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 Water and energy  

 Each resource is consumed  to produce the other  

 Hydroelectric                            

 Geothermal                            

 Steam turbines          

 Extraction  

 Production  

 Distribution 

 Treatment   

 Water-energy-nexus  

 Considers the interdependence of water and energy 

resources and their effect on the environment 

 Increasing demand 

 Stricter environmental regulations  

 Sustainable use of water and energy  

 Process integration techniques  

  Environmentally benign  

  Economically feasible       

Background  
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Problem Statement  

Given: 

 Sources with known flowrates and contaminant concentrations 

 Sinks with fixed flowrates  and known  maximum allowable concentration  

 Water regeneration units (known design parameters) 

 Freshwater source with known concentration and unlimited supply 

  Wastewater sink with maximum allowable concentration and unlimited capacity 

 

 Determine: 

 Minimum flowrate of freshwater into sinks  

 Minimum wastewater flowrate  

 Optimum design variables of regenerators for minimal energy usage  

 Optimum water network configuration        
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Model Development  
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  Superstructure 
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  Water balances for regeneration unit  
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 Concentration balance for regeneration unit  

Model Development  
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 Max. allowable conc. into ED unit   

 Max. allowable conc. into RO unit   
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Model Development  

 Electric current  

 Modelling the ED unit  
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 Pressure drop  

 Rectangular pipe channel 

 Fluid is Newtonian & behaves like a 

continuum 

 Flow is steady, laminar, fully developed & 

incompressible  
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 Total annualised cost   
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Model Development  
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Model Development  









 P

shell
F P

2

P
PP




 Feed pressure   

 Modelling the RO unit  
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 Number of RO modules    
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 Removal ratio       

COco
CQ

CQ
RR

Fed

co

Fed

Red

co

Red

ed
 COco

CQ

CQ
RR

Fro

co

Fro

Rro

co

Rro

ro


 Liquid recovery     

Fed

Ped

ed

Q

Q
LR 

Fro

Rro

ro

Q

Q
LR 

 Performance of regeneration units     

Model Development  
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Model Development  

  Objective function 

Capital cost  

Membrane cost  
Piping cost  

Operational  cost  

Regeneration energy cost  
Freshwater cost  
Wastewater treatment cost  
Piping cost   

+ Min 

  Model structure  

MINLP 
 Continuous and integer variables  

 Nonlinear constraints   

 GAMS  

 BARON      
 

AF 
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Illustrative Example I  

  Typical pulp and paper plant  
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Sources  Process units  Sinks Process units 

1 Stripper 1 1 Washer  

2 
Screening  

 
2 Screening  

 

3 
Stripper 2 3 Washer/Filter  

 4 
Bleaching  

 
4 Bleaching  

FW FW WW WW 

Illustrative Example I  

  Source/Sink identification 
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Illustrative Example I  

Sources, j Sinks, i 

j 
Flowrate 

(t/h) 
Concentration (mg/L) i 

Flowrate 

(t/h) 

Max. concentration 

(mg/L) 

 

1 2.07 89.4 1 3.26 34.0 

2 0.34 272 2 0.34 84.0 

3 0.024 18.3 3 1.34 50.0 

4 7.22 36.0 4 7.22 6.30 

FW 0 WW 600 

 Design parameters of ED and RO units  

 Economic data for the case study  

 Data for Manhattan distances  

 

 Pulp and paper case study    
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Results 

Scenario 1 Scenario 2 Scenario 3 

Base case Fixed RR Variable RR Fixed RR Variable RR 

                          RRe 

Removal ratio 

                          RRr 

0.70 0.75 0.70 0.78 

0.70 0.85 0.70 0.84 

Total freshwater use 

(t/h) 
18.30 11.42 9.83 11.64 10.30 

Freshwater savings  37.50% 46.30% 36.40% 43.70% 

Total wastewater 

generated  
15.8 8.89 7.30 9.11 7.75 

Wastewater saved  43.70% 53.70% 42.30% 50.90% 

Total cost of water 

network 

millions($/year) 

1.17 0.84 0.81 0.63 0.62 

CPU time (s) 0.06 688 2764 865 16710 



Results 
 Results  
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 Optimal results for case 3 variable RR 

1
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 Optimum water flowsheet for scenario 3 (Variable RR) 

 Results  

Washer

Digester 

Causticizer 

slaker

Washer/

Filter

Lime 

Kiln

Green 

Liquor 

Clarifier

Dissolve 

Tank

Recovery 

Furnace

ESP

Concentrator

Multiple Effect 

Evapourator

(MEE)

