run 3 - dash-dot line.

for schedule V I for example. After the starting temperature of 1150◦C is reached,

the tests were done with di�erent interpass times. In the one case the interpass time

between each subsequent compression was approximately 9 to 10 seconds. Another

test had an interpass period of approximately 20 seconds between each compression

while another waited 40 seconds between the fourth and �fth compression step. The

change in length and change in temperature from the initial compression for the three

di�erent experiments for schedule V I are visible in Figure 6.1. A constant decrease in

temperature of about 0.5Ks−1 is visible throughout the experiment before the specimen

is quenched.

The true stress - true strain data for the same three schedule V I tests during

compression is displayed in Figure 6.2. This �gure indicates to some degree the tem-

perature dependence of the material response. It also indicates the potential variability

in the material response as seen in the �rst compression steps, all measured for the

same strain rate and temperature. For run 1 to 3 in Figure 6.1 the displacements up

to about -1.3929mm in the same approximate time step is associated with the �rst

182



6.1. DATA AND PROBLEM DESCRIPTION

Figure 6.2: The true stress - true strain curves for the loading part of the three di�erent
Schedule V I experiments with varying interpass time. Run 1 - solid line; Run 2 - dashed
line; Run 3 - dash-dot line.

ln(−1.3929/10 + 1) =15% strain interval in Figure 6.2. At the end of this �rst com-

pression step, the true stress values in Figure 6.2 for the three di�erent experiments

are 67.26MPa, 64.84MPa and 70.54MPa with an average value of 67.55MPa. This

translates to a possible variation in material response of (70.54−64.84)/67.55 ≈ 8.44%

when the same material is subjected to di�erent temperature and strain histories as a

result of the di�erent interpass times.

The potential variability continues to be visible in the �rst four compression steps of

the experiments with 20 second wait between compression. These experimental results

are visible as the dashed and dash-dot lines in Figures 6.1 and 6.2 respectively. The

�rst four reductions resulted in di�erent responses in Figure 6.2 despite being subjected

to similar temperatures and strains according to Figure 6.1.

The roughing sequence data for schedule V I with approximately 10 second interpass

time between additional straining is used as illustration in this chapter. The strain

histories for this case are visible in Figure 6.3 and Table 6.3. Here it is visible that

the experimentally achieved strain increments and strain rates are slightly lower than
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Figure 6.3: The strain history of the schedule V I experiment with approximately 10
second interpass time.

those intended in Table 6.2. These values are reported here mainly as they will be used

to de�ne the steps and displacement boundary conditions of the �nite element analysis

in Section 6.3.

6.2 Fitting the data

In general, the data is �t above a strain value of 0.01 or additional 0.01 strain for each

subsequent compression curve. For a given set of material parameter values, here just

referred to as the vector x, the model is evaluated for the same temperatures and strain

rates as the experimental data. The stress values at each of the N valid data points

are then compared to the predicted stress value to construct an objective function.

The objective function is assembled by comparing the model predicted stress value

σmodel
i to the associated stress value of the ith valid data point σdata

i . The objective

function used for the parameter identi�cation is
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Total Time Strain E�ective

Time [s] Increment [s] Increment Strain Rate

11562.6703 - - -

11563.2181 0.5478 0.1458 0.2662

11572.8431 9.6250 - -

11573.1752 0.3321 0.1449 0.4363

11582.5775 9.4023 - -

11582.8129 0.2354 0.1429 0.6072

11592.1566 9.3437 - -

11592.3539 0.1973 0.1419 0.7192

11601.6693 9.3154 - -

11602.0697 0.4004 0.3854 0.9624

Table 6.3: Total times from the initial compression at 1150◦C with the actual strain
increments per compression step and e�ective strain increments for schedule V I with
approximately 10 second interpass times as observed in the experimental data.

fobj (x) =
N∑
i=1

(
σmodel
i (x)− σdata

i

σdata
i

)2

. (6.1)

Initial material parameter values are chosen and then improved by minimising this

objective function. Material parameter value constraints are also assigned. This is done

to ensure 1 < qε < 2 for example. The parameter identi�cation is performed using the

the downhill simplex method. If a constraint is violated, the objective function is

penalised.

Not all of the data is used in the characterisation. A single data set for each roughing

schedule is modelled and compared. The model outputs and experimental data for all

the di�erent data sets on schedules I to V I are illustrated in Figure 6.4. In Figure 6.4,

the green curves represent the material model response used to evaluate the objective

function on a subset of the data. The red curves in Figure 6.4 are predicted responses

using the material model. In this �gure the bene�t of this physically developed state

variable based model is visible in its ability to not only model but also predict material

response.

The material parameter values resulting in the �t given in Figure 6.4 are :

� The elastic properties using the shear model relationship in Equation (3.21) are
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µr = 85908MPa, Dr = 6758.8MPa, Tr = 180K and a Poisson's ratio of ν = 0.29.

� The temperature and rate dependent scaling function in Equation (3.22) is mod-

elled with a0ε = 1.4343K/MPa, pε = 0.5914, qε = 1.0973 , and ε̇0ε = 107s−1.

� The athermal yield stress component and reference stress values using Equa-

tion (5.4) are σ̂a = 11.175MPa and σ0 = 82.126MPa.

� The evolution of λ̄ according to Equation (5.63) is again modelled using Cλx = 1.

� The parameters associated with the evolution of the dislocation density ratio

in Equation (5.62) are Cg = 4369.3, rg = 0.5701, C1 = 146.63, C20 = 41.47,

a02 = 0.5413K/MPa, ε̇02 = 103s−1, C30 = 1.6078 × 109s−1, a03 = 36257K and

r3 = 2.

� The recrystallisation parameters are CRx0 = 4352.8s−1 for the constant in Equa-

tion (5.53), a0Rx = 33092K in (5.54) with CRxλ0 = 549.21 and rRxλ = 2.519

in Equation (5.55). The equivalent interfacial subgrain boundary area func-

tion in Equation (5.59) is modelled using rRxa = 0.2874, rRxb = 1.0001 and

CRxc = 17.935.

The material parameter values used to model the di�erent schedules do a satis-

factory job of reproducing the data given the expected material variability of about

8.44% observed in Section 6.1. In some cases an accurate representation of the strain

hardening, static recrystallisation and thermal dependence is captured by the model.

The internal state variable evolution using the calibrated material model for the

schedule V I strain roughing sequence with approximately 10 second interpass time is

given again in Figure 6.5. The recrystallised volume fractions for the multiple waves

of recycling are given in (a) over the time history and in (b) over the strain history.

The �rst wave of static recrystallisation results in an approximately 58% recrys-

tallised material after the �rst 9.625 second interpass time. After the second reduction

and subsequent 9.4023 second interpass time, the material model indicates that the

original material is replaced by more that 90% recrystallised material. Approximately

70% of the material has also undergone a second wave of recrystallisation. After about

39 seconds into the experiment, the model indicates that the original material has been
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Model response compared to the experimental data for schedule (a) I (b)
II (c) III (d) IV (e) V (f) V I
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Internal state variable evolution for the the schedule V I data with an
approximate 10 second interpass time between each reduction. (a,b) Recrystallised
volume fraction; (c,d) dislocation density ratio and (e,f) average slip plane lattice
misorientation over time and strain histories.
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virtually replaced with a new microstructure where more than 80% of the material has

seen four waves of recrystallisation.

Figures 6.5(c) and (d) indicate the dislocation density ratio state variables per

recrystallised volume fraction over the time and strain history respectively. Apart

from the static recrystallisation, there is also a signi�cant amount of thermal recovery

in the predicted material response. In Figure 6.5(c) the dislocation density self di�usion

over time is visible while Figure 6.5(d) indicates the dislocation density evolution per

volume fraction. In Figures 6.5(e) and (f) the average slip plane lattice misorientation

over the time and strain histories are presented. This internal state variable evolves as

in Equation (5.63) with Cλx = 1. This means that in the absence of recrystallisation
˙̄λ = α̇, as seen in the straight line in Figure 6.5(f) for λ̄x0 . The reduction in this ISV

as a function of time is an indication of the e�ect of the static recrystallisation on the

average slip plane lattice misorientation of the recrystallised material using the rule of

mixtures.

Up to the present point in this chapter, all of the results are material point simulator

based. Next, the schedule V I strain roughing sequence with approximately 10 second

interpass time is modelled in detail using Abaqus. This is done using Table 6.3 to

create di�erent steps and boundary conditions. The material parameter values in this

subsection are used with the recrystallisation extended material model in Appendix F

called by the isotropic user material subroutine in Appendix A.

6.3 Axi-symmetric compression

The experimental test data was extracted by tests done on cylindrical specimens 10mm

high with a diameter of 5mm. The �nite element analysis is therefore done using an

axi-symmetric model with contact, similar to the models used in Sections 2.1.2 and 2.2.

A quarter axi-symmetric model 5mm high with a 2.5mm radius is modelled. From the

temperature history in Figure 6.1, a linear change in temperature is modelled starting

at 1423K and ending with 1400K at a total time of 40 seconds.

The experimental data values in Table 6.3 is used to set up di�erent modelling steps

and boundary conditions. Five compression steps and four interpass steps are set up.
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Step Purpose
Total Step Total Die

Reduction Time Time Displacement

0 Initial 0 0 0 0

1 Reduce 15% 0.5478 0.5478 -0.6785

2 Remove 15% 0.01 0.5578 -0.6685

3 Interpass 15% 9.615 10.1728 -0.6685

4 Reduce 30% 0.3321 10.5049 -1.2614

5 Remove 30% 0.01 10.5149 -1.2514

6 Interpass 30% 9.3923 19.9072 -1.2514

7 Reduce 45% 0.2354 20.1426 -1.7594

8 Remove 45% 0.01 20.1526 -1.7494

9 Interpass 45% 9.3337 29.4863 -1.7494

10 Reduce 60% 0.1973 29.6836 -2.1881

11 Remove 60% 0.01 29.6936 -2.1781

12 Interpass 60% 9.3054 38.999 -2.1781

13 Reduce 100% 0.4004 39.3994 -3.0873

Table 6.4: The modelled die displacement boundary condition over the simulation time

The contact surface is initially in contact with the top surface of the axi-symmetric test

specimen model. A friction coe�cient of µfrict = 0.3 is further assumed for a reasonably

lubricated contact surface.

In a compression step the displacement of the rigid contact surface is prescribed to

represent the total strain applied. In an interpass time step, the surface is �rst displaced

0.01mm in a 0.01s interval so that it is no longer in contact with the material. After

waiting the required amount of time, the next compression step is modelled. The step

times, total simulation time, equivalent and prescribed die displacement is given in

Table 6.4.

The von Mises stresses, equivalent plastic strains, dislocation density ratio, average

slip plane lattice misorientation and volume fraction recrystallised are displayed in

Appendix G at the end of each compression and inter pass step modelled. The contours

of the internal state variables for the axi-symmetric simulation indicate the evolution

and distribution of these values throughout the simulated experiment. For the sake of
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(a) (b)

Von Mises Von Mises
[MPa] [MPa]

Figure 6.6: Von Mises stress contours on the compressed axi-symmetric billet at (a)
39.3994s and (b) 10 seconds afterwards.

(a) (b)

Equiv. Equiv.
Plastic Plastic

Figure 6.7: Equivalent plastic strain contours on the compressed axi-symmetric at (a)
39.3994s and (b) 10 seconds afterwards.

brevity, only selected �gures are included in the main text.

In Figure 6.6, the equivalent von Mises stress distribution is displayed at the end

of the compression (39.3994s) as well as 10 seconds afterwards. The same is done for

the equivalent plastic strains and dislocation density ratio in Figures 6.7 and 6.8.

The stresses are displayed between 50MPa and 125MPa in Figure 6.6(a) while

Figure 6.6(b) shows residual stress values between 0MPa and 30MPa. The equivalent

plastic strain contours in Figures 6.7(a) and (b) are displayed for the same range

between 0.06 and 0.7 while the dislocation density ratio contours in Figures 6.8(a) and

(b) are displayed for the same range between 10 and 50.

Comparing Figure 6.7(a) to Figure 6.7(b) the amount of strain recovered if an

additional 10 seconds are allowed for recrystallisation is illustrated while the dislocation

structure is reset due to both thermal recovery and recrystallisation.
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(a) (b)

ρ̄/ρ0 ρ̄/ρ0

Figure 6.8: Dislocation density contours on the compressed axi-symmetric at (a)
39.3994s and (b) 10 seconds afterwards.

In Figure 6.9, the internal state variables associated with the active recrystallised

volume fractions are displayed 10 seconds after the �nal reduction.

The discontinuous contours especially visible in 6.9(c), (d) and (e) are as a result

of an internal state variable shift once the original material fx0 has fully recrystallised

in that region (fx1 ≥ 0.999). This means that while 6.9(c) represents the contours of

the internal state variable associated with fx3 for example, contours in the centre of

the billet in 6.9(c) is associated with the fourth recrystallisation cycle.

