Design and implementation of a Node.js Based
Communication framework for an Unmanned
Autonomous Ground Vehicle

Martin K. Mwila, CSIR Defence, Peace, Safety and Security,email: MMwila@csir.co.za and Perseverance
Mbewe, CSIR, Meraka Institute, email: PMbewe @ csir.co.za

Abstract—This paper describes the methodology used to de-
velop a communication platform that enhances interoperabil-
ity between different types of components irrespective of the
manufacturers and of the software platform. This framework
is intended to be used on a distributed system where software
and hardware modules are designed to control an autonomous
Unmanned Ground Vehicle (UGV). A messaging architecture
based on the Joint Architecture for Unmanned Systems (JAUS)
was developed in Node.js to ensure platform independence. It
was deployed on hardware platforms such as the Raspberry Pi
and the BeagleBone Black in order to access various sensors
on the platform and control hardware like stepper motor. This
messaging architecture can also be implemented on conventional
laptops running Windows operating system or Linux that run
algorithms for localisation, terrain mapping and path planning.
Initially regarded as a very limited language, JavaScript’s true
nature and power have only recently been appreciated in depth,
A major move is now underway to apply this language in new
and fascinating contexts. The ultimate goal of the framework
was to structure communication and inter-operation of UGV
components and a sensor suite within a network. The framework
was implemented on the G-Bat, a UGV platform developed
at CSIR DPSS Landward Sciences to test and simulate the
communication part of an autonomous navigation system. The
test was a successful step that paves the way for a more robust
implementation of the framework in the future work.

Keywords—Unmanned Ground Vehicle, Communication Frame-
work, Socket.10, Node.js, Asynchronous Waterfall Model, Joint
Architecture for Unmanned Systems.

I. INTRODUCTION

Research and development of an unmanned system for
various uses is ongoing around the world. Autonomous
navigation is still a challenge, because of the computation
complexity involved in processing data form different sensors.
Designing innovative communication system that scale to
facilitate potential new usage patterns can pose significant
challenges. This situation is particularly prevalent in the
case where these services are to be delivered over existing
protocols and inter-operate with legacy services. In addition,
this work explores the design choices for such a service.
The complexity of the design implementation and testing
of autonomous vehicle systems requires the integration of
software components that manage sensing, control, actuation
and logging.

A single executable file that runs the entire system is
impractical, due to the variety of tasks that must be addressed,
and the difficulty of debugging a multi-threaded design. On
the other hand, a component-based design permits a functional
decomposition of system into smaller tasks, and allows those
tasks to communicate via a message passing framework which
would even abstract whether a set of processes are running
on the same machine or over the network.

Many different technologies address this particular issue
of middleware. One architecture put forth by the United
States (US) Department of Defence is the Joint Architecture
for Unmanned Systems (JAUS). This architecture is now
a standard of the Society of Automotive Engineers(SAE).
JAUS is a set of standards that govern the construction of
and interactions between computers and components in these
systems.

This work aims at implementing a distributed approach
developed in Node.js that uses a message passing framework
that emulates JAUS. Node.js uses the Google V8 JavaScript
engine to execute code and a large percentage of the basic
modules are written in JavaScript. It provides an event-driven
architecture and a non-blocking I/O API that optimises an
application’s throughput and scalability.

These technologies are commonly used for real-time
applications. JavaScript might just be the most widely
deployed programming environment in history (every web
browser in existence). JavaScript, a language originally
created to be used inside the web browser, will run outside
the browser but inside each UGV hardware component.

Running JavaScript outside the browser is made possible
by Node.js. Node.js is a single threaded application that is
fast, event driven and structured to use non-blocking 1/O. This
amazing feature of Node.Js will to cater for the real-time
operation requirements. It is open source and cross platform.
It is also lightweight and can easily integrate to the web
and the Internet of things (IoT). Many developers already
familiar with JavaScript can now develop components for
autonomous navigation system that would work, irrespective of
the hardware platform on which this communication software
is running.



II. BACKGROUND
A. Related work

Technologies aimed at developing a common
communication framework based on the same approach
can be found in literature. The OpenJAUS LLC, developed by
Dr. Danny Kent is aimed at providing a complete and robust
middleware solution for Unmanned Systems developers [1],
[2], [3], [4] . It is developed in C++ and only runs on limited
platform architectures and is available only for Windows
and Linux (Ubuntu) systems. It is difficult to implement and
requires an advanced knowledge of C++. In addition, the
licensing mechanism of this SDK is complex and not cheap.

