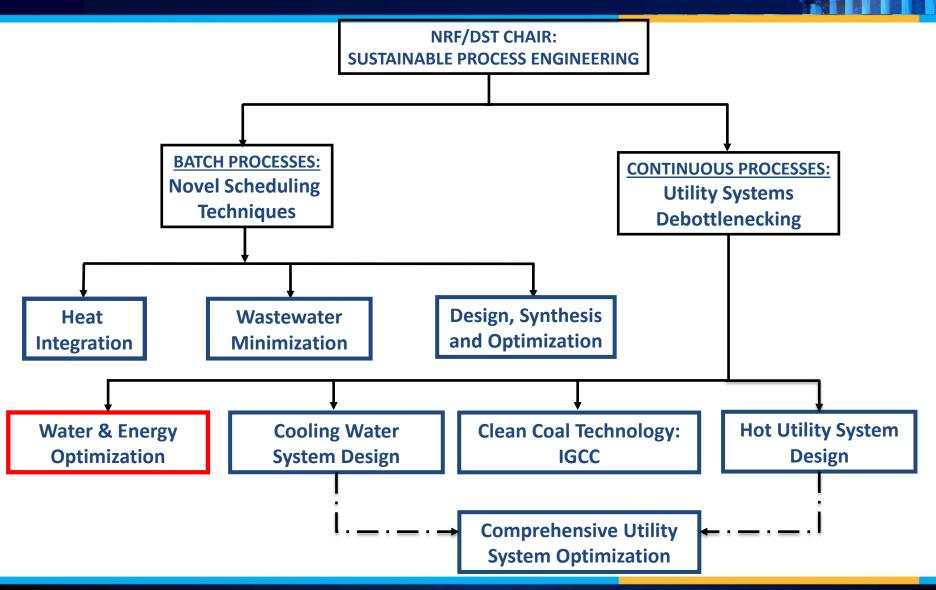
Simultaneous Water and Energy Optimization in Chemical Plants

Thokozani Majozi


University of the Witwatersrand, Johannesburg

NRF/DST Chair: Sustainable Process Engineering

School of Chemical and Metallurgical Engineering

www.wits.ac.za

Group Structure

Outline

Background & Motivation

- **Problem Statement**
- Model Development
- Illustrative Examples
- Case Study
- Results & Discussion