Screening

White 

Liquor 

Clarifier

Stripper 1
Stripper 2

Bleaching

Pulp Mill Bleached 
paper plant

Wood
chips

Slurry

Kiln off-gas

Lime mud

Solids 
return Furnace 

exhaust

Smelt

Off-gas

Chemicals

Bleached 
pulp to paper 
making

Water out

Water out

Water out

Water out

Water in

Water in
Water in

Water in

Wastewater 

Sink 

ED 

Regeneration 

unit 

RO 

Regeneration 

unit 

1.45

0.63

0.62

0.33

0.02

5.80

0.72

Freshwater Source 

6.95

1.07

0.04
2.64

0.04

0.03

0.30

0.25

0.38

0.12

0.58



22 

Results 

 Optimal design results of ED and RO unit   

Variable  Value  

Area of ED  54m2 

Number of cell pairs in the ED unit  50 

Number of RO modules  20 

Length  of ED unit 0.82 m 

Specific Energy 0.021 J/s 

Pumping Energy  0.004 J/s 

Electric Current 12 A 

Voltage across the ED unit  30 V 

Pressure drop on the shell side  4.5x105 kPa 

Osmotic pressure  1.6 kPa 

Feed pressure  5.7x105 kPa 
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Results 

Scenario2  

(“Black-box”) 

Scenario3  

(Detailed) 

Energy requirement of RO unit 

kWh/annum 

37452 

17280 

ED Desalination Energy kWh/annum  15552 

Total 32832 

 Energy savings for ED and RO units  

 Variable RR case  

>12% savings in energy  
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Application to 
Eskom Kriel Power Station   

Case Study 

3.6 GW 
[43 GW] 
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25

 Current water utilisation network flowsheet at Kriel power plant  

 Case Study   
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Unit Operations  Sources  Sinks  Variables 

Usutu raw water  X 

Vaal raw water supply X 

Floor washing  X 

3rd Parties  X 

Sand filter backwash water  X 

Dirty sand filter backwash water  X 

Power station potable water use (bathrooms, kitchen etc) X 

Power station potable water leaking into drains X 

Power generation: Demin water  X 

Power generation: Demin water to drains-mostly tanks overflows  X 

Power generation: CPP spend regenerants  X 

Ion exchange: Spent regenerants  X 

Effluent dam  X 

North cooling Tower  X X 

South cooling tower  X X 

WWTW X 

Ash  dam/Ash conditioning  X 

Dust suppression  X 

Vaalpan – mostly from leaks from process units  X 

 Identified sources and sinks for the case study   
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Sources  Sinks  

No Name  Flowrate  

m3/d 

Conc. 

mg/l 

No Name Flowrate 

m3/d 

Conc. mg/l 

1 SF backwash 444 48 1 F Washing  2203 43 

2 PS to Drains  1890 58 2 3rd Parties  3000 45 

3 PG  to Drains 3412 0 3 SF Backwash 444 45 

4 CPP Regents 4094 0 4 PS Potable  3000 45 

5 Spent Regents  1039 127 5 PG Demin  6824 0 

6 NC Tower  3177 2548 6 NC Tower  46389 826 

7 SC Tower  6467 2548 7 SC Tower  46389 130 

8 Effluent Dam  1400 6369 8 Ash Dam  11044 6369 

9 WWTW 50 249 9 D Suppression 400 2548 

10 Vaalpan  800 732 10 Waste Dam  10000 

11 Freshwater  45 

 Limiting data for  case study    

26 







Current 

Practice  

Direct Reuse 

and Recycle  

“Black-box” 

Model  

Detailed Model 

Freshwater m3/d 
119693 

(3.1 l/uso) 

102718 

(2.1 l/uso) 
96920 

97290 

(1.9 l/uso) 

FW Savings % 14.2  19 18.7 

Wastewater  m3/d 10000 5789 0 1760 

WW Savings % 42 100 82.4 

Results 
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 Optimal water network flowsheet configuration    
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“Black-box” Model  

 Estimated cost       True cost          

Detailed Model  

Total reg. feed (m3/d) 3,768 3,768 1,390 

Regeneration cost (ZAR) 59,246 729,906 269,156 

Total cost (ZAR) 588,129 1,256,789 597,419 

 Regeneration cost analysis   

  “Black-Box” Detailed  

Combined desalination and pumping 

Energy in kWh/annum 
5,211.10 2,933.30 

 Energy Savings within the Regeneration units    

 43.7%  savings  in both desalination and 

pumping energy    
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Results 



Direct Reuse 

and Recycle   

“Black-box” 

Model  

Detailed 

Model  

No. of constraints  283 350 500 

No. of continuous variables  244 309 445 

No. of discrete variables  110 140 181 

Tolerance  0 0.01 0.01 

CPU time (s) 0.063 18 3280 

Results 

 Summary of model characteristics   
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 Size of model 

 Increasing number of constraints 

 Integer  

 Nonlinear terms  

 Computational intensity         



31 

Conclusion 

 Mathematical model was developed  

 Based on a superstructure  

 regeneration reuse/recycle   

 Detailed regeneration units (ED & RO) 

 The proposed model was applied to 

 Illustrative example involving single contaminant  

 Case study involving single contaminant 

 Results showed   

 43.7% freshwater savings  and 50.9% reduction in wastewater   

 18.7% freshwater savings and 82.4% reduction in wastewater   

 Accurate cost representation  

 Optimal operating parameters and design configurations  

 Minimum network cost and Energy Savings  

 



Conclusion 
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