

Computational modelling of $Ti_{50}Pt_{50-x}M_x$ shape memory alloys (M: Ni, Ir and Pd at x = 6.25-43.75 at.%)

R. Modiba^{1,2}, H.R. Chauke² and P.E. Ngoepe²

our future through science

Contents

- Introduction
- Methodology
- Results
 - Lattice parameters
 - Heats of formations
 - Elastic constants
- Conclusion
- > Acknowledgements

Introduction

- A high demand of SMAs that can be used at higher temperatures; however, most of the SMAs are limited by low transformation temperatures below 373 K.
- Since the martensitic transformation temperature T_m of TiPt (~1273 K) is much higher than most SMAs, TiPt is of potential technological interest for elevated temperature SMA applications.
- Previously, B2 TiPt was reported as mechanically unstable system (C'= -32 Gpa). In addition, equiatomic Ti-Pt based alloys suggests very minor shape memory effect due to low critical stress for slip deformation compared to the stress required for martensitic transformation.
- Addition of third element in the TiPt alloy is necessary for enhancing the shape memory properties of the system.
- In this work, the effect of substituting Pt with 6.25 to 43.75 at.% Ni, Ir or Pd on the cubic B2 TiPt using DFT is investigated.

Elastic property and electronic structure of TiNiPt high-temperature shape

memory alloys

C.L. Tan^{a,b}, X.H. Tian^b, G.J. Ji^b, T.L. Gui^b, W. Cai^{a,*}

^a School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

^b Department of Applied physics, Harbin University of Science and Technology, Harbin 150080, China

The calculated and available experimental lattice constants (Å) and elastic constants (GPa) of B2 TiNi and $Ti_{50}Ni_{50-x}Pt_x$ (x = 6.25, 12.5, 18.75, 25) alloys

	а	C ₁₁	C ₁₂	C44	<i>C</i> ′	А
TiNi	3.020	179	137	40	21	1.9
Expt ^a	3.015	162	132	36	15	2.4
Ti50Ni43.75Pt6.25	3.037	169	156	45	6.5	6.9
Ti50Ni37.5Pt12.5	3.064	164	161	47	1.5	31.3
Ti50Ni31.25Pt18.75	3.083	162	166	45	-2	
Ti ₅₀ Ni ₂₅ Pt ₂₅	3.102	161	169	43	-4	

TiPt Phase diagram

Binary Ti-Pt phase diagram. The area of interest is around 50 at.% Pt where the low-temperature α -TiPt (B19) phase and the high-temperature β -TiPt (B2) phase exist (Biggs et al., 2004).

Intermetallics 33 (2013) 27-32

Contents lists available at SciVerse ScienceDirect

Intermetallics

journal homepage: www.elsevier.com/locate/intermet

Structural, elastic and electronic properties of equiatomic PtTi as potential high-temperature shape memory alloy

R. Mahlangu^a, M.J. Phasha^b, H.R. Chauke^{a,*}, P.E. Ngoepe^{a,b}

^a Materials Modelling Centre, School of Physical and Mineral Sciences, University of Limpopo, Private Bag X1106, Sovenga, South Africa ^b Council for Scientific and Industrial Research (CSIR), Materials Science and Manufacturing, Lynnwood Manor, P.O. Box 395, Pretoria 0001, South Africa

The elastic properties, bulk moduli, tetragonal shear moduli and anisotropic ratios of equiatomic PtTi phases.

Elasticity (GPa)	B2	L1o	B19	B19'
C11	145	254	319	320
C12	210	175	133	150
C13		158	152	112
C15				0.95
C22			361	320
C23			112	136
C25				-2.25
C33		329	317	372
C35				-1.4
C44	45	101	-60	65
C46				-0.2
C55			57	-18
C66		97	65	58
$C' = (C_{11} - C_{12})/2$	-32	40	93	85
В	188	201	199	201
$A = 2C_{44}/(C_{11}-C_{12})$	-1.38			
$A_1 = 2C_{66}/(C_{11}-C_{12})$		2.42	0.69	0.68
$A_2 = 2C_{44}/(C_{11} + C_{33} - 2C_{13})$	I I	1.51	0.71	1.80
$A_3 = C_{44}/C_{66}$		1.04	0.91	1.12

Methodology

- The calculations were carried out using *ab initio* DFT formalism as implemented in the VASP total energy package
- An energy cutoff of 500 eV was used, as it was sufficient to converge the total energy of the systems.
- For the exchange-correlation functional, the generalised gradient approximation of Perdew and Wang (GGA-PBE) was chosen.
- For the elastic constants, a *k*-spacing of 0.2 was used for the structures. The calculations were performed at 0 K.