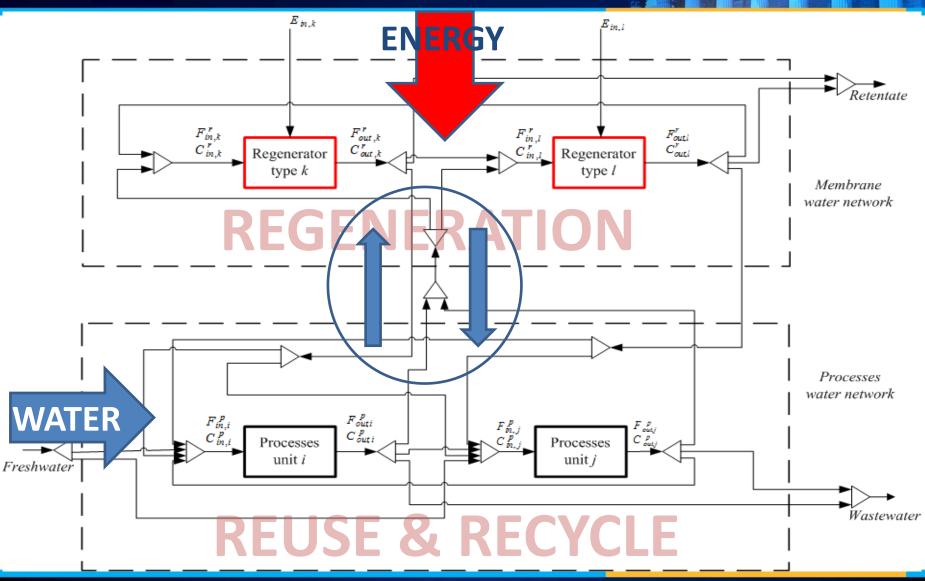
Background

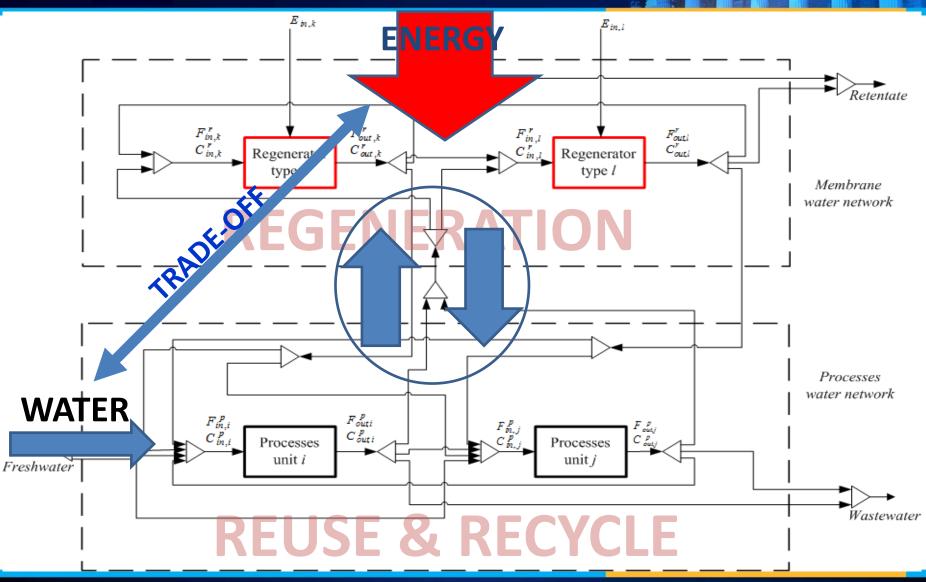
□ Water and energy

- Each resource is consumed to produce the other
 - Hydroelectric
 - Geothermal
 - Steam turbines

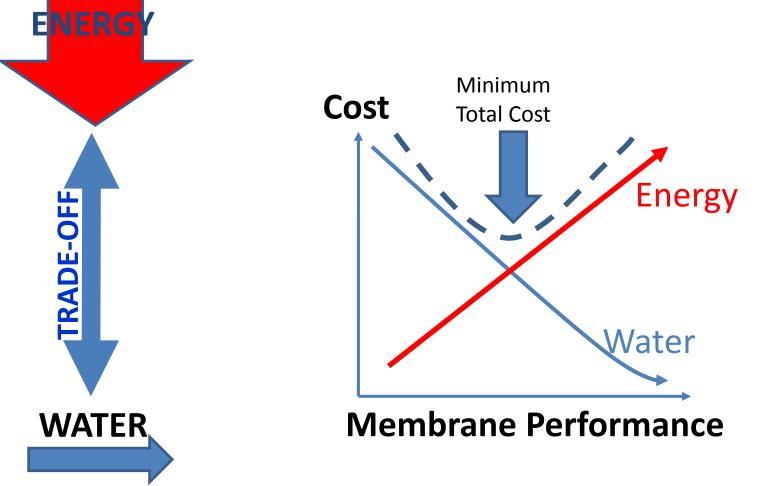
- Extraction
- Production
- Distribution
- Treatment

Water-energy-nexus


- Considers the interdependence of water and energy resources and their effect on the environment
- Increasing demand
- Stricter environmental regulations
- Sustainable use of water and energy
 - Process integration techniques
 - Environmentally benign
 - ✓ Economically feasible