The total reaction force at the lower nodes are extracted at each point in the sim-

ulation time. The values at these mid plane nodes are extracted due to the possibility

of roll over at the contact interface. The reaction forces and total displacement from

the �nite element simulation are used to approximate the true stress over true strain

curves. The experimental data, material model response and �nite element result are

compared in Figure 6.10.

The �nite element results yield slightly larger stress values than those predicted

by the material point simulation, but are still reasonably accurate in replicating the

experimental results. A single roll pass for di�erent amounts of reduction are modelled

in the next section, again using the same material model and parameters.

6.4 Roll pass reduction

A roll pass reduction is modelled given a double roll setup. The slab is pulled through

by two rolls at either side. In this section, a single roll pass is modelled in Abaqus
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(a) (b)

(c) (d)

(e) (f)

RX
Fraction

(fxi
)

Figure 6.9: Recrystallised volume fractions (a) fx1 , (b) fx2 , (c) fx3 , (d) fx4 , (e) fx5 and
(f) fx6 10 seconds after the simulation.
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Figure 6.10: Comparison of the material point integration and the axi-symmetric
Abaqus simulation true stress vs. true strain results to the experimental data on
the schedule V I data with an approximate 10 second interpass time between each
reduction.
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Figure 6.11: Single roll pass reduction setup

to investigate the e�ect roll speed and percentage reduction has on the e�ective strain

rate and strain penetration.

The model is set up similar to the work done by Muntin and Zinyagin (2014). In

their work, they performed a single roll pass simulation using a pusher to bring the slab

into initial contact with the roller. No roll �attening is taken into account meaning

the roller itself is simply modelled as an analytical rigid surface with prescribed roll

radius. The prescribed pusher velocity is selected to be su�ciently slower than the roll

peripheral velocity. The roller pulls the slab through once there is an adequate amount

of friction due to the contact interface between the upper surface of the metal slab and

the roller. Due to the higher roll peripheral velocity, the pusher, still moving at the

same prescribed velocity, simply gets left behind. The model setup taking symmetry,

the various dimensions and the pusher into account is given in Figure 6.11.

A half slab height of 120mm and section length of 500mm is modelled using a mesh

of 100 Ö 24 CPE4 elements in Abaqus. CPE4 is a four node linear plane strain element

using full integration. A roll diameter of 475mm is modelled and assumed to rotate
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at a roll peripheral speed of 1.5ms−1. The radial velocity of 6.3158s−1 is applied as a

boundary condition. A friction coe�cient of µfrict = 0.4 is modelled between the roller

and the slab contact surfaces. The pusher is in contact with the material slab at the

start of the simulation. A prescribed velocity of 0.5ms−1 is assigned to the rigid surface

used to represent the roller. This velocity is lower than the average steady state slab

velocity. This results in the pusher being left behind once the friction between the

slab and roller starts to pull the slab though. The pusher therefore does not further

in�uence the solution.

The x and y values in Figure 6.11 vary based on the percentage reduction modelled.

The y value determines the reduction amount while x merely determines the time taken

before contact takes place. The slab is further assumed to have a constant temperature

of 1100◦C. The single roll pass is modelled in Abaqus for a 7%, 10%, 15%, 20% and

40% reduction although single passes of 20% and higher in slab rolling are generally

not achievable due to a maximum bite limitation 4h = µ2
frictR where R is the roll

radius. Figure 6.12 shows the von Mises stress contours for the di�erent amounts of

reduction. Similarly, Figure 6.13 show the equivalent plastic strains and Figure 6.14

the instantaneous plastic strain rates.

From the single roll pass reduction it seems that a su�cient amount of the original

metal slab has to be passed through the roll to be safe that the edge e�ects do not play

a part in the through thickness values reported. Maximum localised strain rates could

be above of 15s−1 for a roll peripheral speed of 1.5ms−1 given the current model and

dimensions as seen in Figure 6.14. The minimum strain rate experienced through the

thickness of the slab is at least 1.5s−1 in the 7% reduction case up to at least 7.5s−1 in

the 40% reduction case.

In order to investigate the through thickness microstructure as a result of di�erent

roughing sequences, the current model could need an additional extension to also in-

clude an approximation on the grain size. For this study, a normal grain growth model

is introduced in the following section. The grain growth model provides a size estimate

that is then linked to the material model used in the simulation of the full roughing

schedule.
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(a)

(b)

(c)

(d)

(e)

Von Mises
Stress [MPa]

Figure 6.12: Von Mises Stress contours for (a) 7%, (b) 10%, (c) 15%, (d) 20% and (e)
40% reduction.
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(a)

(b)

(c)

(d)

(e)

Equivalent
Plastic Strain

Figure 6.13: Equivalent plastic strain for (a) 7%, (b) 10%, (c) 15%, (d) 20% and (e)
40% reduction.
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(a)

(b)

(c)

(d)

(e)

Plastic Strain
Rate [s−1]

Figure 6.14: Instantaneous equivalent plastic strain rate for (a) 7%, (b) 10%, (c) 15%,
(d) 20% and (e) 40% reduction.
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6.5 Grain size estimate

In the hot rolling of metal alloys, the austenite grain growth is an important factor that

determines the �nal microstructure and mechanical properties of the product. Quanti-

fying the microstructural variation through the thickness of a steel slab is therefore of

interest when modelling the hot rolling process. Using the �nite element method, this

requires a material model that allows the investigation of microstructure development

as a result of multiple roll passes.

Although the grain size is not explicitly coupled to the numerically implemented

dislocation density ratio based material model including recrystallisation in Section 5.8,

its e�ects on the geometrically necessary dislocation density accumulation can be added

following Equation (5.14). The numerical implementation followed that of Brown and

Bammann (2012) where the grain size dependent evolution of the average slip plane

lattice misorientation is not included and the value of Cλ/dx in Equation (5.14) is

replaced by the constant Cλx in Equation (5.63). Given the reasonable �t between the

model and the experimental data in Figure 6.4, and the fact that no grain size or grain

growth data is available for the C-Mn-Nb-Ti-V steel alloy of interest, the e�ect of grain

size on the mean �ow stress and response of the material is not formally included. One

option is to approximate the microstructure evolution and through thickness variation

based on the internal state variables already at our disposal.

The variation of internal variables and material state including residual stress and

equivalent plastic strain upon completion of a single roll pass was illustrated in the pre-

vious section, following a model setup similar to that of Muntin and Zinyagin (2014).

Pereda et al. (2015) modelled two reduction passes. Two rolls placed one after the other

resulted in either a 37% reduction followed by 31% or 31% followed by 37%. Following

a �nite element analysis of their setup, they illustrate the through-thickness plastic

strain values after a single reduction of either 31% or 37% as well as the accumulated

plastic deformation for the two choices on the order of reduction. Once the di�erent

strain penetrations are available, they use software developed by Uranga et al. (2004) to

investigate the impact of the calculated strain gradients on the through-thickness mi-

crostructural evolution after the fact. In their work, a more uniform through-thickness

microstructure was observed in the 31% reduction followed by 37% reduction case due
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mainly to better strain penetration.

Using the material model implemented in Section 5.8, various ISV distributions

through the thickness of the metal slab can be extracted. Volume fraction averaged

equivalent plastic strain according to Equation (5.66) as well as residual stresses and

other internal state variable quantities can give a reasonable account of the microstruc-

tural evolution as a result of a speci�c reduction schedule. Higher strain penetration or

ISV homogeneity through the thickness of the slab could be a reasonable indication of

�ner austenite microstructures as well as a higher degree of homogenisation. It would

also be possible to post process the already available values indicating material state to

a representative microstructure following for example the work of Pereda et al. (2015).

To further extend the investigation, grain size prediction is discussed and imple-

mented to work within the existing model. This method uses a normal grain growth

model to approximate the grain size evolution per volume fraction and an equivalent

volume fraction averaged grain size. Considering various active recrystallised volume

fractions, the equivalent grain size estimate can be calculated by combining the values

determined per volume fraction as is the case with the other equivalent internal state

values. The equivalent grain size is given by

d̄x =

[
nx−1∑
i=0

1

dxi

(
fxi − fxi+1

)]−1

. (6.2)

6.5.1 Normal grain growth

To approximate the grain size and through-thickness microstructure, a normal austenite

grain growth model is solved in isolation. Yue et al. (2010) name various authors that

start o� using a simple empirical equation

dx = Ktt
rt (6.3)

to represent the normal grain growth in metals and alloys where dx is the average

grain size at holding time t. The time exponent rt and parameter Kt are temperature

dependent parameters. The in�uence of the initial grain size dx0 on the grain growth

behaviour is considered in cases where the growth started before reaching the isothermal
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annealing temperature. It also plays a role when the initial to �current� grain size value

is comparable. The initial grain size is included in Equation (6.3) leading to

dx − dx0 = Ktt
rt . (6.4)

Taking the logarithm of both sides, the relationship ln (dx − dx0) = lnKt + rt ln t

can be used to determine the temperature dependent time exponent and Kt parameter.

An alternative form of Equation (6.3) makes use of a grain growth exponent so that

drdx = Kdt. More generally Beck (1948) or Burke and Turnbull (1952) give the equation

drdx − d
rd
x0 = Kdt (6.5)

when dx0 is comparable in size to dx. From the theory on grain growth, the propor-

tionality of the growth rate to the interfacial free energy per unit volume or inverse

proportionality of the rate of boundary migration to curvature predicts a grain growth

exponent rd = 2 according to Xun and Lavernia (2004). Various authors (see Li and

Xia, 2002; Xun and Lavernia, 2004 and Rong et al., 2008 for example) showed that

rd > 2 in most cases better �t experimental data, with grain growth exponent val-

ues ranging between 2 and 5 depending on various metallic systems and temperature

ranges. The value of rd = 2 is typically valid for a system that has no defects or pre-

cipitates, with grain growth controlled by the grain boundary curvature mechanism.

Sellars and Davies (1979) found that the temperature dependent value of Kd in Equa-

tion (6.5) can be expressed as an Arrhenius type equation. If Qḋ is the activation

energy for grain growth and Kd0 is the pre-exponential term, the equation takes the

form

drdx − d
rd
x0 = Kd0 exp

(
−Qḋ

RT

)
t. (6.6)

Equation (6.6) is used in recent publications such as the work by Némethová et al.

(2009), Liu et al. (2013), Huo et al. (2014) and Pietrzyk et al. (1995).

Lee and Lee (2008) and Zhang et al. (2011) use the formulation in Equation (6.3)

with Kt also modelled as an Arrhenius type expression. Liu et al. (2013) observed

that the initial grain size varies with isothermal temperature. This is also consistent
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observations by Xu et al. (2012). Typically the initial grain size may be ignored if

dx > 3dx0 according to Uhm et al. (2004).

In the �nite element formulation model, a di�erential equation on grain growth

is desired instead of an empirical formulation. By di�erentiating a form similar to

Equation (6.6) with time on both sides it is possible to obtain a grain growth rate

model. An ordinary di�erential equation of grain growth used by Huo et al. (2014), is

given by:
d

dt
dx = KD0 exp

(
−Qḋ

RT

)
d−rDx . (6.7)

The model parameters KD0 and rD as well as the activation energy have to be

determined. If we use this model to estimate the grain growth per volume fraction, an

approximate set of parameters are needed in the absence of grain growth data on the

actual C-Mn-Nb-Ti-V alloy of interest. Austenite grain growth data for various di�er-

ent alloys are digitised from a few publications to get a sense of the approximate grain

growth of similar alloys. The grain growth data digitised for the various alloys selected

is given in Figure 6.15. Grain growth data for seven di�erent steel alloys were digitised

at various temperatures between 900◦C and 1250◦C. The chemical compositions of

these seven alloys may be compared to that of the C-Mn-Nb-Ti-V alloy in Table 6.5.

Although these alloys di�er from the chemical composition of the alloy considered,

the grain sizes are not explicitly linked to material response and merely considered for

investigation in this section.

The model parameters for Equation (6.7) are determined again using the down-

hill simplex method. The model parameters KD0 and rD are determined as well as

the initial grain sizes in each case. The activation energy over gas constant value

Qḋ/R = 40000 was selected manually. Values of KD0 = 3.79 × 1013 and rD = 1.241

resulted in the �t between the model and data points given in Figure 6.16. There is

a satisfactory degree of accuracy between the model predicted grain growth and the

data digitised from the work by Némethová et al. (2009). These values result in an ap-

proximate estimated grain growth when used with the associated grain growth model

in Equation (6.7).
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Figure 6.15: Grain growth data as digitised from various sources.