The other variants of the JAUS implementation found in the
literature are the JAUS++ and the JAUS toolset. JAUS++ is an
Open Source (BSD) C++ implementation of JAUS (i.e. JAUS
SDK) developed by the ACTIVE Laboratory for use in real
and simulated unmanned vehicles. This and other languages
such as the Matlab iJAUS and the LabVIEW implementation
of JAUS are designed to support the modeling, analysis,
specification , simulation and testing of the protocol for
distributed systems [5].

On the other hand, the Robot Operating System (ROS)
which is a collection of software frameworks for robot
software development providing an operating system-like
functionality on heterogeneous computer cluster. ROS provides
services such as hardware abstraction, low level device control
and message passing between processes. It is released under
the BSD license and is free for both commercial and research
use. However, the main client libraries (C++, Python, and
LISP) are geared towards a Unix-like systems and primarily
on Ubuntu Linux. Other operating systems are listed as
experimental and only supported by the community [6].

B. Motivation

While several groups have developed JAUS libraries for
C++, LabVIEW, Matlab, and Java, none has yet been proposed
in the literature that uses JavaScript. Node.js, a programming
language that is asynchronous in nature, allows the communi-
cation software developed in this framework to be :

e single threaded;
fast;
non-blocking 1/0O;
cross platform;
open source;
lightweight.

On the other hand, JavaScript programming language is
very well known by a substantial number of developers and
have a wide contributing community that share ready to use
and extensively tested modules that address a wide range
of applications. The development tools are simple and free
(a text editor, Node.js and a browser). The data exchange
is in a JSON format, that is universally understood by any
programming language.

In addition, the components need not to be written in Node.js
and can be developed in any other programming language as
Node.js is very good at interfacing to other languages and can
spawn other processes if compiled into binary code. These
attributes give an edge to the communication framework this
technology demonstrator proposes compared to the existing
ones.

I11.

The UGV is implemented as a subsystem of a complete Au-
tonomous System designed at CSIR DPSS Landward Sciences
and is depicted in Figure 1.

SYSTEM OVERVIEW

CSIR ANS
(System)

usv
(Subsystem2)

World Model Vector Driver
sensors

ocali Oynamic
pocier Opstace Pose sensar

Fig. 1. Autonomous Navigation System Overview

IV. OBIJECTIVES

The framework developed in this work is the entry point
of all communication within a UGV as well as the whole
autonomous navigation system. It can be extended to any other
autonomous or robotic systems. The objectives pursued in this
work were to:

e develop and implement the hardware and software com-
ponents responsible for sending messages between the
Operator Control Unit (OCU) and Unmanned Ground
Vehicle (UGV) subsystems as well as the inter-node
communications;

e coordinate the communication between modules and
provide acknowledgement responses;

e develop and implement a Graphical User Interface (GUI)
on a tablet PC that will be able to send manual com-
mands (remote control) to the UGV and display the
mission status of the UGV;

e build the wireless communication network from the
OCU to the UGV;

V. METHODOLOGY

The communication framework is implemented as a messag-
ing server using Socket.IO in Node.js . Some implementation
of the Socket.IO client in Python is also available. The mes-
sages are all defined and assigned a message ID. The format
is standardised according to the JAUS Transport Specification,
and are routed to the required node by the communicator
component (server). Each component responds to the message
with a corresponding message and the data passing is in JSON
format.

ImageSensor



An acknowledgment to each message is provided to make
the communication robust.

The communicator keeps the tree of connected node and
broadcast the list to every node connected to the network to
advertise the services available.

The communicator also allows control of the G-Bat via a
web based interface. this capability is achieved by connecting
an OCU (tablet) to the network via the Wi-Fi access point
or remotely from the control office via a wireless modem.
The communication framework was designed with following
characteristics in mind:

A. Reliability

The Socket.IO based communication was chosen for the re-
liability of its connections. Connections are established even in
presence of proxies, personal firewall and anti-virus software.