Motivation

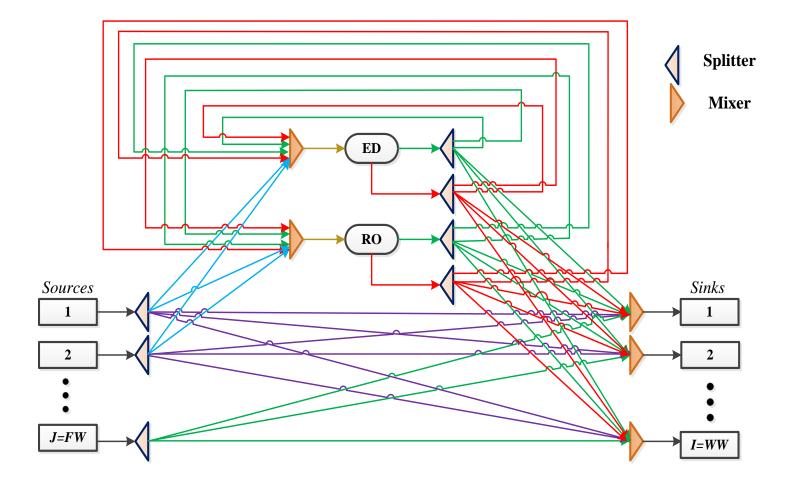
A CONTRACT


Motivation

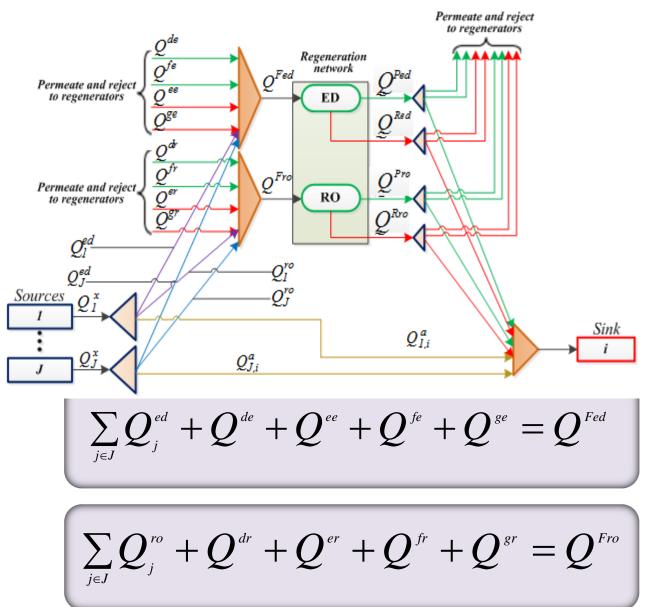
Motivation

Problem Statement

Given:


- Sources with known flowrates and contaminant concentrations
- Sinks with fixed flowrates and known maximum allowable concentration
- Water regeneration units (known design parameters)
- Freshwater source with known concentration and unlimited supply
- Wastewater sink with maximum allowable concentration and unlimited capacity

Determine:


- Minimum flowrate of freshwater into sinks
- Minimum wastewater flowrate
- Optimum design variables of regenerators for minimal energy usage
- Optimum water network configuration

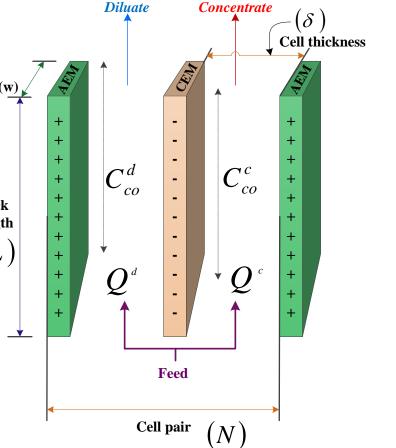
□ Superstructure

Water balances for regeneration unit

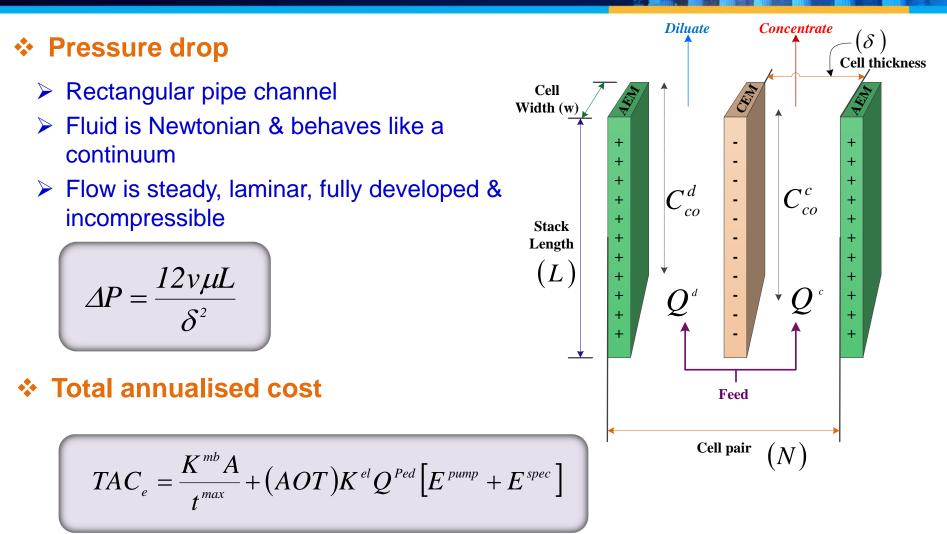
Concentration balance for regeneration unit