Figure 6.16: Fit between the grain growth model and the austenite grain growth model.
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Alloying element C
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1
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C 0.134 0.12 0.95 0.98 0.99 0.17 0.28 0.39

Mn 1.5 1.54 0.31 0.93 0.31 0.74 0.77 0.69

Si 0.38 0.12 0.22 0.46 0.24 0.012 0.34 1.61

Nb 0.04 0.48 - - - - - -

Ti 0.025 0.01 14* 60* - - - -

V 0.028 0.18 - - - - 0.02 0.07

Al 0.049 0.015 0.033 0.028 - 0.04 - -

N 55* 42* - - - 47* - -

S 41* 10* 20* 40* 30* 80* 40* 12*

P - 40* 0.012 0.016 0.01 90* 0.01 89*

B - 5* - - - - - -

O - 15* 10* 15* - - 14* -

H - 1.3* - - - - 1.6* -

Cr - - 1.46 1.99 1.44 0.019 1.16 0.91

Ni - - 0.03 0.16 0.05 0.01 0.07 1.82

Mo - - 0.013 0.54 0.02 - 0.23 0.42

Cu - - 0.03 0.18 0.12 0.016 0.12 0.06

As - - 20* 70* - - - -

Sn - - 20* 0.01 - - - -

Sb - - 20* 0.068 - - - -

Pb - - 8* 20* - - - -

Ca - - 4* 5* - - - -

Table 6.5: Chemical composition of the alloy characterised as well as others for which
grain growth data is digitised from the sources indicated. The alloying element content
is shown in weight percentage or parts per million (*).
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6.5.2 Grain size internal state evolution for the rolling sched-

ules

The tuned grain growth model is used to estimate the grain growth and microstructural

variation of the C-Mn-Nb-Ti-V microalloyed steel if di�erent strain roughing sequences

are performed. The average grain size of the material specimens tested were 80µm

before the tests.

The isolated grain growth model is assumed to evolve following Equation (6.7). The

value of Qḋ/R = 40000, KD0 = 3.79× 1013 and rD = 1.241 is used from the �t to the

grain growth data in Figure 6.16. This means that the grain sizes following this model

are updated incrementally using

dxi |t+δt = dxi
|t + 3.79× 1013 exp

(
−40000

T

)(
dxi
|t+δt

)−1.241
δt. (6.8)

for each ith volume fraction. The volume fraction averaged equivalent using this ap-

proach is then determined following Equation (6.2).

Once a new recrystallised volume fraction is activated, an initial grain size of

dxi+1
|fxi+1≈0, ḟxi+1 6=0 = 1µm is assigned. This is done to prevent numerical issues arising

from dxi+1
= 0 in the denominator. The result of this model on the estimated grain

size per volume fraction as well as volume fraction averaged grain size is presented in

Figure 6.17 for the schedule V I strain roughing sequence. This �gure illustrates the

internal state variables for the same model and histories given in Figure 6.5.

Using the chosen grain growth model, the form of the grain size as a function of

time for each volume fraction is illustrated by the black lines in Figure 6.17 while the

red lines indicate the volume fraction averaged grain size using Equation (6.2). At the

end of the material point simulation, the �nal volume fraction averaged grain size is

estimated at around 15µm.

The model is added to the Abaqus user material subroutine used in Section 6.4. A

grain size estimate per volume fraction and an equivalent means there are now four

equivalent ISV values instead of three. There are also six ISVs per volume fraction

instead of the original four given in the implementation of Appendix F.

The maximum number of recrystallised volume fractions now modelled based on

the length of the state variable array as assigned using *DEPVAR in the Abaqus input
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(a) (b)

Figure 6.17: Grain size evolution over (a) time and (b) strain histories. These histories
correspond to those in Figure 6.5. The black lines indicate the grain size per volume
fraction while the red lines indicate the equivalent volume fraction averaged grain size
using Equation (6.2).

�le is therefore now nx =(NSTATV-4)/6.

The grain size approximation and the material parameters used in this section are

now used during the simulation of multiple reduction rolls. This is done to simulate

and investigate the e�ect of di�erent reduction schedules on the �nal through thickness

microstructure of the rolled plate.

6.6 Multiple Roll Pass Simulations

The same material parameter values identi�ed on the C-Mn-Nb-Ti-V alloy in Sec-

tion 6.2 are used to model multiple roll pass simulations for di�erent rolling schedules.

Symmetry is again taken into account so that only half of the metal slab and a sin-

gle roller is modelled. The slab is modelled using 20 quadratic plane strain elements

through the half thickness of the slab. The metal slab has an initial length of 750mm

and half height of 120mm. The roller is modelled as a rigid analytical surface with a

diameter of 950mm. In these simulation again no roll �attening is taken into account.

In this simulation setup, the metal slab is pulled through the rolls from side to

207



G.J. JANSEN VAN RENSBURG

side. Instead of the pusher setup illustrated in Figure 6.11, the roller is modelled in

contact with the slab at the onset of the simulation. Using the dimensions labelled

in Figure 6.11 with l = 750mm, h = 120mm and r = 475mm, the initial location of

the roller is at x = 0mm and y = r + h = 595mm. Contact between the roller and

slab is modelled using hard normal contact with a friction coe�cient µfrict = 0.4 as in

Section 6.4.

The roll height and radial velocity are prescribed boundary conditions. The sim-

ulation of multiple roll passes associated with schedule V I in Table 6.2 is broken

up into 15 di�erent steps. In the �rst step, the roller is displaced to its proper

height associated with a 15% true reduction. This means that the roller is displaced

120mm× (exp (−0.15)− 1) = −16.715mm downward. The reduction is performed by

pressing the roller into the metal slab using a prescribed zero radial velocity boundary

condition. Once the roller is at the correct height, a roll simulation is performed in

step 2.

The di�erent roll steps are performed to simulate di�erent metal slab exit velocities

for each roll pass. The �rst roll is done at 0.3ms−1 with each subsequent roll velocity

increasing by 0.2ms−1. These velocities are associated with the increased strain rate

for each subsequent reduction presented in Table 6.2. At the end of the roll pass

simulation, step 3 models a 9s interpass step before again reducing the roll height to

a 30% total reduction in step 4. The reduction is again done over a 1s interval. Apart

from the localised deformation in the vicinity of the roller, the bulk slab section is

e�ectively left for 10s before another roll is simulated in step 5.

The roll process in step 5 is performed assuming a slab velocity 0.2ms−1 faster

than the previous one in the opposite direction, e�ectively rolling the metal slab

from side to side. Because of the di�erent velocities, the roll steps are simulated

over di�erent times. Assuming no slip between the roller and slab, each roll pass

is modelled over a 750mm section. A slab velocity of 0.3ms−1 in step 2 means the

roll step is simulated over 0.75m/0.3ms−1 = 2.5s. The prescribed radial velocity in

step 2 is ω = v/r = 0.3ms−1/0.475m = 0.6316s−1. In step 5, a roll simulation

performed 0.2ms−1 faster in the opposite direction means a roller radial velocity of

−0.5mms−1/0.475m=−1.0526s−1 is simulated in a step time of 0.75m/0.5ms−1 = 1.5s.

A breakdown of the step information, times and boundary conditions for all 15 steps
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Step Purpose
Total Step Total Slab Radial Roller Roller

Reduction time time velocity velocity displ height

0 Initial 0 0. 0. 0. 0. 0 595

1 Reduce 15% 1. 1. 0. 0. -16.715 578.285

2 Roll 15% 2.5 3.5 0.3 0.6316 -16.715 578.285

3 interpass 15% 9 12.5 0. 0. -16.715 578.285

4 Reduce 30% 1. 13.5 0. 0. -31.102 563.898

5 Roll 30% 1.5 15 -0.5 -1.0526 -31.102 563.898

6 interpass 30% 9 24 0. 0. -31.102 563.898

7 Reduce 45% 1 25 0. 0. -43.485 551.515

8 Roll 45% 1.0714 26.0714 0.7 1.4737 -43.485 551.515

9 interpass 45% 9 35.0714 0. 0. -43.485 551.515

10 Reduce 60% 1 36.0714 0. 0. -54.142 540.857

11 Roll 60% 0.8333 36.9047 -0.9 -1.8947 -54.142 540.857

12 interpass 60% 9 45.9047 0. 0. -54.142 540.857

13 Reduce 100% 1 46.9047 0. 0. -75.854 519.146

14 Roll 100% 0.6818 47.5865 1.1 2.3158 -75.854 519.146

15 interpass 100% 10 57.5865 0. 0. -75.854 519.146

Table 6.6: Step information and boundary conditions of the multiple roll pass simu-
lation associated with Schedule V I. Radial velocities are instantaneous and constant
throughout a speci�c step modelled while displacement of the roller height is de�ned
as a piecewise linear function of total time.

modelled for roll schedule IV is presented in Table 6.6

As in Section 6.3, where the experimental setup for schedule IV is modelled, the

entire metal slab section is prescribed a uniform temperature of 1423K at the start of

the simulation. The temperature is assumed to decrease at 0.5Ks−1 over the course of

the simulation. Contours of the von Mises stresses, equivalent plastic strains and other

internal state variables are attached in Appendix H for various times throughout the

multiple roll pass simulation representing Schedule V I.

6.6.1 Through thickness variation

In Appendix H, the von Mises stresses and internal state variable contours are displayed

at the end of each roll pass and inter pass time. To facilitate the comparison and

get acquainted with how the stresses and values develop and change throughout the
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simulation, the through thickness values can also be extracted and plotted. For the

sake of brevity, mainly �gures of the extracted values plotted as a function of the

distance from the centre is used in this section.

The through thickness von Mises stress values are extracted 350mm away from the

roller. These values are displayed in Figure 6.18(a) at the end of each roll pass step

simulated and in Figure 6.18(b) 10 seconds later. The residual stress is plotted over

the distance from the centre of the metal slab to the surface.

The through thickness residual stress values extracted are also compared as a vari-

ation from the average value in each case in Figures 6.18(c) and (d). The standardised

values are given in Figures 6.18(e) and (f). Standardising the values so that the average

is zero and standard deviation equal to one allows a better depiction of the form of

the variation. In these �gures, the values are displayed as a function of the normalised

distance from the centre of the slab to the surface. According to Figures 6.18(c) and

(e), the residual stress distribution has a consistent form for each 15% reduction while

the last 40% reduction sees an increased residual stress closer to the surface.

By comparing Figure 6.18(a) after the reduction roll to Figure 6.18(b) 10 seconds

later, the amount of thermal recovery and recrystallisation is in each interpass step is

visible. The residual stress at the centre of the slab drops by about 40% from what it

was at the end of the �rst two roll passes (R1 and R2), 50% in the third (R3), 57% in

the fourth (R4) and 68% upon completion of the �nal reduction (R5).

Taking the residual stress variation in the fourth reduction (R4), an approximate

15MPa variation drops to about 0.6MPa variation when comparing the highest and

lowest residual stress values for R4 in Figure 6.18(b). Consulting Figure 6.18(b), this

translates to about 4% variation through the thickness before the �nal reduction. In

the same way, the von Mises stress variation after the �nal roll pass of about 43MPa

upon completion of the roll reduction simulation drops to about 12MPa after a 10

second interpass time. This is a variation of about 60% according to the plot for R5

in Figure 6.18(b).

In Figure 6.19 the through thickness equivalent plastic strain variation 350mm away

from the roller is displayed. Figure 6.19(a) are plots of the equivalent plastic strains at

the end of each roll pass step simulated while Figure 6.19(b) again shows the plastic

strains 10 seconds later. In these �gures, the values extracted from the �nite element
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18: Residual von Mises stress values (left) after reduction and (right) after a
static recrystallisation interpass period. (a,b) The values as extracted. (c,d) Compared
to the average value in each case. (e,f) Standardised.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.19: Volume fraction averaged equivalent plastic strain values (left) after re-
duction and (right) after a static recrystallisation interpass period. (a,b) The values
as extracted. (c,d) Compared to the average value in each case. (e,f) Standardised.
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simulation are again plotted as a function of the distance from the centre of the metal

slab to the surface.

Figures 6.19(c) and (d) show the variation from the average value as a function of

the normalised distance from the centre while Figures 6.19(e) and (f) again show the

standardised through thickness variation.

For the �rst reduction (R1), the equivalent plastic strains in Figure 6.19(a) are

between 0.18 and 0.284 compared to 0.09 and 0.13 after static recrystallisation in

Figure 6.19(b). This is a reduction of between 50% in the centre and 54% below the

surface of the metal slab.

Similarly, the strains between 0.156 and 0.208 after the second roll pass (R2) drops

to 0.064 (59%) and 0.081 (61%) after static recrystallisation for example. If the same is

done for all of the curves, the third roll pass sees a reduction in equivalent plastic strain

between 71% and 77% thanks to static recrystallisation, roll pass 4 approximately 82%

reduction and roll pass 5 between 87% and 89% reduction.