B. Connection and disconnection detection

The library implements a mechanism at the core level to
allow the server and the client to know when the other one is
connected or not responding any more. This feature has been
used to implement a creation and update of a system tree of
connected nodes.

C. Auto-reconnection support

The Socket.IO library supports auto-reconnection in the
event of unscheduled disconnection unless otherwise instructed
in the code.

D. Room support

This useful feature sends notifications to a group of users,
or to a given user connected on several devices for example.

E. Message synchronisation

The waterfall model design was chosen to synchronise all
messages in the system. It provided a linear sequential flow
of passing of messages from the root subsystem (OCU) to its
children. Figure 2 depict the waterfall model

The passing of messages to other subsystems starts when
the destination of the vehicle is approved by the OCU.

The next subsystem begins its process only if the previous
subsystem task is complete. As such, all the subsystems do not
overlap. When a subsystem is blocked, a callback is invoked
to restart the process from the beginning [7].

.
System
Commander l
Mission Spooler

Path Planner

World Model l

Fig. 2. Message synchronisation using waterfall model

VI. IMPLEMENTATION

A. Hardware implementation

The complexity is high as the technology has to integrate
Web servers, http technology, TCP/IP as well as I/O access
and control on Raspberry Pi as well as spawning child
processes written a programming language other than Node.js.
The change of paradigm in the programming philosophy from
embedded C++ to JavaScript was challenging. However, the
the Node.js user community was of a great assistance.

Figure 3 depict the hierarchical configuration of the UGV

hardware.
ocu
0

Wireless Maodem

< Communicator
(nodejs)
(3

TCR/IP

Node n

p

F
E
2

Fig. 3. Hardware Implementation Design

The Network and power supplies were installed on the G-
Bat UGV in the Autonomous Lab at Landwards Sciences.
The communicator software was installed on the ComSIS
LTE MiFi 4G router, a communication device obtained from
Tshwane University of Technology. This module houses a
Linux PC running Node.js . The Communicator software will
run there as a local service. Figure 4 depict the Communicator
node and its services running on the ComSIS LTE MiFi router.



Fig. 4. Communicator node

The router is equipped with a DHCP server that also has a
Wi-Fi access point to which the tablet used as an OCU can
connect. The other component software were run on Raspberry
Pi to simulated the other components of the UGV connecting
to the network in order to test the communication software.
These Single Board Computers (SBC) were connected to the
G-Bat network using the Ethernet switch.

B. Software implementation in Node.js

The Communicator component maintains all data links
to other subsystems within the system. The Communicator
also allows for a single point of entry to any subsystem. It
is implemented in Node.js as a Socket-Io server with socket
clients being the other subsystem components. It also include
as a Web server using with the client running in a browser at
the OCU tablet.

The other nodes are implemented in Node.js as Socket-Io
clients connecting to a server running on the Communicator
node.

Room features and socket IDs are used for individual
communications and broadcast. Each node send an acknowl-
edgement message back to the sender node.

VII. TEST SETUP

The test was conducted in the laboratory on the G-Bat test
platform as depicted in Figure 5.

Fig. 5. G-Bat Test platform

The complete communication loop was tested with test code
that initiated the process from the planner module to the
primitive driver node via the Vector knowledge store node.
Figure 6 depict the hardware setup for the test executed on
the framework in the Autonomous Navigation Laboratory at
CSIR DPSS Landward Sciences.

VIIL

Below are screen shots of the test results. From a main
computer we have been able to make secure shell (SSH)
connections to nodes running on different single boards
computers such as the Raspberry Pi and the BeagleBone

TEST RESULTS

Fig. 7.

Overview of the system’s communications

Black and have been able to monitor the communication
messages at each node level.

The following figures show samples of messages obtained
during the test. In these figures, the node IDs, message IDs
and timestamps can be seen. The tests also shows that the
framework maintains a list of connected nodes and broadcasts
it to all nodes in real time as a node connects or disconnects.
The acknowledgment messages can also be seen. All these
messages are logged on the console and also in a file that can
be used for debugging if any communication problem arise.

Figure 8 depicts the messages on a test segment driver
node demonstrating a request of a transferability map.

Figure 9 illustrates how the Communicator node manages
the communications in the whole subsystem. A log file is
saved on this node.