Max. allowable conc. into ED unit

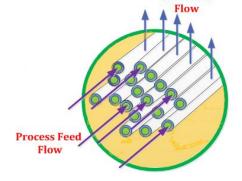
$$\frac{\sum_{j \in J} Q_{j}^{ed} C_{j,co}^{x} + Q^{ed} C_{co}^{Ped} + Q^{ee} C_{co}^{Red} + Q^{fe} C_{co}^{Pro} + Q^{ge} C_{co}^{Rro}}{Q^{Fro}} \leq C_{co}^{Ue} \quad \forall co \in CO$$

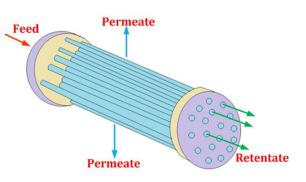

Max. allowable conc. into RO unit

$$\frac{\sum_{j \in J} Q_{j}^{ro} C_{j,co}^{x} + Q^{dr} C_{co}^{Ped} + Q^{er} C_{co}^{Red} + Q^{fr} C_{co}^{Pro} + Q^{ge} C_{co}^{Rro}}{Q^{Fro}} \leq C_{co}^{Ur} \quad \forall co \in CO$$



Modelling the ED unit **Diluate Electric current** Cell ** Width (w) + $I = \frac{Q^{d} C_{co}^{\Delta} Fz}{\zeta N} \quad \forall co \in CO$ + + C^{d}_{co} + +Stack + Length + (L)+ $oldsymbol{Q}^{\scriptscriptstyle d}$ + Stack length + $\frac{A}{2wN}$

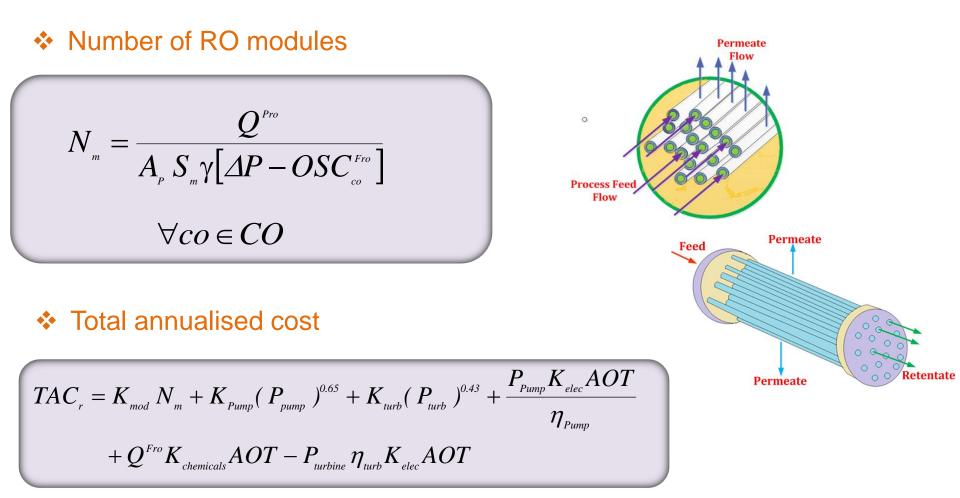



□ Modelling the RO unit

Feed pressure

$$P_F = \Delta P + \left[\frac{\Delta P_{shell}}{2} + P_P\right]$$

Permeate



Water flux

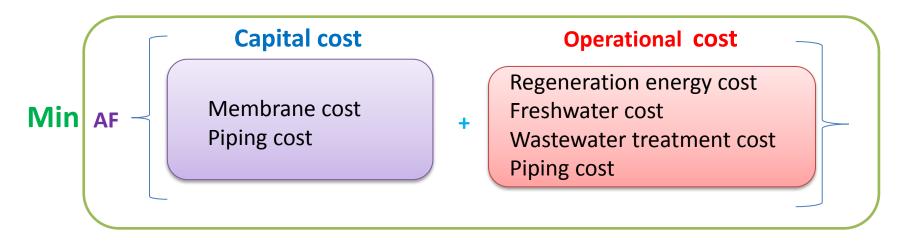
$$N_{water} = A_{p} \left[\Delta P - \frac{\pi_{F}}{C_{co}} C_{s} \right] \gamma \quad \forall co \in CO$$