The strain variation according to Figure 6.19(d) is 36% for the �rst roll pass, 24%

after roll pass 2 and 9% after roll pass 3. Roll pass 4 sees an increase in the through

thickness equivalent plastic strain variation again with the variation after 10 seconds in

Figure 6.19(d) around 26%. At the end of the simulation the equivalent plastic strains

vary by about 13% according to the curve for R5 in Figure 6.19(d).

The distributed equivalent plastic strain during the �fth reduction roll pass is il-

lustrated in Figure 6.20(a). Using the characterised normal grain growth model in

Equation (6.8), the approximated volume fraction averaged estimated grain sizes at

the same time (here 0.4791 seconds into roll pass 5) is displayed in Figure 6.20(b). The

colour bar is scaled for values between 13.5µm and 14.4µm which is in approximately

the same range as the end of the material point simulation in Figure 6.17.

The through thickness approximated volume fraction averaged grain size is ex-

tracted as in the residual stress and equivalent plastic strain case 350mm away from

the roller. In Figure 6.21(a) the average grain sizes 10 seconds after each reduction is

displayed. According to these results the average grain size is decreased following each

subsequent 15% reduction followed by an increased grain size and distribution after the

�nal 40% reduction. After the �rst roll pass (R1) the average grain size is around 24µm

with about 9% variation through the thickness of the slab according to Figure 6.21(b).
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(a)

(b)

Figure 6.20: (a) Equivalent strain and (b) equivalent grain size estimate for the �nal
roll of schedule IV .
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(a) (b)

Figure 6.21: Grain size estimates after each interpass period. (a) The values as ex-
tracted, (b) compared to the average value.

After the second roll pass (R2) the average grain size is around 18.5µm followed by

around 15µm for R3 and 14µm for R4. The �nal slab has an average through thickness

grain size of around 16µm, 17.5µm in the centre of the slab and around 14.5µm at the

surface.

Di�erent schedules can also be modelled as for a comparison on the resulting

through thickness state and microstructure. Considering the di�erent roll schedules

in Table 6.2, four di�erent schedules are now modelled for comparison. The di�erent

roughing schedules consist of 14×7%, 10×10%, 6×15% and 5×20% reductions. The

schedules are modelled using the same material parameters and normal grain growth

is again assumed using Equation (6.8).

The resulting through thickness values extracted after each reduction and 10 sec-

onds afterwards, 350mm away from the roller, are presented in Appendix I. In Fig-

ure 6.22, the through thickness values at the very end of the di�erent simulations are

plotted on the same axes.

Figure 6.22(a) shows the through thickness equivalent plastic strains for the four

di�erent schedules 10 seconds after the �nal reduction roll pass modelled. Out of all

four schedules, the 6×15% schedule has on average the least residual strain while the

14×7% schedule has on average the most. The 10×10% roughing schedule has the

most homogeneous strain distribution according to the comparison in Figure 6.22(a).
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The residual stresses are compared in Figure 6.22(b). Here, the 10×10% reduction

roll passes are seen to also result in the most uniform residual stress distribution. In

Figure 6.22(c), the most uniform grain size distribution is as a result of the 5×20%
roughing schedule. The volume fraction averaged grain sizes in this case are around

15µm. The 14×7% reduction roll passes have the least homogeneous through thickness

grain sizes ranging from around 42µm in the centre to around 20µm at the surface.

The grain sizes in this example are only estimates based on the lack of data. If grain

size data is available, additional e�ects on the equivalent grain size can be modelled

and validated against the experimental observations.

6.7 Conclusions

In this chapter, the dislocation density based model with recrystallisation is seen to

accurately model and predict the hardening, recovery and static recrystallisation of a

C-Mn-Nb-Ti-V microalloyed steel in the austenite phase. The model was calibrated

on material data without access to grain size data. The grain sizes were approximated

by solving a normal grain growth model per material volume fraction and estimating

the average grain size per integration point as a volume fraction averaged quantity.

This, along with the other quantities available to inspect material state, is then used to

compare the through thickness variation of the material subjected to di�erent roughing

schedules. Unfortunately, the grain sizes in this example are only estimates due to the

lack of data. If grain size data is available, additional e�ects on the equivalent grain

size can be modelled and validated against the experimental observations. Only then

can the e�ect of grain size on the mechanical response of the material also be included

in the material model implementation.
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(a)

(b)

(c)

Figure 6.22: Comparison of (a) equivalent plastic strain, (b) residual stress and (c)
volume fraction averaged grain size for four di�erent roughing schedules.
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Chapter 7

Conclusions

In this thesis, di�erent material models were successfully implemented, characterised

and used within a Finite Element Analysis (FEA) environment. In Chapter 2, the

e�ect of di�erent strain formulations on the behaviour of the same linear strain hard-

ening plasticity formulation was investigated. In this study the correct choice of strain

formulation became more important depending on the degree of deformation in the

problem modelled. Di�erent FEA software packages were also compared.

Section 2.2 illustrated the software comparison by solving the same boundary value

problem in Abaqus, CalculiX and Code_Aster. Slightly di�erent solutions were ob-

tained most likely due to varied strain formulations and contact algorithms. This

comparison illustrated an acceptable average inter-package variation between 0.68%

and 1.17%. The comparison also served as a cross product veri�cation. Using this

veri�cation, a generic user material framework for computational plasticity was devel-

oped based on the corotational hypo-elastoplastic strain formulation. The framework

in the purely isotropic and combined hardening cases were veri�ed against the internal

implementation in Abaqus using linear strain hardening models. A check was also done

in rotated axes to verify that both material frameworks are objective implementations

of the underlying formulation.

Given the objective implementation of von Mises plasticity in the isotropic and

combined hardening cases, more sophisticated model formulations were implemented

and used in the remainder of the thesis. These models come into play through di�erent

scalar equation formulations based on particular choices of kinetic equation, internal
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state variables and state variable evolution equations. The �rst such model imple-

mented following a di�erent scalar formulation was the Mechanical Threshold Stress

(MTS) model in Chapter 3. The kinetic equation leading to the form of the MTS

scaling functions as well as the development of the microstructure evolution equation

in the form of the Voce-law and other popular choices were discussed. Numerical im-

plementation of the MTS model including analytical sensitivities required for proper

convergence within the isotropic user material framework were derived. The implemen-

tation was shown to be correct using a simple numerical study to check the convergence

rate of the residual and compare analytical and �nite di�erence approximated gradi-

ent values. The MTS model was characterised on Copper data using a material point

simulation and compared favourably to detailed �nite element analyses in Abaqus.

In Chapter 4, the MTS model was characterised to cemented Tungsten Carbide

data. Imperfect compression, possibly due to test frame compliance or load eccentric-

ity, is taken into account by performing an FEA during the parameter identi�cation

stage. Given unknown experimental boundary values, material parameter identi�-

cation is still possible by including boundary value parameters as unknowns in the

detailed modelling of the imperfect compression experiments. This was illustrated us-

ing a virtual experiment. Piecewise linear boundary parametrisation demonstrated

the ability to accurately capture the material response despite inexact parametrisa-

tion of a transient boundary value. Using the MTS model to describe the rate and

temperature dependent plastic deformation in cemented Tungsten Carbide, industrial

processes where this material is used can be studied and improved. The e�ect of dif-

ferent operating conditions, anvil and high pressure cell design can be studied in the

industrial HPHT process for example. An FEA on a setup used for the synthesis of

diamond using a cubic anvil high pressure apparatus was simulated in Section 4.3 as

illustration.

An alternative choice on internal state variable, the dislocation density ratio, was

chosen to replace the evolving internal stress like variable of the original mechanical

threshold stress model in Chapter 5. Within the alternative modelling environment,

various extensions were discussed and implemented to include further physical phe-

nomena present during metal forming. The inclusion of geometrically necessary dislo-

cations and stage IV hardening was achieved by including an additional internal state
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variable to represent the average slip plane lattice incompatibility. Modi�cation of the

microstructural evolution equation to include thermal or static recovery of statistical

dislocations was also included. Cyclic e�ects were �nally motivated by viewing the mi-

crostructure as a system of channels or regions of low dislocation density, separated by

parallel narrow walls with a high density of segmented edge dislocations. The numer-

ical implementation using all of the extensions for a combined hardening dislocation

density based model was presented and tested in Section 5.5.

The characterisation of the combined hardening dislocation density based model

was successfully illustrated on digitised experimental data for two di�erent metal alloys.

From the �t to experimental data, this extended dislocation density ratio based model

is well equipped to model and predict the cyclic responses of the materials investigated.

An extension on the isotropic dislocation density ratio model is also covered Chap-

ter 5 to include recrystallisation. Some of the foundation theory on recrystallisation

modelling was �rst discussed as well as the assumptions made in the implemented

modelling approach. The model describes multiple waves of recrystallisation. Each

recrystallised or unrecrystallised volume fraction has its own set of internal state vari-

ables. The numerical implementation as well as choices made to keep track of, initialise

or shift internal state variables as needed at the onset or completion of a speci�c wave

of recrystallisation were also discussed. The recrystallisation model was shown to re-

produce the general material response and steady state stresses of Cobalt and Copper

undergoing dynamic recrystallisation. The recrystallisation model was also used to

model the stress-strain response of a microalloyed C-Mn-Nb-Ti-V steel in Chapter 6.

Numerical optimisation was used to estimate material parameters by comparing ma-

terial response using candidate parameter values to experimental stress-strain data.

Stress-strain data obtained from di�erent cylindrical test specimens, subjected to

di�erent roughing schedules were used in the material parameter identi�cation. The

model was calibrated using a fraction of the experimental data while data not used

validated the ability of the model to also predict material response. The through

thickness microstructural variation was estimated by linking a normal grain growth

model to the mechanical response. The model was calibrated on material data without

access to grain size data. The grain sizes were approximated by solving a normal grain

growth model per material volume fraction and estimating the average grain size per
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integration point as a volume fraction averaged quantity. This, along with the other

quantities available to inspect material state, were then used to compare the through

thickness variation of the material subjected to di�erent roughing schedules.

7.1 Suggestions and possible future work

This thesis demonstrated the bene�t of using state variable based plasticity formula-

tions to model complex material behaviour. If new deformation mechanisms are re-

quired, the physically based plasticity models considered in this thesis can be extended

to accomplish this goal.

The grain size estimate in Chapter 6 is currently independent of material behaviour

despite a strongly grain size dependent evolution of the average slip plane lattice incom-

patibility reported by Kok et al. (2002). The grain size dependence in this parameter is

e�ectively switched o� in the model implemented for recrystallisation to avoid a high

evolution rate following Equation (5.63) with Cλx=Cλ/dx in the case of small grain

sizes instead of a constant value of Cλx following the model by Brown and Bammann

(2012).

Should the e�ect of grain size on material response be one of the �rst model exten-

sions considered, a Hall-Petch (Hall, 1951; Petch, 1953) type grain size e�ect could be

included using an additional stress value in the yield function or a modi�ed version of

the scaling function in Equation (3.22). If grain sizes are explicitly linked to the ma-

terial response it could also be necessary to investigate a grain size evolution equation

that address additional grain growth, shape, pinning and re�nement mechanisms.

Most of the material developments covered address deformation mechanisms valid

for pure metals using a von Mises yield surface. Model extensions to address the

anisotropy and other imperfections of real metals and alloys are a possible area of

future interest. Stacking, polycrystalline material structure, grain boundary sliding

and other mechanisms during super plastic forming could be included or considered as

an extension to the material models. Work focused on the modelling of alloys could also

require implementation of speci�c mechanisms to address solid solution strengthening,

solute drag or e�ects of precipitates on multiple phase materials or grain boundary

pinning for example.
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Further investigation into easier material parameter estimation is another avenue

of future research. Currently, the high dimensionality and varied sensitivity of the

material parameters in especially the recrystallisation model require a lot of parameter

space exploration. In many cases multiple initial guesses were considered during the

numerical characterisation and successful termination at di�erent locations suggested

a highly multimodal objective function. Future work could investigate the bene�t

associated with the use of other inverse analysis techniques, optimisation or machine

learning procedures during the objective material parameter characterisation.
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Appendix A

Abaqus Isotropic User Material

The combined user material makes calls to two di�erent subroutines that also need to

be speci�ed

� A subroutine SHEARMOD that takes the material property array and returns a

shear modulus value as well as a Poisson's ratio.

� A strain hardening subroutine FISOTROPIC that returns the isotropic yield stress

as well as the equivalent plastic strain sensitivity.

