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ABSTRACT 
 
Many analytical techniques exist to explore the propagation of certain laser beams in free space, or in a linearly 
absorbing medium.  When the medium is nonlinearly absorbing the propagation must be described by an iterative 
process using the well known Kirchoff–Fresnel diffraction equation.  In this paper Gaussian and super-Gaussian beam 
shapes are propagated both through free space, and through a nonlinearly absorbing medium.  The results show that 
shape invariance during propagation is dependent on the medium under consideration, and we find that super-Gaussian 
fields are shape invariant in certain nonlinearly absorbing media. 
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1.   INTRODUCTION 
 
Many processes in nature show non-linear dependences on the intensity of the laser beam, including such processes as 
Second Harmonic Generation, Third Harmonic Generation, Raman Scattering, Four Wave Mixing, and Multi-Photon 
Dissociation.  The result is that the intensity distribution of the laser beams used in these processes is of the utmost 
importance.  A Gaussian intensity distribution is desirable from a simple transportation point of view, whilst a flat top or 
super-Gaussian distribution will ensure a uniform interaction volume. It has been believed that the latter does not 
propagate in a mode that maintains its shape (intensity distribution function), and must be reshaped regularly to combat 
this problem. Thus beam delivery systems for applications in which long path lengths are needed (e.g., laser isotope 
separation) have traditionally been achieved with Gaussian beams using multiple pass cells of the Herriot design1,2,3.  In 
this work it is shown that the absorption profile of the medium plays a very important role in determining the 
propagation characteristics of the laser beam in the medium.   A short review of free space propagation is given in 
section 2, and then the results for a purely theoretically constructed non-linear medium given in section 3.   

 

2. FREE SPACE PROPAGATION WITH LINEAR ABSORPTION 
 
The propagation of Gaussian laser beams can be derived analytically, and is well understood.  If the beam radius is 
defined as the distance at which the intensity is 1/e2 of the peak intensity, then the change in radius during propagation 
in the z direction may be expressed as 
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where wo is the beam waist (minimum beam size) and set to be at z = 0, and zr is the so called Rayleigh range – the 
distance at which the beam cross-sectional area doubles.  The Rayleigh range may be expressed in terms of the 
wavelength of the light (λ) as 
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This, together with conservation of energy, gives rise to an analytical expression for the change in beam intensity profile 
during propagation: 
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Here we have assumed that the total power content of the laser beam is P, and that we have a circularly symmetric beam 
(with little effort the above may be written in terms of Cartesian co-ordinates).  From these relations one can show that 
the divergence of the Gaussian beam is inversely proportional to the beam waist size, and from Equations (1) and (3) 
leads to a change in the width of the pulse during propagation, but not the intensity profile itself – i.e., the Gaussian 
beam remains Gaussian during propagation in free space.  The second term in the exponent allows for linear absorption 
along the path length from z = 0, and gives rise to a decrease in the peak intensity of the pulse, but again, not the size or 
spatial profile of the pulse.     
 
More general laser beams – multimode beams for example, can also be described by Equation (1) so long as the beam 
size is defined as the second moment of the intensity, and the wavelength is increased by a factor M2 representing the so 
called beam quality factor: λ → M2λ.  This formalism is useful for understanding some aspects of how laser beams 
propagate, but is not useful in understanding how the laser beam intensity profile changes during propagation.  In fact, 
the moments method of describing laser beams does not shed any light on the energy distribution of the pulse. 
 
We will next consider the general case of flat-top beams.  A flat-top beam is defined as having a constant intensity in 
some region, and zero everywhere else: 
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A class of laser beam profile that can be used to link the Gaussian profile to that of the flat-top beam is the so called 
super-Gaussian profile 
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where p is some integer value.  As the value of p increases, so the function starts to approximate a flat-top beam.  When 
p = 1, the function is the standard Gaussian field.  For this reason super-Gaussian functions are useful to analyze.  They 
also have the advantage that the Flattened Gaussian Beam approximation4 can be used to generate useful data on the 
propagation characteristics of these beams.  A linear absorption term may also be introduced to the FGB approximation 
by rewriting the wave vector as a complex number k = kr + ki, with ki representing either absorption (ki < 0) or gain (ki > 
0), as was done in [5].     
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Figure 1: A super-Gaussian beam in the far field (data points) is very close to a Gaussian function (solid curve). 
 