□ Performance of regeneration units

Removal ratio

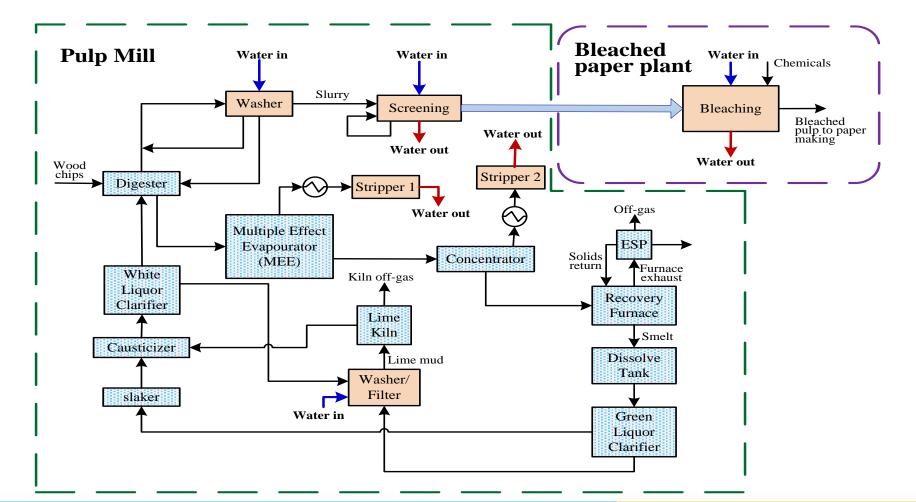
$$RR_{_{ed}} = rac{Q^{_{Red}}C^{_{Red}}_{_{co}}}{Q^{_{Fed}}C^{_{Fed}}_{_{co}}} \quad orall co \in CO$$

$$RR_{ro} = \frac{Q^{Rro}C_{co}^{Rro}}{Q^{Fro}C_{co}^{Fro}} \quad \forall co \in CO$$


Liquid recovery

$$LR_{_{ed}} = \frac{Q^{_{Ped}}}{Q^{_{Fed}}} \qquad LR_{_{ro}} = \frac{Q^{_{Rro}}}{Q^{_{Fro}}}$$

Objective function


Model structure

- ✤ MINLP
 - Continuous and integer variables
 - Nonlinear constraints
- ✤ GAMS
 - > BARON

Illustrative Example I

Illustrative Example I

Source/Sink identification

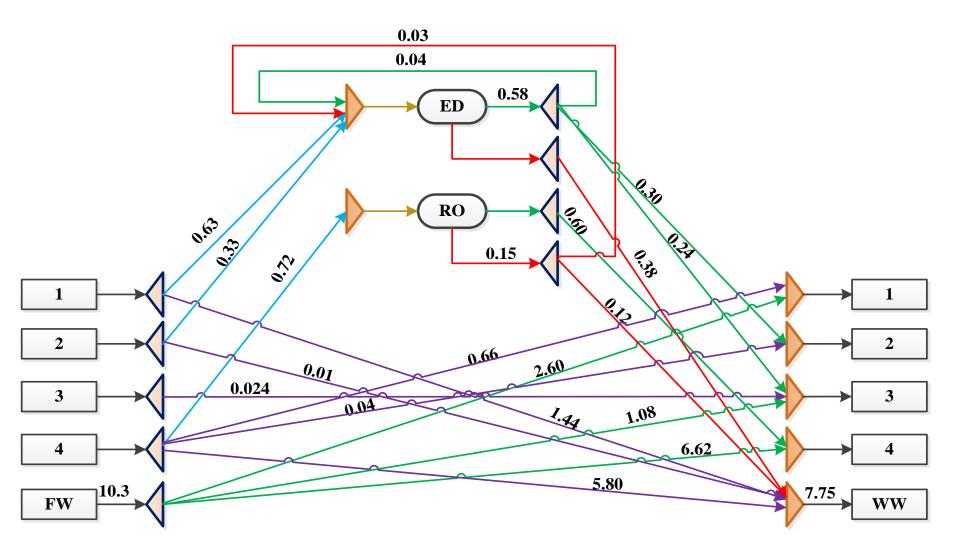
Sources	Process units	Sinks	Process units
1	Stripper 1	1	Washer
2	Screening	2	Screening
3	Stripper 2	3	Washer/Filter
4	Bleaching	4	Bleaching
FW	FW	WW	WW