A.1 The Isotropic Elasto-plastic Framework

[parent-folder]/umat_iso.f

subroutine umat(stress, statev, ddsdde, sse, spd, scd, rpl,

& ddsddt, drplde, drpldt, stran, dstran, time, dtime, temp, dtemp,

& predef, dpred, cmname, ndi, nshr, ntens, nstatv, props, nprops,

& coords, drot, pnewdt, celent, df0, df1, noel, npt, layer,

& kspt, kstep, kinc)
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c

implicit real*8(a-h,o-z)

character*8 cmname

c

dimension stress(ntens), statev(nstatv), ddsdde(ntens, ntens),

& ddsddt(ntens), drplde(ntens), stran(ntens), dstran(ntens),

& predef(1), dpred(1), props(nprops), coords(3), drot(3, 3),

& df0(3, 3), df1(3, 3), flow(6), tempstatv(nstatv)

c

parameter(zero=0.d0, one=1.d0, two=2.d0, three=3.d0, six=6.d0,

& enumax=.4999d0, newton=10, toler=1.0d-6)

c

c assign temporary state variables

do k1=1,nstatv

tempstatv(k1)=statev(k1)

enddo

c

c elastic properties

call shearmod(eg,enu,temp,props,nprops)

eg2=two*eg

eg3=three*eg

emod = eg2*(1.d0+enu)

ebulk3=emod/(one-two*enu)

elam=(ebulk3-eg2)/three

c

c elastic stiffness

do k1=1, ndi

do k2=1, ndi

ddsdde(k2, k1)=elam

end do

ddsdde(k1, k1)=eg2+elam

end do
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do k1=ndi+1, ntens

ddsdde(k1, k1)=eg

end do

c

c calculate predictor stress and elastic strain

do k1=1, ntens

do k2=1, ntens

stress(k2)=stress(k2)+ddsdde(k2, k1)*dstran(k1)

end do

end do

c

c calculate equivalent von mises stress

smises=(stress(1)-stress(2))**2+(stress(2)-stress(3))**2

& +(stress(3)-stress(1))**2

do k1=ndi+1,ntens

smises=smises+six*stress(k1)**2

end do

smises=sqrt(smises/two)

c

call fisotropic(sy,dsy,zero,dtime,temp,

& statev,tempstatv,nstatv,props,nprops)

c

c determine if actively yielding

if (smises.gt.(one+toler)*sy) then

c

c actively yielding

c separate the hydrostatic from the deviatoric stress

c calculate the flow direction

shydro=(stress(1)+stress(2)+stress(3))/three

do k1=1,ndi

flow(k1)=(stress(k1)-shydro)/smises

end do
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do k1=ndi+1, ntens

flow(k1)=stress(k1)/smises

end do

c

c solve for equivalent von mises stress

c and equivalent plastic strain increment using newton iteration

deqpl=zero

do kewton=1, newton

rhs=smises-eg3*deqpl-sy

deqpl=deqpl+rhs/(eg3+dsy)

call fisotropic(sy,dsy,deqpl,dtime,temp,

& statev,tempstatv,nstatv,props,nprops)

if(abs(rhs).lt.toler) goto 10

end do

c

c write warning message to .msg file

write(7,2) newton

2 format(//,30x,'***warning - plasticity algorithm did not ',

& 'converge after ',i3,' iterations')

10 continue

c

c update stress, elastic and plastic strains and

c equivalent plastic strain

do k1=1,ndi

stress(k1)=flow(k1)*sy+shydro

end do

do k1=ndi+1,ntens

stress(k1)=flow(k1)*sy

end do

c

c formulate the jacobian (material tangent)

c first calculate effective moduli
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effg=eg*sy/smises

effg2=two*effg

effg3=three/two*effg2

efflam=(ebulk3-effg2)/three

effhrd=eg3*dsy/(eg3+dsy)-effg3

do k1=1, ndi

do k2=1, ndi

ddsdde(k2, k1)=efflam

end do

ddsdde(k1, k1)=effg2+efflam

end do

do k1=ndi+1, ntens

ddsdde(k1, k1)=effg

end do

do k1=1, ntens

do k2=1, ntens

ddsdde(k2, k1)=ddsdde(k2, k1)+effhrd*flow(k2)*flow(k1)

end do

end do

endif

c

c update state variable array

do k1=1,nstatv

statev(k1)=tempstatv(k1)

enddo

c

return

end

c
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A.2 The Simple Shear Model

[parent-folder]/simpleshear.f

subroutine shearmod(eg,enu,temp,props,nprops)

implicit real*8(a-h,o-z)

dimension props(nprops)

eg = props(1)

enu=min(dabs(props(2)),0.4999d0)

return

end

A.3 Linear Strain Hardening

[parent-folder]/linearharden.f

subroutine fisotropic(sy,dsy,deqpl,dtime,temp,

& statev,tempstatev,nstatv,props,nprops)

implicit real*8(a-h,o-z)

dimension statev(nstatv),tempstatev(nstatv),props(nprops)

eqpl = statev(1)+deqpl

sy = props(3)+props(4)*eqpl

dsy = props(4)

tempstatev(1) = eqpl

return

end



Appendix B

Abaqus Combined User Material

The combined user material makes a call to the Abaqus utility subroutine ROTSIG as

well as calls to three di�erent subroutined that also need to be speci�ed

� A subroutine SHEARMOD that takes the material property array and returns a

shear modulus value as well as a Poisson's ratio.

� A subroutine CYCLREVERSAL in the event of a load reversal.

� A strain hardening subroutine FCOMBINED that returns the isotropic and kine-

matic stresses as well as their sensitivities.

B.1 The Combined Elasto-plastic Framework

[parent-folder]/umat_comb.f

subroutine umat(stress, statev, ddsdde, sse, spd, scd, rpl,

& ddsddt, drplde, drpldt, stran, dstran, time, dtime, temp, dtemp,

& predef, dpred, cmname, ndi, nshr, ntens, nstatv, props, nprops,

& coords, drot, pnewdt, celent, df0, df1, noel, npt, layer,
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& kspt, kstep, kinc)

c

implicit real*8(a-h,o-z)

c

character*8 cmname

c

dimension stress(ntens), statev(nstatv), ddsdde(ntens, ntens),

& ddsddt(ntens), drplde(ntens), stran(ntens), dstran(ntens),

& predef(1), dpred(1), props(nprops), coords(3), drot(3, 3),

& df0(3, 3), df1(3, 3), tempstatev(nstatv), alpha(6), flow(6),

& xi(6), xiprev(6)

c

parameter(zero=0.d0, one=1.d0, two=2.d0, three=3.d0, six=6.d0,

& enumax=.4999d0, newton=10, toler=1.0d-6)

c

c elastic properties

call shearmod(eg,enu,temp,props,nprops)

eg2=two*eg

eg3=three*eg

elam=(ebulk3-eg2)/three

c

c elastic stiffness

do k1=1, ndi

do k2=1, ndi

ddsdde(k2, k1)=elam

end do

ddsdde(k1, k1)=eg2+elam

end do

do k1=ndi+1, ntens

ddsdde(k1, k1)=eg

end do

c
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c recover and rotate shift tensor

call rotsig(statev(1), drot, alpha, 1, ndi, nshr)

c

c previous effective stress

do k1=1,ntens

xiprev(k1)=stress(k1)-alpha(k1)

enddo

c

c current predictor stress

do k1=1, ntens

do k2=1, ntens

stress(k2)=stress(k2)+ddsdde(k2, k1)*dstran(k1)

end do

end do

c

c get trial effective stress:

xixiprev = zero

do k1=1,ntens

xi(k1)=stress(k1)-alpha(k1)

xixiprev = xi(k1)*xiprev(k1)

enddo

c

c if sign change, then call load reversal subroutine

if(xixiprev.lt.toler)then

call cyclreversal(statev,nstatv)

endif

c

c assign temporary state variables

do k1=1,nstatv

tempstatev(k1)=statev(k1)

enddo

c
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c calculate equivalent von mises stress

smises=(xi(1)-xi(2))**2+(xi(2)-xi(3))**2+(xi(3)-xi(1))**2

do k1=ndi+1,ntens

smises=smises+six*xi(k1)**2

end do

smises=sqrt(smises/two)

c

c check yield surface

call fcombined(sy0,dsy,sb0,dsb,zero,dtime,temp,

& statev,tempstatev,nstatv,props,nprops)

c

c determine if actively yielding

if (smises.gt.(one+toler)*sy0) then

c

c actively yielding

c separate the hydrostatic from the deviatoric stress

c calculate the flow direction

shydro=(stress(1)+stress(2)+stress(3))/three

do k1=1,ndi

flow(k1)=(stress(k1)-alpha(k1)-shydro)/smises

end do

do k1=ndi+1,ntens

flow(k1)=(stress(k1)-alpha(k1))/smises

end do

c

c solve for equivalent von mises stress

c and equivalent plastic strain increment using newton iteration

sy=sy0

sb=sb0

deqpl=zero

do kewton=1, newton

rhs=smises-eg3*deqpl-sy-sb+sb0
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deqpl=dabs(deqpl+rhs/(eg3+dsy+dsb))

call fcombined(sy,dsy,sb,dsb,deqpl,dtime,temp,

& statev,tempstatev,nstatv,props,nprops)

if(abs(rhs).lt.toler*sy0) goto 10

end do

c

c write warning message to .msg file

write(7,2) newton

2 format(//,30x,'***warning - plasticity algorithm did not ',

& 'converge after ',i3,' iterations')

10 continue

c

c update stress

do k1=1,ndi

alpha(k1)=alpha(k1)+(sb-sb0)*flow(k1)

stress(k1)=alpha(k1)+flow(k1)*sy+shydro

end do

do k1=ndi+1,ntens

alpha(k1)=alpha(k1)+(sb-sb0)*flow(k1)

stress(k1)=alpha(k1)+flow(k1)*sy

end do

c

c formulate the jacobian (material tangent)

c first calculate effective moduli

effg=eg*(sy+sb-sb0)/smises

effg2=two*effg

effg3=three/two*effg2

efflam=(ebulk3-effg2)/three

effhrd=eg3*(dsy+dsb)/(eg3+dsy+dsb)-effg3

do k1=1, ndi

do k2=1, ndi

ddsdde(k2, k1)=efflam
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end do

ddsdde(k1, k1)=effg2+efflam

end do

do k1=ndi+1, ntens

ddsdde(k1, k1)=effg

end do

do k1=1, ntens

do k2=1, ntens

ddsdde(k2, k1)=ddsdde(k2, k1)+effhrd*flow(k2)*flow(k1)

end do

end do

endif

c

c update state variable array

do k1=1,ntens

tempstatev(k1)=alpha(k1)

enddo

do k1=1,nstatv

statev(k1)=tempstatev(k1)

enddo

c

return

end

B.2 Load Reversal

[parent-folder]/simpleloadreversal.f

subroutine cyclreversal(statev,nstatv)
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implicit real*8(a-h,o-z)

dimension statev(nstatv)

! code here to act on state variables in the load reversal case

return

end

B.3 Combined Linear Strain Hardening

[parent-folder]/combinedlinear.f

subroutine fcombined(sy,dsy,sb,dsb,deqpl,dtime,temp,

& statev,tempstatev,nstatv,props,nprops)

implicit real*8(a-h,o-z)

dimension statev(nstatv),tempstatev(nstatv),props(nprops)

eqpl = statev(7)+deqpl

sy = props(3)+props(4)*eqpl

dsy = props(4)

sb = props(5)*eqpl

dsb = props(5)

tempstatev(7) = eqpl

return

end
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Appendix C

Mechanical Threshold Stress

Subroutine

C.1 The Mechanical Threshold Stress Shear Model

[parent-folder]/shear_varshni.f

subroutine shearmod(eg,enu,temp,props,nprops)

implicit real*8(a-h,o-z)

dimension props(nprops)

emu0=props(1)

ed0=props(2)

et0=props(3)

enu=min(dabs(props(4)),0.499d0)

if(temp.gt.et0) then

eg = emu0 - ed0/(dexp(et0/temp)-1.d0)

else

eg = emu0

C1
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endif

return

end

C.2 The Mechanical Threshold Stress Model

[parent-folder]/mts_harden.f

subroutine fisotropic(sy,dsy,deqpl,dtime,temp,

& statev,tempstatev,nstatv,props,nprops)

implicit real*8(a-h,o-z)

dimension statev(nstatv),tempstatev(nstatv),props(nprops)

c

character*8 cmname

parameter(zero=0.d0,one=1.d0,two=2.d0,newtonmax=10,toler=1.0d-8,

& ratemin=1.d-10)

c

c material properties

emu0=props(1)

ed0=props(2)

et0=props(3)

c props(4) is used for poisson's ratio

sa=props(5)

se0s=props(6)

si=props(7)

a0e=props(8)

a0es=props(9)

a0i=props(10)

hard0=props(11)
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rate0=props(12)

rate0es=props(13)

qe=props(14)

pe=props(15)

qi=props(16)

pi=props(17)

pow=props(18)

cm=props(19)

c

cmname = 'MTS_POWR'