 

3. PROPAGATION WITH NON–LINEAR ABSORPTION 
 
3.1 Model 
The propagation of laser beams in a medium with non-linear absorption was tackled numerically in this work.  The field 
was propagated through free space taking into account all diffraction effects: 
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Then the new field u1 was modified according to the absorption profile under investigation.  This was done by 
calculating the loss at each part of the field based on the absorption as a function of intensity.  The new field was then 
again propagated through free space using Equation (6) and the process repeated.  Thus the continuous absorption 
problem was solved by breaking the calculation into discrete absorption screens, placed near enough to one another that 
over extended distances the absorption would appear nearly continuous.  Care was taken to make the step sizes between 
screens small enough to make the cascade almost continuous, but also the step size had to be made large enough to 
speed up the calculation.  Typically a 1m length would be split into 1000 such screens, while the laser beam radius was 
in the 3–5 mm range.  This makes the distances between screens too small for any far field approximations to Equation 
(6) to be useful.  “Calibration” tests were done to ensure the integrity of the code (written in ANSI C using National 
Instruments’ LabWindows as the programming environment).   
 
In order to compare two intensity profiles (say I1 and I2) to one another to see “how much they differ”, a percentage root 
mean square test was performed   
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This method allows a single number to be generated that gives an indication if the intensity profiles are similar or not.  
Such a measure means that the %rms will increase if the profile and/or the size changes, and can result in a number 
greater than 100%.  A 0% value implies that both the size and the profile are identical.   
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Figure 2: A %rms value allows two arbitrary functions to be compared directly over a specified range. 

 
3.2 Results 
 
Figure 3 shows the intensity profiles of a 3mm Gaussian and super-Gaussian beam propagated through the non-linearly 
absorbing medium.  The intensity dependent absorption leads to a flattening of the Gaussian pulse during propagation – 
something not observed in free space propagation with linear absorption.  The super-Gaussian beam appears to maintain 
its shape and even its size during propagation, with only a decrease in the peak intensity evident due the loss of energy 
through absorption.  Overlaid on the super-Gaussian data is the shape of the pulse after the same propagation distance if 
there were no absorption, indicating the dramatic change in propagation properties. 

 
Figure 3: The change in intensity profile of a Gaussian (left) and super-Gaussian (right) beam after passing through a non-linearly 

absorbing medium.  These results were first reported in [6], but not analysed in any detail. 
 
 
One can offer an intuitive argument to explain this: as super-Gaussian beams propagate, so characteristic “spikes” and 
“ripples” appear on the profile.  It seems that in the presence of non-linear absorption these intensity fluctuations are 
suppressed due to the fact that they are preferentially reduced through absorption.   
 
Figures 4 and 5 show the %rms change in the beam intensity function during propagation (with the intensity at z = 0 
taken as the reference), both for free space propagation and for propagation in a non-linear medium.  The Gaussian 
beam (Figure 4) shows a much large change in the non-linear medium.  The super-Gaussian beam shows the opposite.  
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In these plots the intensity of each pulse was normalized to 1 in order to compare shape and size changes only, and not 
absorption changes. 
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Figure 4: Data for a w0 = 3mm Gaussian beam.  In free space the profile does not change at all, and the %rms change is only due to 

diffractive spreading.  In a non-linearly absorbing medium, the Gaussian changes shape and flattens at the centre, resulting in an 
order of magnitude change in the %rms value. 
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Figure 5: A w0 = 3mm super-Gaussian beam showing a dramatically improved holding ability in the non-linear medium.  This is a 

two orders of magnitude improvement in the %rms value over the free space value for the same propagation distance. 
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Figure 6: Parametric plot for a Gaussian beam of the %rms change in free space propagation against that in an absorbing medium, for 

the same propagation distances.   
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Figure 7: Parametric plot for a super-Gaussian beam of the %rms change in free space propagation against that in an absorbing 
medium, for the same propagation distances.   

In Figures 6 and 7 parametric plots are shown for both the Gaussian and super-Gaussian beams, with the free space 
beam changes plotted with the changes calculated in the absorbing medium.  The scale on the two axes indicates that in 
the Gaussian case there is an order of magnitude increase in %rms change when propagating in the non-linear medium 
as compared to propagating in free space.  Conversely, the super-Gaussian beam shows roughly a two order of 
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magnitude decrease in %rms change when propagating in the non-linear medium as compared to propagating in free 
space. 

4. CONCLUSION 
 
Laser beams with Gaussian intensity profiles are understood to propagate shape invariant under free space conditions, or 
in mediums with linear absorption.  Laser beams with Super-Gaussian intensity profiles however show rapid change in 
shape under free space propagation, and end close to Gaussian in the far field.  However, when these beams are 
propagated in a medium with an absorption coefficient that is intensity dependent, then the super-Gaussian beam 
appears to remain shape invariant.  This has implications in a number of fields, including that of isotope separation with 
laser beams.  An intuitive argument has been presented to explain the results but at present experimental verification is 
lacking. 
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