Illustrative Example I

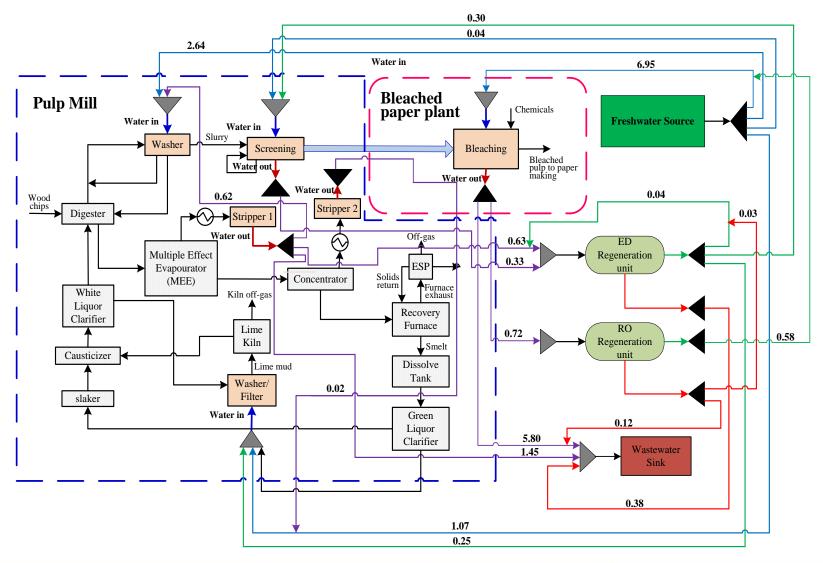
Pulp and paper case study

Sources, <i>j</i>			Sinks, <i>i</i>			
j	Flowrate (t/h)	Concentration (mg/L)	i	Flowrate (t/h)	Max. concentration (mg/L)	
1	2.07	89.4	1	3.26	34.0	
2	0.34	272	2	0.34	84.0	
3	0.024	18.3	3	1.34	50.0	
4	7.22	36.0	4	7.22	6.30	
FW	∞	0	WW	∞	600	

- Design parameters of ED and RO units
- Economic data for the case study
- Data for Manhattan distances



		Scenario 1	Scenario 2		Scen	ario 3
		Base case	Fixed RR	Variable RR	Fixed RR	Variable RR
	R _e		0.70	0.75	0.70	0.78
Removal ratio	R _r		0.70	0.85	0.70	0.84
Total freshwater us (t/h)	se	18.30	11.42	9.83	11.64	10.30
Freshwater saving	S		37.50%	46.30%	36.40%	43.70%
Total wastewater generated		15.8	8.89	7.30	9.11	7.75
Wastewater saved			43.70%	53.70%	42.30%	50.90%
Total cost of water network millions(\$/year)		1.17	0.84	0.81	0.63	0.62
CPU time (s)		0.06	688	2764	865	16710


□ Results

Optimal results for case 3 variable RR

□ Results

Optimum water flowsheet for scenario 3 (Variable RR)