if(cm.gt.zero)then

cmname = 'MTS_TANH'

endif

c

c check

rate = deqpl/dtime

if(rate.lt.ratemin)then

rate = ratemin

endif

c

c harden in statev

sep = statev(1)

sec = sep

c

emu = emu0 - ed0/(dexp(et0/temp)-one)

emuSF = emu/emu0

c

sfi0 = temp/(a0i*emu)

sfli = dlog(rate0/rate)*sfi0

sfi = (one-sfli**(one/qi))**(one/pi)

c

sfe0 = temp/(a0e*emu)
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sfle = dlog(rate0/rate)*sfe0

sfe = (one-sfle**(one/qe))**(one/pe)

c

c0 = -temp/(emu*a0es)

sat = se0s*(rate/rate0es)**c0

c

if(cmname(5:8).eq.'TANH')then

hard = hard0*(one-(dtanh(pow*sec/sat)/dtanh(pow)))

dhard = deqpl*hard0*pow/

& (dtanh(pow)*sat*dcosh(pow*sec/sat)**two)

else

hard = hard0*(one-(sec/sat))**pow

dhard = (deqpl*hard0*pow*(one-(sec/sat))**(pow-one))/sat

endif

f = sec - sep - deqpl*hard

c

if(dabs(f).gt.toler)then

kount=1

do while((dabs(f).gt.toler).and.(kount.lt.newtonmax))

kount=kount+1

sec = sec - f/(one+dhard)

if(cmname(5:8).eq.'TANH')then

hard = hard0*(one-(dtanh(pow*sec/sat)/dtanh(pow)))

dhard = deqpl*hard0*pow/

& (dtanh(pow)*sat*dcosh(pow*sec/sat)**two)

else

hard = hard0*(one-(sec/sat))**pow

dhard = (deqpl*hard0*pow*(one-(sec/sat))**(pow-one))/sat

endif

f = sec - sep - deqpl*hard

enddo

endif
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c

c Yield stress

sy = sa + emusf*(sfi*si+sfe*sec)

c

c Partial gradient componenets

c d(sec)/d(epl)

dsecdeqpl = hard/(one+dhard)

c d(sfi)/d(epl)

dsfideqpl = sfi0*(one-sfli**(one/qi))**(one/pi-one)*

& sfli**(one/qi-one)/(pi*qi*rate)

c d(sfe)/d(epl)

dsfedeqpl = sfe0*(one-sfle**(one/qe))**(one/pe-one)*

& sfle**(one/qe-one)/(pe*qe*rate)

c d(sec)/d(rate)

dsecdrt = c0*dhard*se0s*sec*(rate/rate0es)**(c0-one)/

& ((dhard+one)*rate0es*sat)

c Total

c d(yield)/d(epl)

dsy = emuSF*(sfe*(dsecdeqpl+dsecdrt/dtime)+dsfedeqpl*sec/dtime+

& dsfideqpl*si/dtime)

c

tempstatev(1) = sec

return

end
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Appendix D

Point based inverse material

parameter identi�cation

Instead of using a �nite element analysis where boundary conditions are constructed

from various unknowns, a cheaper choice would be to determine material properties

with the help of something like a single point integration procedure.

A Mechanical Threshold Stress routine is written in Python to perform the approx-

imate parameter identi�cation for this reason. This routine takes strain history as a

function of time and determines the equivalent force. The force at each data point

is determined by multiplying the yield stress with an appropriate area. Figure D.1

shows the e�ect of using the initial area, as well as the e�ect of a proper Poisson area

compensation. A uniaxial Abaqus simulation is used as a reference. The force versus

strain for the Abaqus simulation is given as the red lines of Figure D.1. The same MTS

material parameters as used in the FEA simulation are then used in the single point

integration method.

In the one case, the force is determined by

F (t) =
1

4
πD2

oσY(t), (D.1)

with Do the initial test section diameter of 7 mm. An area compensation, with a

scale factor is seen to have the best �t to the reference curve. This scale factor is

included and is motivated by the stress gradients seen in Figure 4.11(e). The chosen

D1
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(a) (b)

Figure D.1: Normalised force versus strain curves. Uniaxial compression FEA curve
compared to a single point integration curve where initial area is used, proper area
compensation is applied and combined with a 0.99 scale factor. A full curve is visible
in (a) with detail in (b).

compensation for area and resulting force calculation is determined from

F (t) =
Sf
4
π [Do(1 + νεe(t) + 0.5εp(t))]2 σY(t), (D.2)

where εe(t) is the elastic strain component at a given time and εp(t) is the plastic strain

component. The area compensation takes elastic and plastic strains into account, while

a scale factor Sf of 0.99 was chosen. This slight area compensation scale factor is seen

to produce a fairly good match to the �nite element uniaxial simulation of Figure D.1.

One way of using the room temperature test to approximate the MTS material

parameters, is by taking the average of the three strain gauge readings and assuming

that this is the e�ective strain rate for a single element. Another approach involves

the approximation of the room temperature test by three distinct cylindrical elements,

each with one third the area of the actual specimen. In the latter approximation, the

three strain gauge readings are used to construct a linear varying strain �eld. This is

done by using the coordinates of the strain gauges in their original locations seen in
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(a) (b)

Figure D.2: (a) The location of the three strain gauges equally spaced around the
circumference of the central test section. During the three cylinder approximation, a
120◦ circular sector is modelled by a cylindrical element with the same area. (b) The
e�ective cylindrical approximation to a 120◦ sector with the centroids coinciding.

Figure D.2 to construct a spatially varying strain �eld of the form

ε(x, y, t) = C0(t) + C1(t)x+ C2(t)y. (D.3)

The time dependent equivalent strains at the centroids of the 120◦ sectors are then

determined by inserting the centroid coordinates into Equation (D.3). The resulting

strains as a function of time are used to determine each of the three cylindrical elements'

contribution to the force in the same way as the single cylinder approximation, using

only a third of the full specimen area. The single cylinder (average strain) procedure

and three cylinder procedures are now compared and evaluated using virtual problems.

In the �rst virtual problem, a �nite element analysis is run with a linear displace-

ment �eld boundary condition similar to the one described in Equations (4.3) and (4.4)

that resulted in the �t seen in Figure 4.12. The strains at the three locations around

the central circumference and the reaction force is extracted from the �nite element

simulation and treated as if it were experimental data. A parameter identi�cation is

then performed where the seven MTS material parameters are determined using nu-

merical optimisation. In the single cylinder procedure, the average of the three strain

gauges as a function of time is used in to determine the forces for a given set of material

parameters. In the three cylinder procedure, a linear interpolation of the strains is used
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(a) (b)

(c) (d)

Figure D.3: Comparison of the single cylinder and three cylinder procedures to �t
MTS material parameters for a linear displacement distribution. (a) Normalised force
versus strain using a single cylinder and the average of the three strains in the room
temperature comparison. (b) Normalised force versus strain using a three cylinder �t
and the three �nite element strains. (c) Normalised force as a function of time �tted
using the single and three cylinder approximation. (d) The known true MTS material
response versus that determined from the single and three cylinder procedures for a
constant strain rate of 0.0001s−1.
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Parameter Exact value Single cylinder Three cylinder

σ̂a
∗ 1.0000 1.00771882 1.00547183

σ̂0εs
∗ 1.0000 0.94674572 0.97238436

kB/g0εb3∗ 1.0000 0.97057691 0.96244947
kB/g0εsb3∗ 1.0000 1.62117934 1.36908000

θ0
∗ 1.0000 1.02377007 1.04064404

µr
∗ 1.0000 1.00701314 1.00479798

Dr
∗ 1.0000 1.00450078 0.99620249

Table D.1: The single cylinder and three cylinder approximation to the material pa-
rameters, given the �rst set of virtual experimental data.

at each sector centroid location and the smaller equivalent cylinder contribution to the

total force is used to determine the force as a function of time. The squared di�erence

between the approximated and virtual experiment forces for each time increment is

used as the current function value. The optimisation is again performed using the

fmin algorithm.

The converged normalised results are visible in Table D.1. The converged curve �t

of the normalised forces as a function of time is visible in Figure D.3(c). The force

over strain is also plotted in Figure D.3(a) using the average of the tree strains for the

single cylinder approximation and Figure D.3(b) using the virtual experimental strains

and three cylinder approximation.

The material response is determined given the converged MTS material parame-

ters. The constant strain rate curves at a strain rate of 0.0001s−1 is plotted for 25◦C,

150◦C, 250◦C, 350◦C and 500◦C. Comparing these curves to the response using the

known virtual experiment parameters used in the FEA simulation, it appears that both

procedures are able to approximate the actual material with reasonable accuracy. This

should therefore also hold true for the experimental data if the experiment was subject

to su�ciently small strains. Although neither procedure replicates the known response

exactly, the three cylinder procedure performs the best.

A second virtual experiment is run with the exact same MTS material parameters.

A more complex boundary condition is applied so that both the angle and magni-

tude of the displacement �eld reference point have a nonlinear time dependence. The

force and three strains obtained from a �nite element analysis is again used as virtual
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Parameter Exact value Single cylinder Three cylinder

σ̂a
∗ 1.0000 1.51329714 1.06111960

σ̂0εs
∗ 1.0000 0.87864129 0.96890237

kB/g0εb3∗ 1.0000 1.10881247 1.22509147
kB/g0εsb3∗ 1.0000 0.71519620 0.62102419

θ0
∗ 1.0000 0.45646766 0.79337991

µr
∗ 1.0000 1.01079021 1.03017389

Dr
∗ 1.0000 1.14494185 1.10360844

Table D.2: The single cylinder and three cylinder approximation to the material pa-
rameters, given the second set of virtual experimental data.

experimental data.

The converged single cylinder and three cylinder approximation results are visible

in Table D.2 for the second virtual experiment. The associated curve �ts are visible

in Figure D.4. The material response using the converged parameters are compared

to the actual material in Figure D.4(d). Since this problem has a more complex and

higher strain, the single and three cylinder procedures do not approximate the true

material response as well as in the �rst virtual experiment. In this example, the three

cylinder approximation does noticeably better than the single cylinder equivalent, but

it is evident that the three strains should be properly coupled as it would be in a �nite

element analysis.

If the real experimental tests are closer related to the �rst virtual problem with

smaller strains, it is likely that the one and three cylinder procedures would be well

suited to determine the material parameters which would closely approximate the ac-

tual material response. These two methods are now used on the actual experimental

data.

D.1 Results on experimental data

The MTS material parameters of an experimentally tested material is now determined

using the one and three cylinder procedures. This is again done on the material test of

which the room temperature data is represented in Figure 4.1(a) and (d). The strain

history and its associated time data is used the same way as mentioned in the virtual
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(a) (b)

(c) (d)

Figure D.4: Comparison of the single cylinder and three cylinder procedures to �t
MTS material parameters for an arbitrary selected complex displacement distribution.
(a) Normalised force versus strain using a single cylinder and the average of the three
strains in the room temperature comparison. (b) Normalised force versus strain using
a three cylinder �t and the three �nite element strains. (c) Normalised force as a
function of time �tted using the single and three cylinder approximation. (d) The
known true MTS material response verus that determined from the single and three
cylinder procedures for a constant strain rate of 0.0001s−1.
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(a) (b)

(c) (d)

Figure D.5: Comparison of the single cylinder and three cylinder procedures to �t MTS
material parameters on experimental data compared to the MTS material determined
from the inverse �nite element analysis. (a) Normalised force versus strain using a
single cylinder and the average of the three strain gauges in the room temperature
comparison. (b) Normalised force versus strain using a three cylinder �t and the
three gauge strains. (c) Normalised force as a function of time �tted using the single
and three cylinder approximation. (d) The inverse FEA determined MTS material
response verus that determined from the single and three cylinder procedures for a
constant strain rate of 0.0001s−1.
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experiments to obtain the force curve as a function of time. The converged curve �t

are displayed in Figure D.5.

In this case, both the single cylinder and three cylinder procedure returned material

parameter values that result in similar material response. The materials determined

by the single and three cylinder procedures also closely match the material response

using the parameters determined by the �nite element inverse analysis of which the

results could be seen in Figure 4.12.