Results and discussion: Heats of formation

$$H_f = E_c - \sum_i x_i E_i$$

The effect on heats of formation with the substitution of Ni, Ir and Pd on the $Ti_{50}Pt_{50-x}M_x$ (M: Ni, Ir, Pd, x = 6.25-43.75).

Results and discussions: TiPtNi

Lattice parameter, a (Å) and elastic constants (GPa) of the $Ti_{50}Pt_{50-x}Ni_x$ (x= 6.25 – 43.75) ternaries and their anisotropy A.

Alloy (at.%)	Lattice parameter	Elastic constants			Shear modulus	Anisotropy
	а	C ₁₁	C ₁₂	C ₄₄	C'	А
Ti ₅₀ Pt _{43.75} Ni _{6.25}	3.1528	162	201	54	-19	
Ti ₅₀ Pt _{31.25} Ni _{18.75}	3.1169	155	192	44	-18	
Ti ₅₀ Pt ₂₅ Ni ₂₅	3.0924	173	177	49	-2	
Ti ₅₀ Pt _{18.75} Ni _{31.25}	3.0907	187	174	53	7	7.5
Ti ₅₀ Pt _{6.25} Ni _{43.75}	3.0625	195	159	47	18	2.6

 $C_{44} > 0,$ $A=C_{44}/C'$ $C'=\frac{1}{2}(C_{11}-C_{12})$ $C_{11}+2C_{12}>0$ $C_{11}>|C_{12}|$

Equilibrium parameters forTiPtlr

Table: Lattice parameter, a (Å) and elastic constants (GPa) of the $Ti_{50}Pt_{50-x}Ir_x$ (x= 6.25 – 43.75) ternaries.

Alloy (at.%)	Lattice parameter	Elastic constants			Shear modulus
	а	C ₁₁	C ₁₂	C ₄₄	C'
Ti ₅₀ Pt _{43.75} Ir _{6.25}	3.1698	189	194	31	-3
Ti ₅₀ Pt _{31.25} lr _{18.75}	3.1586	129	235	44	-53
Ti ₅₀ Pt ₂₅ Ir ₂₅	3.1534	104	253	66	-75
Ti ₅₀ Pt _{18.75} Ir _{31.25}	3.1361	107	265	69	-79
Ti ₅₀ Pt _{6.25} Ir _{43.75}	3.1318	54	290	79	-118

 $C_{44} > 0,$ $C' = \frac{1}{2} (C_{11} - C_{12})$ $C_{11} + 2C_{12} > 0$ $C_{11} > |C_{12}|$

Table: Lattice parameter, a (Å) and elastic constants (GPa) of the $Ti_{50}Pt_{50-x}Pd_x$ (x= 6.25 – 43.75) ternaries.

Alloy (at.%)	Lattice parameter	Elastic constants		Shear modulus	
	а	C ₁₁	C ₁₂	C ₄₄	C'
Ti ₅₀ Pt _{43.75} Pd _{6.25}	3.1718	116	222	1	-53
Ti ₅₀ Pt _{31.25} Pd _{18.75}	3.1697	129	202	23	-37
Ti ₅₀ Pt ₂₅ Pd ₂₅	3.1699	142	192	35	-25
Ti ₅₀ Pt _{18.75} Pd _{31.25}	3.1695	144	183	43	-20
Ti ₅₀ Pt _{6.25} Pd _{43.75}	3.1615	147	175	48	-14

 $C_{11} > |C_{12}| \quad C_{11} + 2C_{12} > 0 \quad C' = \frac{1}{2}(C_{11} - C_{12}) \qquad C_{44} > 0,$

Conclusion

- A DFT study of the effect of substituting Pt with Ni, Ir and Pd on the cubic B2 TiPt phase was conducted.
- The results suggest that TiPt becomes unstable with the addition of Ni, Ir and Pd as suggested by the heats of formation wherein the H_f values increased with an increase in the Ni, Ir and Pd concentrations.
- Addition of Ni on the B2 TiPt phase resulted in the C' values increasing and becoming positive at 31.25 and 43.75 at.% Ni, respectively.
- Iridium addition increased the martensitic transformation temperature of the B2 – B19 (TiPt) phase with the lowest C' shear modulus observed at 18.75 to 43.75 at.% Ir.
- However the addition of 43.75 at.% Pd decreased the transformation temperature of the B2 to B19 TiPt, as the shear modulus value C' was -14 GPa.

Acknowledgements

advanced metals initiative

13

Thank you

our future through science

Rose (RMahlangu1@csir.co.za)