Results

Optimal design results of ED and RO unit

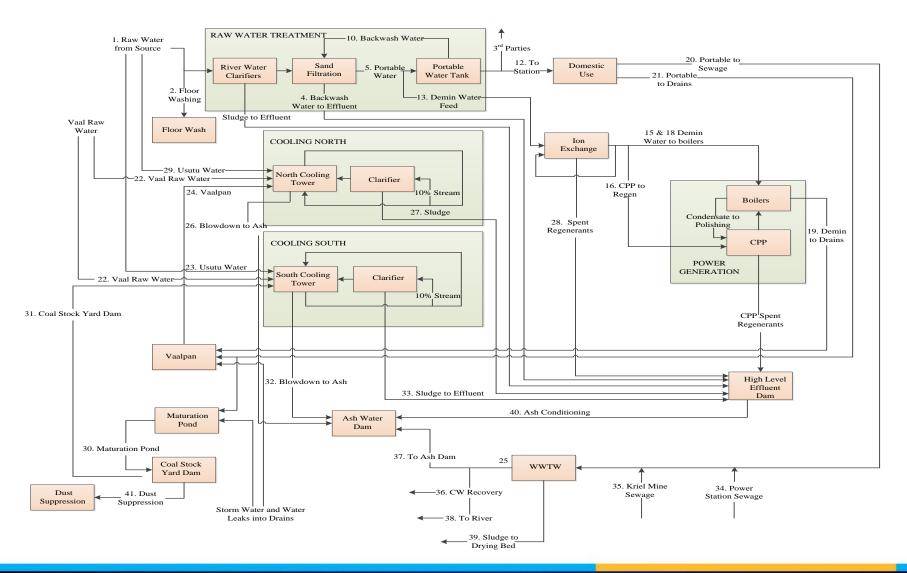
Variable	Value
Area of ED	54m ²
Number of cell pairs in the ED unit	50
Number of RO modules	20
Length of ED unit	0.82 m
Specific Energy	0.021 J/s
Pumping Energy	0.004 J/s
Electric Current	12 A
Voltage across the ED unit	30 V
Pressure drop on the shell side	4.5x10⁵ kPa
Osmotic pressure	1.6 kPa
Feed pressure	5.7x10⁵ kPa

Results

Energy savings for ED and RO units Variable RR case

	Scenario2 ("Black-box")	Scenario3 (Detailed)
Energy requirement of RO unit kWh/annum		17280
ED Desalination Energy kWh/annum	37452	15552
Total		32832

Case Study


Application to Eskom Kriel Power Station

Case Study

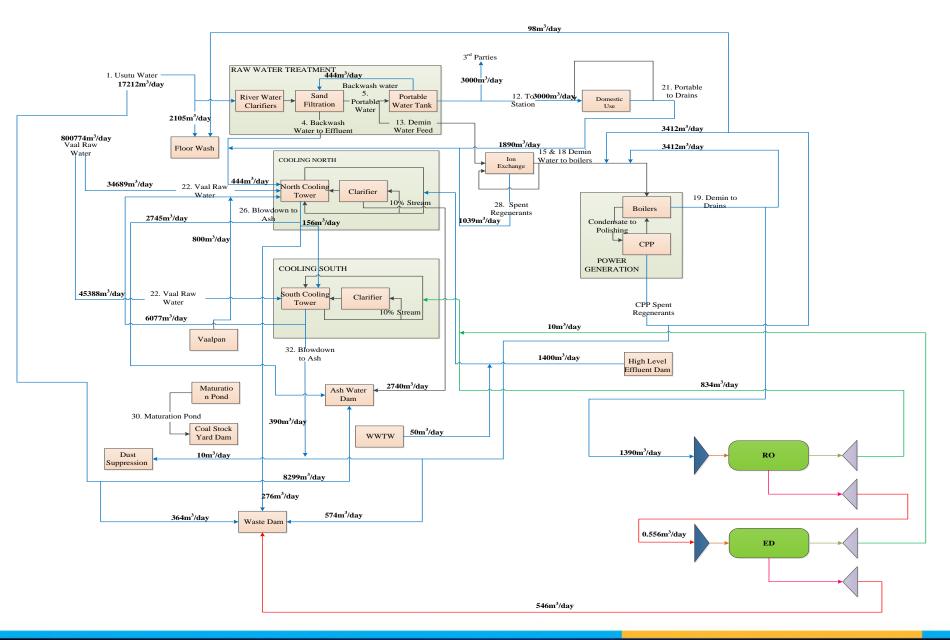
Current water utilisation network flowsheet at Kriel power plant

Identified sources and sinks for the case study

Unit Operations	Sources	Sinks	Variables
Usutu raw water			Х
Vaal raw water supply			Х
Floor washing		Х	
3 rd Parties		Х	
Sand filter backwash water		Х	
Dirty sand filter backwash water	Х		
Power station potable water use (bathrooms, kitchen etc)		Х	
Power station potable water leaking into drains	Х		
Power generation: Demin water		Х	
Power generation: Demin water to drains-mostly tanks overflows	Х		
Power generation: CPP spend regenerants	Х		
Ion exchange: Spent regenerants	Х		
Effluent dam	Х		
North cooling Tower	Х	Х	
South cooling tower	Х	Х	
WWTW	Х		
Ash dam/Ash conditioning		Х	
Dust suppression		Х	
Vaalpan – mostly from leaks from process units	Х		