From Figure D.5(d), the exact material response is not clear but it is evident that

all of the methods result in similar material response required to approximate the

experimental results. Comparing the results of Figure D.3(d) and D.5(d), it is also

possible that the one and three cylinder approximated materials could come close to

the true material response.
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Appendix E

Dislocation Density Ratio Based

Combined Hardening Subroutine

E.1 Combined Hardening Subroutine

[parent-folder]/dens_combined.f

subroutine fcombined(sy,dsy,sb,dsb,deqpl,dtime,temp,

& statev,tempstatev,nstatv,props,nprops)

c

implicit real*8(a-h,o-z)

dimension statev(nstatv),tempstatev(nstatv),props(nprops)

c

parameter(zero=0.d0,half=0.5d0,one=1.d0,two=2.d0,newtonmax=10,

& toler=1.0d-8,ratemin=1.d-10)

c

c material properties

emu0=props(1)

E1
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ed0=props(2)

et0=props(3)

c props(4) is used for poisson's ratio

c stress values

sa=props(5)

s0=props(6)

c scaling function

a0e=props(7)

pe=props(8)

qe=props(9)

rate0=props(10)

c evolve misorient

cld=props(11)

c geometric disl

cg=props(12)

rg=props(13)

c accumulation

c1=props(14)

c dynamic recovery

c20=props(15)

a02=props(16)

rate02=props(17)

c thermal recovery

c30=props(18)

a03=props(19)

r3=props(20)

c recoverable

c4=props(21)

c50=props(22)

a05=props(23)

c back stress

c6=props(24)
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c7=props(25)

c

c check

rate = deqpl/dtime

if(rate.lt.ratemin)then

rate = ratemin

endif

c

c statevariables

x1p=statev(1) !misorientation

x2p=statev(2) !dislocation ratio

x3p=statev(3) !recoverable disl.

c previous back stress:

sbp=statev(4)

c

emu=emu0-ed0/(dexp(et0/temp)-one)

emusf=emu/emu0

c

c scaling function

sfe0=temp/(a0e*emu)

sfle=dlog(rate0/rate)*sfe0

sfe=(one-sfle**(one/qe))**(one/pe)

c

c dynamic recovery

c2t=-temp/(emu*a02)

c2=c20*dexp(c2t*dlog(rate/rate0))

dc2drt=c2*c2t

c

c thermal recovery

c3=c30*dexp(-a03/temp)*dtime

c5=c50*dexp(-a05/temp)*dtime

c
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c update lattice incompatibility

x1=x1p+cld*deqpl

c initial guess for dislocation dens.

x2=x2p

sqx2=dsqrt(x2)

c

f=-deqpl*(cg*x1**rg+c1*sqx2-c2*x2)+c3*x2**r3

ddf=one-deqpl*(half*c1/sqx2-c2)

if(dabs(f).gt.toler)then

kount=0

do while((dabs(f).gt.toler).and.(kount.lt.newtonmax))

kount=kount+1

x2=dabs(x2-f/ddf)

sqx2=dsqrt(x2)

f=x2-x2p-deqpl*(cg*x1**rg+c1*sqx2-c2*x2)+c3*x2**r3

ddf=one-deqpl*(half*c1/sqx2-c2)

enddo

endif

x3=(x3p+deqpl*c4*sqx2)/(one+deqpl*c2+c5)

c

c equivalent threshold and yield stress

sec=s0*sqx2

sy=sa+emusf*sfe*sec

c back stress

sbnum=sbp+deqpl*c6*sqx2

sbden=one+deqpl*c7

sb=sbnum/sbden

c

c dislocation sensitivity (EQ. 5.44)

dx2de=(cg*x1**rg+c1*sqx2-c2*x2-dc2drt*x2+

& deqpl*rg*cg*cld*(x1**(rg-one)))/ddf

c isotropic senistivity
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dsec=half*s0*dx2de/sqx2

dsfe=sfe0*(one-sfle**(one/qe))**(one/pe-one)*

& sfle**(one/qe-one)/(pe*qe*rate*dtime)

dsy=emusf*(sfe*dsec+dsfe*sec)

c back stress sensitivity

dsb=(c6*sqx2 + half*deqpl*c6*dx2de/sqx2)/sbden-

& c7*sbnum/(sbden**two)

c

c update temporary state variable array

tempstatev(1)=x1

tempstatev(2)=x2

tempstatev(3)=x3

tempstatev(4)=sb

c

return

end

E.2 Load Reversal Subroutine

[parent-folder]/dens_reversal.f

subroutine cyclreversal(statev,nstatv)

implicit real*8(a-h,o-z)

dimension statev(nstatv)

! density - recoverable

statev(2) = statev(2)-statev(3)

! reset recoverable

statev(3) = 0.d0

! swap backstress
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statev(4) = -statev(4)

return

end



Appendix F

Subroutine for the Dislocation Density

Based Model With Static and

Dynamic Recrystallisation

F.1 Isotropic Hardening Subroutine

[parent-folder]/rx_iso.f

subroutine fisotropic(sy,dsy,depl,dtime,temp,

& statev,tempstatev,nstatv,props,nprops)

c

implicit real*8(a-h,o-z)

logical checkrx

dimension props(nprops),statev(nstatv),tempstatev(nstatv),

& xi(2),xj(2),r(2),drdx(2,2),fxinfo(3),reps(2),dxdr(2,2),

& fxnvec(5),xjupd(2)

F1
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parameter(zero=0.d0,half=0.5d0,one=1.d0,two=2.d0,

& toler=1.d-4,x10=one,x20=1.d-10,fxn0=1.d-4,ratelim=1.d-8)

c

c elastic properties:

emu0 = props(1)

ed0 = props(2)

et0 = props(3)

enu = props(4)

c reference stress values

siga = props(5)

sig0 = props(6)

c scaling function

a0e = props(7)

rate0 = props(8)

qe = props(9)

pe = props(10)

c

rate = depl/dtime

if(rate.lt.ratelim)then

rate = ratelim

endif

c

if(temp.gt.et0)then

emu = emu0 - ed0/(dexp(et0/temp)-one)

sfe0 = temp/(a0e*emu)

else

emu = emu0

sfe0 = one/a0e

endif

emusf = emu/emu0

c

sfel = dlog(rate0/rate)*sfe0
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sfe = dabs(one-sfel**(one/qe))**(one/pe)

c isv shift

nrrx = (nstatv-3)/4

if(statev(7).gt.(0.999d0))then

ixvf=0

do while(ixvf.lt.nrrx)

lstskip = 4*(ixvf)+3

statev(lstskip+1)=statev(lstskip+5)

statev(lstskip+2)=statev(lstskip+6)

statev(lstskip+3)=statev(lstskip+7)

statev(lstskip+4)=statev(lstskip+8)

enddo

statev(lstskip+5)=zero

statev(lstskip+6)=zero

statev(lstskip+7)=zero

statev(lstskip+8)=zero

endif

c

fxc = one

fxcp = one

fxcr = zero

dfxcde = zero

x1eq = zero

x2eq = zero

dx1eqde = zero

plastic = zero

c

ixvf = 1

checkrx = .true.

do while((ixvf.lt.nrrx).and.(checkrx))

lstskip = 4*(ixvf-1)+3

xeplp = statev(lstskip+1)
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x1p = max(statev(lstskip+2),x10)

x2p = max(statev(lstskip+3),x20)

fxnp = max(statev(lstskip+4),fxn0)

xi = (/x1p,x2p/)

xj = (/x1p,x2p/)

fxinfo = (/fxc,fxcr,fxnp/)

call rget(r,drdx,fxnvec,reps,xj,xi,fxinfo,

& depl,dtime,temp,props,nprops)

fx = dsqrt(r(1)*r(1) + r(2)*r(2))

fxd = drdx(1,1)*drdx(2,2)-drdx(2,1)*drdx(1,2)

icount = 0

newtmax=15

if(xi(1).eq.(one))then

newtmax = 50

endif

do while((icount.lt.newtmax).and.(dabs(fx).ge.toler))

icount = icount+1

if(dabs(fxd).gt.zero)then

dxdr = reshape((/drdx(2,2),-drdx(2,1),

& -drdx(1,2),drdx(1,1)/),(/2,2/))/fxd

xjupd = reshape(matmul(dxdr,reshape(r,(/2,1/))),(/2/))

xj=xj-xjupd

xj = (/max(dabs(xj(1)),x10),max(dabs(xj(2)),x20)/)

fxinfo = (/fxc,fxcr,fxnp/)

call rget(r,drdx,fxnvec,reps,xj,xi,fxinfo,

& depl,dtime,temp,props,nprops)

fx = dsqrt(r(1)*r(1) + r(2)*r(2))

fxd = drdx(1,1)*drdx(2,2)-drdx(2,1)*drdx(1,2)

else

xj = (/x1p,x2p/)

fx = zero

endif
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enddo

x1 = max(xj(1),x10)

x2 = max(xj(2),x20)

fxn = min(dabs(fxnvec(1)),one)

c

c add fxc contribution to Gamma

rx0 = one/(fxc-fxn)

dxdfxc0 = dfxcde*(dtime*fxcr*rx0*rx0-rx0)

dx1dfxc = dxdfxc0*x1

dx2dfxc = dxdfxc0*x2

reps=reps+(/dx1dfxc,dx2dfxc/)

c

if(fxn.le.(1.d-3))then

checkrx = .false.

endif

fxnr = fxnvec(2)

dfxndx1 = fxnvec(3)

dfxndx2 = fxnvec(4)

dfxndfxc = fxnvec(5)

xepl = xeplp*fxcp/fxc+depl

c

tempstatev(lstskip+1) = xepl

tempstatev(lstskip+2) = x1

tempstatev(lstskip+3) = x2

tempstatev(lstskip+4) = fxn

c

x1eq = x1eq + x1*(fxc-fxn)

x2eq = x2eq + x2*(fxc-fxn)

plastic = plastic + xepl*(fxc-fxn)

c

if(dabs(fxd).gt.0)then
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dx1de = dxdr(1,1)*reps(1)+dxdr(1,2)*reps(2)

dx2de = dxdr(2,1)*reps(1)+dxdr(2,2)*reps(2)

dfxnde = dfxndx1*dx1de+dfxndx2*dx2de+dfxndfxc*dfxcde

dx1eqde = dx1eqde + dx1de*(fxc-fxn) +

& x1*(dfxcde - dfxnde)

dfxcde = dfxnde

fxc = fxn

fxcp = fxnp

fxcr = fxnr

endif

c endif

ixvf = ixvf+1

end do

c

tempstatev(1) = plastic

tempstatev(2) = x1eq

tempstatev(3) = x2eq

c

sqx1 = dsqrt(x1eq)

sec = sig0*sqx1

sy = siga + emusf*sfe*sec

c partial derivatives

c d(sec)/d(epl)

dsecdepl = half*sig0*dx1eqde/sqx1

c d(sfe)/d(epl)

dsfedepl = (sfe0*(one-sfel**(one/qe))**(one/pe-one)*

& sfel**(one/qe-one)/(pe*qe*rate))/dtime

c total

dsy = emusf*(sfe*dsecdepl+dsfedepl*sec)

return
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end

F.2 Recrystallisation Residual Subroutine

[parent-folder]/getr.f

subroutine rget(r,drdxj,fxnvec,reps,xj,xi,fxinfo,

& depl,dtime,temp,props,nprops)

c

implicit real*8(a-h,o-z)

dimension props(nprops),r(2),drdxj(2,2),fxinfo(3),reps(2),

& xj(2),xi(2),fxnvec(5)

c

parameter(zero=0.d0,half=0.5d0,one=1.d0,two=2.d0,

& toler=1.d-10,ratelim=1.d-8)

c

c elastic properties:

emu0 = props(1)

ed0 = props(2)

et0 = props(3)

enu = props(4)

c reference stress values

siga = props(5)

sig0 = props(6)

c scaling function

a0e = props(7)

rate0 = props(8)

c evolution of misorient:
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cld = props(11)

c stage 4

cg = props(12)

rg = props(13)

c storage

c1 = props(14)

c dynamic recovery:

c20 = props(15)

a02 = props(16)

rate02 = props(17)

c thermal recovery

c30 = props(18)

r3 = props(19)

a03 = props(20)

c recrystallisation

cx0 = props(21)

a0x = props(22)

cxl = props(23)

rxl = props(24)

rxa = props(25)

rxb = props(26)

cxc = props(27)

c

c get info from previous values: contained in fxinfo:

fxc = fxinfo(1)

fxcr = dabs(fxinfo(2))

fxnp = fxinfo(3)

c

rate = depl/dtime

if(rate.lt.ratelim)then

rate = ratelim

endif
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c

if(temp.gt.et0)then

emu = emu0 - ed0/(dexp(et0/temp)-one)

r2m = -temp/(emu*a02)

r3c = c30*dexp(-a03/temp)*dtime

r5c0 = cx0*dexp(-a0x/temp)*emu*dtime

else

c use constants:

emu = emu0

r2m = -a02

r3c = c30*dtime

r5c0 = cx0*emu*dtime

endif

c isv's at previous convergence and current guess:

x1p = max(xi(1),one)

x2p = max(xi(2),zero)

x1 = max(xj(1),one)

x2 = max(xj(2),zero)

c

c growth of next recrystallised volume:

cldbar = min(x2,one)

r5c1 = (one-dexp(-cxl*(cldbar)**rxl))

r5c = r5c0*r5c1*(x1)