Finally, a tester module was written to simulate the whole
system communication. A sample of the message generated
is seen in Figure 10.

The communication speed has been measured from the
timestamps that were implemented in software and has been
found to be excellent. For a map of 16x16 grids, the commu-
nication delay introduced by this type of data size has been
found to be negligible.

IX. PERFORMANCE EVALUATION OF SOCKET.IO IN
NODE.JS

There has been a lot of debate about the relative performance
of single-threaded like Node.js versus multiple-threaded appli-



Fig. 8.

Fig. 9.

MINGW64:/d/My Work/ANS2017/7, Local PatSEgmEnt CrveriDis, . T =3 NE"=NIES

rk has been

Segment driver module communications

Communicator module sample messages

mean roundtrip time

0 2000 4000 6000 8000 10000 12000 14000 16000
messages sent per second

Fig. 11. Communication Framework Performance Tests

cations such as Python. This paper is not aimed at making
a direct comparison between the two, but rather at analysing
performances such as latency, number of message per second
and number of concurrent connections for the application it is
designed for which is the UGV.

In a single-threaded environment like node, scheduling tasks
is handled with a queue. When the rising round trip times
start happening, it means that tasks that are being added to
the queue more quickly than they can be processed. Once the
server reaches that point, performance of the communication
framework is going to degrade very rapidly until the rate of
adding new tasks falls below the jamming threshold.

Figure 11 illustrates how the communicator node manages
the communications in the whole subsystem. The time in the
figure is expressed in milliseconds(ms). The right hand side
of the figure depict the legend according to the number of



connected nodes. I can be seen that the more the number of
nodes communicating, the longer the latency (round trip time).
During the examination of these graphs, it is important to re-
member that any response time greater than 100ms represents
a fatal situation if we aimed at detecting any obstacle within
a meter when the vehicle is moving at the speed of 40km/h.
It has to be understood that when the vehicle will cover a
distance of 1.1 meter in 100ms when travelling at 40km/h.
On the graph, it can be seen that the mean round trip time
start be greater than 100ms with a 1000 nodes are connected
when the number of messages per second sis greater than 9000.
As a result, his system will perform perfectly even with a 1000
nodes connected and sending 8000 messages per second.

X. CONCLUSION

All message passing and responses were demonstrated as
well as the timing and logging thereof. Although Node.js is
single threaded and the latency will increase with the number
of connections and message sent. the system has proven to be
suitable for the application in a UGV with a very small number
of connected nodes. The work presented in this paper is a novel
implementation of a communication framework in JavaScript
and truly cross platform and light weight (single threaded).
Similar communication frameworks have been implemented in
C++ for the most part and not truly cross platform. It is also
accessible to the majority of developer and has a natural path
to the Web and Internet because JavaScript is the language of
the Web. The demonstration was successful as the SBC were
used to achieve all thDetails of the proceedingse expectations
in terms of message communication requirements.

REFERENCES

[1] Danny Kent. "Robotic Manipulation and Haptic Feedback via High
Speed Messaging with the Joint Architecture for Un-manned Systems
(JAUS).” AUVSI Unmanned Systems Conference,2004.

[2] Galluzzo, Thomas and Danny Kent “The openjaus approach to design-
ing and implementing the new sae jaus standards”. AUVSI Unmanned
Systems Conference, 2010.

[3] Touchton, Bob, et al. “Perception and planning architecture for au-
tonomous ground vehicles.”. Computer 39.12 , 2006.

[4] Crane Iii Carl D. et al. ”Team cimars navigator: An unmanned ground
vehicle for the 2005 darpa grand challenge.” The 2005 DARPA Grand
Challenge. Springer Berlin Heidelberg, 311-347., 2007.

[5S] BAZN, FEDERICO, et al. "JAUS Interface for Tools Development in
the robotics field.” Computer Science Technology Series: 245., 2006.

[6] Quigley, Morgan, et al. "ROS: an open-source Robot Operating System.”
ICRA workshop on open source software. Vol. 3. No. 3.2. , 2009.

[71 R. Elghondakly, S. Moussa and N. Badr, “Waterfall and agile
requirements-based model for automated test cases generation,” 2015

IEEE Seventh International Conference on Intelligent Computing and
Information Systems (ICICIS), Cairo, 2015, pp. 607-612.