□ Limiting data for case study

	So	urces		Sinks			
No	Name	Flowrate m ³ /d	Conc. mg/l	No	Name	Flowrate m ³ /d	Conc. mg/l
1	SF backwash	444	48	1	F Washing	2203	43
2	PS to Drains	1890	58	2	3 rd Parties	3000	45
3	PG to Drains	3412	0	3	SF Backwash	444	45
4	CPP Regents	4094	0	4	PS Potable	3000	45
5	Spent Regents	1039	127	5	PG Demin	6824	0
6	NC Tower	3177	2548	6	NC Tower	46389	826
7	SC Tower	6467	2548	7	SC Tower	46389	130
8	Effluent Dam	1400	6369	8	Ash Dam	11044	6369
9	WWTW	50	249	9	D Suppression	400	2548
10	Vaalpan	800	732	10	Waste Dam	∞	10000
11	Freshwater	∞	45				



	Current Practice	Direct Reuse and Recycle	"Black-box" Model	Detailed Model
Freshwater m ³ /d	119693 (3.1 l/uso)	102718 (2.1 l/uso)	96920	97290 (1.9 l/uso)
FW Savings %		14.2	19	18.7
Wastewater m ³ /d	10000	5789	0	1760
WW Savings %		42	100	82.4

Optimal water network flowsheet configuration

Regeneration cost analysis

	"Black-box" Model Estimated cost True cost		Detailed Model
Total reg. feed (m ³ /d)	3,768	3,768	1,390
Regeneration cost (ZAR)	59,246	729,906	269,156
Total cost (ZAR)	588,129	1,256,789	597,419

Energy Savings within the Regeneration units

	"Black-Box"	Detailed
Combined desalination and pumping Energy in kWh/annum	5,211.10	2,933.30

43.7% savings in both desalination and pumping energy

□ Summary of model characteristics

	Direct Reuse and Recycle	"Black-box" Model	Detailed Model
No. of constraints	283	350	500
No. of continuous variables	244	309	445
No. of discrete variables	110	140	181
Tolerance	0	0.01	0.01
CPU time (s)	0.063	18	3280

Size of model

- Increasing number of constraints
 - ✓ Integer
 - ✓ Nonlinear terms
- Computational intensity

Conclusion

- Mathematical model was developed
 - Based on a superstructure
 - ✓ regeneration reuse/recycle
 - Detailed regeneration units (ED & RO)
- The proposed model was applied to
 - Illustrative example involving single contaminant
 - Case study involving single contaminant
- Results showed
 - 43.7% freshwater savings and 50.9% reduction in wastewater
 - 18.7% freshwater savings and 82.4% reduction in wastewater
 - Accurate cost representation
 - Optimal operating parameters and design configurations
 - Minimum network cost and Energy Savings

Conclusion

Recent publications

- Buabeng-Baidoo, E., Majozi, T., 2015, Effective synthesis and optimization framework for integrated water and membrane networks: A focus on Reverse Osmosis membranes, *Industrial and Engineering Chemistry Research*, 54: 9394-9406 (IF: 2.567).
- Mafukidze, N.Y., Majozi, T., 2016, Synthesis and optimisation of an integrated water and membrane network framework with multiple electrodialysis regenerators, *Computers & Chemical Engineering*, 85: 151-161 (IF: 2.581).
- 3. Nezungai, C.D., Majozi, T., 2016, Optimum Synthesis of an Electrodialysis Framework with a Background Process. I: A Novel Electrodialysis Model, *Chemical Engineering Science*, *147*: *180 – 188* (IF: 2.570).
- Nezungai, C.D., Majozi, T., 2016, Optimum Synthesis of an Electrodialysis Framework with a Background Process. II: Optimization and Synthesis of a Water Network, *Chemical Engineering Science*, 147: 189 -199 (IF: 2.570).
- 5. Abass, M., Majozi, T., 2016, Optimization of integrated water and multiregenerator membrane systems, *Industrial and Engineering Chemistry Research*, 55: 1995 2007 (IF: 2.567).

Acknowledgements

Thank You

University of the Witwatersrand, Johannesburg

www.wits.ac.za