c interfacial area

fxn = fxnp

rxg = fxc*((fxn/fxc)**rxa)*((one-fxn/fxc)**rxb)*

& (one+cxc*(one-fxc))

drxg = rxa*((fxn/fxc)**(rxa-one))*

& ((one-fxn/fxc)**rxb)*(one+cxc*(one-fxc)) -

& rxb*((fxn/fxc)**rxa)*((one-fxn/fxc)**(rxb-one))*

& (one+cxc*(one-fxc))

fxnr = dabs(r5c*rxg)
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ffxn = fxn - fxnp - fxnr

c resolve residual

icount = 0

do while((icount.lt.15).and.(dabs(ffxn).gt.toler))

icount = icount+1

dffxn = one - half*r5c*drxg

if(dabs(dffxn).lt.toler)then

dffxn = toler

endif

fxn = min(dabs(fxn - ffxn/dffxn),fxc-toler)

rxg = fxc*((fxn/fxc)**rxa)*((one-fxn/fxc)**rxb)*

& (one+cxc*(one-fxc))

drxg = rxa*((fxn/fxc)**(rxa-one))*

& ((one-fxn/fxc)**rxb)*(one+cxc*(one-fxc)) -

& rxb*((fxn/fxc)**rxa)*((one-fxn/fxc)**(rxb-one))*

& (one+cxc*(one-fxc))

fxnr = dabs(r5c*rxg)

ffxn = fxn - fxnp - fxnr

end do

c partial : change of fxn with respect to x1 and x2:

c partial gradients d(fxn)/d(x1)

ddfxdr = (one-r5c*drxg)

if(dabs(ddfxdr).lt.toler)then

ddfxdr = toler

endif

dfxndx1 = (r5c0*r5c1*rxg)/ddfxdr

dmdx2 = zero

if(x2.lt.one)then

dmdx2 = one

endif

dr5c1dm = rxl*cxl*dexp(-cxl*(cldbar)**rxl)*

& (cldbar)**(rxl-one)
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dfxndm = (r5c0*dr5c1dm*x1*rxg)/ddfxdr

c partial gradients d(fxn)/d(x2)

dfxndx2 = dfxndm*dmdx2

c partial d(fxn)/d(fxc)

drxgdfxc = ((fxn/fxc)**rxa)*((one-fxn/fxc)**rxb)*

& (one+cxc*(one-fxc))

& - rxa*((fxn/fxc)**rxa)*((one-fxn/fxc)**rxb)*

& (one+cxc*(one-fxc))

& + rxb*((fxn/fxc)**(rxa+one))*((one-fxn/fxc)**(rxb-one))*

& (one+cxc*(one-fxc))

& - cxc*fxc*((fxn/fxc)**rxa)*((one-fxn/fxc)**rxb)

dfxndfxc = r5c*drxgdfxc

c residual equations on the isv values:

c2 = c20*(rate/rate02)**r2m

dc2de = c20*r2m*((rate/rate02)**(r2m-one))/

& (dtime*rate02)

sqx1p = dsqrt(x1p)

sqx1 = dsqrt(x1)

hx2 = cld

hx1temp = -r3c*(x1**r3+x1p**r3)

hx1 = (cg)*(x2)**rg+c1*sqx1-c2*x1

if(fxn.ge.fxc)then

rx0 = zero

else

rx0 = one/(fxc - fxn)

endif

rfxc = fxcr*rx0

drx = rfxc*rx0

r1 = x1-x1p-hx1*depl-hx1temp+x1*rfxc

r2 = x2-x2p-hx2*depl+x2*rfxc

r = (/ r1 , r2 /)

c partial : change in residual with respect to x1 and x2:
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dhrdrtemp=-r3*r3c*x1**(r3-one)

dhrdr=half*c1/sqx1-c2

c partial gradients d(fr1)/d(x1)

dr1dr0=one-dhrdr*depl-dhrdrtemp+rfxc

dr1dx1=dr1dr0+x1*drx*dfxndx1

c partial gradients d(fr1)/d(x2)

dr1dx2=-depl*rg*(cg)*(x2)**(rg-one)+

& x1*drx*dfxndx2

c partial gradients d(f2)/d(x1)

dr2dx1 = x2*drx*dfxndx1

c partial gradients d(f2)/d(x2)

dr2dl0= one + rfxc

dr2dx2 = dr2dl0 + x2*drx*dfxndx2

drdxj=reshape((/dr1dx1,dr2dx1,dr1dx2,dr2dx2/),(/2,2/))

c

dr1de = hx1 - depl*dc2de*x1

dr2de = hx2

reps = (/dr1de,dr2de/)

c exchange new supplementary info using fxinfo:

fxnvec(1) = fxn

fxnvec(2) = fxnr

fxnvec(3) = dfxndx1

fxnvec(4) = dfxndx2

fxnvec(5) = dfxndfxc

c

return

end
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Figure G.1: Equivalent plastic strain distributions in the axi-symmetric billet at (a)
0.5478s, (b) 10.1728s, (c) 10.5049s, (d) 19.9072s, (e) 20.1426s, (f) 29.4863s, (g) 29.6836s,
(h) 38.999s, (i) 39.3994s and (j) 10 seconds after the �nal reduction.
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Figure G.2: Von Mises stress distributions in the axi-symmetric billet at (a) 0.5478s,
(b) 10.1728s, (c) 10.5049s, (d) 19.9072s, (e) 20.1426s, (f) 29.4863s, (g) 29.6836s, (h)
38.999s, (i) 39.3994s and (j) 10 seconds after the �nal reduction.
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Figure G.3: Dislocation density ratio distributions in the axi-symmetric billet at (a)
0.5478s, (b) 10.1728s, (c) 10.5049s, (d) 19.9072s, (e) 20.1426s, (f) 29.4863s, (g) 29.6836s,
(h) 38.999s, (i) 39.3994s and (j) 10 seconds after the �nal reduction.
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Figure G.4: Average slip plane lattice misorientation distributions in the axi-symmetric
billet at (a) 0.5478s, (b) 10.1728s, (c) 10.5049s, (d) 19.9072s, (e) 20.1426s, (f) 29.4863s,
(g) 29.6836s, (h) 38.999s, (i) 39.3994s and (j) 10 seconds after the �nal reduction.
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Figure G.5: Volume fraction recrystallised at least once (fx1) in the axi-symmetric
billet at (a) 0.5478s, (b) 10.1728s, (c) 10.5049s, (d) 19.9072s, (e) 20.1426s, (f) 29.4863s,
(g) 29.6836s, (h) 38.999s, (i) 39.3994s and (j) 10 seconds after the �nal reduction.
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Figure G.6: Volume fraction recrystallised at least twice (fx2) in the axi-symmetric
billet at (a) 0.5478s, (b) 10.1728s, (c) 10.5049s, (d) 19.9072s, (e) 20.1426s, (f) 29.4863s,
(g) 29.6836s, (h) 38.999s, (i) 39.3994s and (j) 10 seconds after the �nal reduction.
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Figure G.7: Volume fraction recrystallised at least three times (fx3) in the axi-
symmetric billet at (a) 0.5478s, (b) 10.1728s, (c) 10.5049s, (d) 19.9072s, (e) 20.1426s,
(f) 29.4863s, (g) 29.6836s, (h) 38.999s, (i) 39.3994s and (j) 10 seconds after the �nal
reduction.
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Figure G.8: Volume fraction recrystallised at least four times (fx4) in the axi-symmetric
billet at (a) 0.5478s, (b) 10.1728s, (c) 10.5049s, (d) 19.9072s, (e) 20.1426s, (f) 29.4863s,
(g) 29.6836s, (h) 38.999s, (i) 39.3994s and (j) 10 seconds after the �nal reduction. The
discontinuous contours in (i) and (j) are as a result of a state variable shift once the
original material fx0has fully recrystallised (fx1 ≥ 0.999).
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Figure G.9: Volume fraction recrystallised at least �ve times (fx5) in the axi-symmetric
billet at (a) 0.5478s, (b) 10.1728s, (c) 10.5049s, (d) 19.9072s, (e) 20.1426s, (f) 29.4863s,
(g) 29.6836s, (h) 38.999s, (i) 39.3994s and (j) 10 seconds after the �nal reduction. The
discontinuous contours in (i) and (j) are as a result of a state variable shift once the
original material fx0has fully recrystallised (fx1 ≥ 0.999).
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Figure H.1: Von Mises Stress contours for Schedule IV at (a) 1s, (b) 3.5s, (c) 13.5s,
(d) 15s, (e) 25s, (f) 26.0714s, (g) 36.0714s, (h) 36.9047s, (i) 46.9047s, (j) 47.5864s and
(k) 57.5865s
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Figure H.2: Equivalent plastic strain contours for Schedule IV at (a) 1s, (b) 3.5s, (c)
13.5s, (d) 15s, (e) 25s, (f) 26.0714s, (g) 36.0714s, (h) 36.9047s, (i) 46.9047s, (j) 47.5864s
and (k) 57.5865s
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Figure H.3: Volume fraction averaged dislocation density ratio (ρ̄/ρ0) contours for
Schedule IV at (a) 1s, (b) 3.5s, (c) 13.5s, (d) 15s, (e) 25s, (f) 26.0714s, (g) 36.0714s,
(h) 36.9047s, (i) 46.9047s, (j) 47.5864s and (k) 57.5865s
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Figure H.4: Volume fraction averaged slip plane lattice misorientation (λ̄) contours for
Schedule IV at (a) 1s, (b) 3.5s, (c) 13.5s, (d) 15s, (e) 25s, (f) 26.0714s, (g) 36.0714s,
(h) 36.9047s, (i) 46.9047s, (j) 47.5864s and (k) 57.5865s



G.J. JANSEN VAN RENSBURG

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

RX fraction
(fx1)

Figure H.5: Contours of fx1 s for Schedule IV at (a) 1s, (b) 3.5s, (c) 13.5s, (d) 15s, (e)
25s, (f) 26.0714s, (g) 36.0714s, (h) 36.9047s, (i) 46.9047s, (j) 47.5864s and (k) 57.5865s
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Figure H.6: Contours of fx2 for Schedule IV at (a) 1s, (b) 3.5s, (c) 13.5s, (d) 15s, (e)
25s, (f) 26.0714s, (g) 36.0714s, (h) 36.9047s, (i) 46.9047s, (j) 47.5864s and (k) 57.5865s
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Figure H.7: Contours of fx3 for Schedule IV at (a) 1s, (b) 3.5s, (c) 13.5s, (d) 15s, (e)
25s, (f) 26.0714s, (g) 36.0714s, (h) 36.9047s, (i) 46.9047s, (j) 47.5864s and (k) 57.5865s
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Figure H.8: Volume fraction averaged grain size contours for Schedule IV at (a) 1s, (b)
3.5s, (c) 13.5s, (d) 15s, (e) 25s, (f) 26.0714s, (g) 36.0714s, (h) 36.9047s, (i) 46.9047s,
(j) 47.5864s and (k) 57.5865s
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Figure I.1: Through thickness equivalent plastic strains 350mm away from the roller
directly after each roll pass step modelled for (a) 14× 7%, (b)10×10%, (c) 6×15% and
(d) 5×20% reduction roll pass sequences.
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Figure I.2: Through thickness equivalent plastic strain 350mm away from the roller 10
seconds after each roll pass step modelled for (a) 14× 7%, (b)10×10%, (c) 6×15% and
(d) 5×20% reduction roll pass sequences.
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Figure I.3: The averaged data in Figure I.2 over the normalised distance from the
centre. (a) 14× 7%, (b)10×10%, (c) 6×15% and (d) 5×20%.
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Figure I.4: Through thickness residual stresses 350mm away from the roller directly
after each roll pass step modelled for (a) 14 × 7%, (b)10×10%, (c) 6×15% and (d)
5×20% reduction roll pass sequences.
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Figure I.5: Through thickness residual stresses 350mm away from the roller 10 seconds
after each roll pass step modelled for (a) 14 × 7%, (b)10×10%, (c) 6×15% and (d)
5×20% reduction roll pass sequences.
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Figure I.6: The averaged data in Figure I.5 over the normalised distance from the
centre. (a) 14× 7%, (b)10×10%, (c) 6×15% and (d) 5×20%.
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Figure I.7: Through thickness grain size estimates 350mm away from the roller directly
after each roll pass step modelled for (a) 14 × 7%, (b)10×10%, (c) 6×15% and (d)
5×20% reduction roll pass sequences.
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Figure I.8: Through thickness grain size estimates 350mm away from the roller 10
seconds after each roll pass step modelled for (a) 14× 7%, (b)10×10%, (c) 6×15% and
(d) 5×20% reduction roll pass sequences.
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Figure I.9: The averaged data in Figure I.8 over the normalised distance from the
centre. (a) 14× 7%, (b)10×10%, (c) 6×15% and (d) 5×20%.


