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Abstract—Currently, network analytics requires direct access
to network packets, normally through a third-party application,
which means that obtaining realtime results is difficult. We
propose the NFP-CPU heterogeneous framework to allow parts
of applications written in the Go programming language to be
executed on a Network Flow Processor (NFP) for enhanced
performance. This paper explores the need and feasibility of
implementing a message passing model for data transmission
between the NFP and CPU, which is the crux of such a
heterogeneous framework. Architectural differences between the
two domains are highlighted within this context and we present
a solution to bridging these differences.

Index Terms—Heterogeneous Computing, Network Proces-
sors, Network Analytics

I. INTRODUCTION

To help facilitate the increasing demand for higher net-

work throughput while supporting more complex and adap-

tive network protocols, server based systems have begun to

rely on dedicated network processors to handle the network

specific computations. Network processors, which can exist

in advanced routing engines or as daughter cards to be

interfaced with directly by a host, are designed to operate

in computing environments requiring low latency and high

throughput [1]. Such devices usually execute applications that

are developed and run independently of the host, acting as a

pre- or post-processing stage to reduce the workload of host

based applications.

This research explores the development of a framework

that combines the host and the network processor as a single

heterogeneous platform for the execution of applications. Our

approach is similar to that used by NVidia in providing

its CUDA runtime SDK and ’nvcc’ compiler to enable the

execution of a single application to be split between the

GPU and CPU. Such a framework would allow a variety

of network analytics to be performed by leveraging the

extensive functionality of a high-level concurrent language

like Go, while having direct hardware access to the network

packets themselves. The benefits of this kind of architecture

include integration of real-time network analytics into existing

toolsets for visualisation and processing as well as providing

an enriched development environment and support dynamic

memory allocation through the CPU architecture.

As described by Lastovetsky in the taxonomy of hetero-

geneous platforms [2], such systems are always comprised

of multiple processing elements and a communication frame-

work interconnecting such elements. This paper focuses on

the latter by evaluating existing approaches to communication

provided by Go and the Network Flow Processor (NFP)

architecture to determine their compatibility. Thus, the main

aim of this research is to implement communication within the

NFP-CPU framework in the form of message passing, similar

to that described by Hoare [3] and implemented as channels

in various concurrent programming languages [4]–[6].

For the prototype implementation, we focus on interfacing

with the NFP-400 [7] developed by Netronome, which can be

programmed with a variation of C-89 referred to as MicroC.

The NFP is coupled with a standard AMD64 processor to

produce a CPU-NFP heterogeneous system that forms the

underlying hardware for this research.

The NFP-400 consists of 60 32-bit flow processing cores

(FPC), also referred to as microengines, each of which can run

up to eight contexts [7]. These microengines do not contain a

stack, limiting some functionality such as recursive calls, but

do contain a large number of general purpose registers. Each

microengine supports an instruction register of approximately

8000 operations in which to store an application however,

instruction space must be split between all eight contexts if

they are not intending to execute the same application code.

To support these microengines, the NFP-400 contains a

hierarchical memory structure based on size and access la-

tency. Access to the different tiers of memory is done through

memory engines, or memory units that manage the memory

and handle the resolution of all read/write requests. Another

important feature of the NFP-400 in the context of this

research is the inclusion of a PCIe Gen3 interface with support

for eight lanes and allowing up to 8 GT/s.

For programming the heterogeneous system, we have cho-

sen the programming language Go, developed in 2007 as a

language targeting multiprocessor development [8]. Go has

been designed with a heavy focus on concurrency, which

is natively supported through the inclusion of asynchronous

functions referred to as goroutines. Go was selected as the

target language because of this concurrency support and its

message passing communication model.

The remainder of the paper is structured as follows. Sec-

tion II discusses some of the theory related to synchronous

message passing, including the concepts behind naming and

symmetry. Section III and IV discuss how message passing is

handled by each of the two candidate architectures comprising

the heterogeneous platform. This discussion is followed by
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Section V which aims to highlight the differences between

the two approaches to message passing and help establish the

need for a message passing fabric to handle communication

between the two architectures. Section VI describes a potential

implementation of the message passing fabric through the in-

troduction of a message manager pair which is responsible for

resolving the symmetric and naming differences between the

two platforms. Initial results of this approach and concluding

comments are presented in Section VII.

II. COMMUNICATION BETWEEN CONCURRENT

PROCESSES

Concurrent programs are generally designed to incorporate

two or more cooperating processes, which are expected to

be executed in a parallel manner. During execution, these

processes may be required to interact at specific stages, imply-

ing the need for both a communication and synchronisation

primitive [9].

At the application level, message passing is an event

involving two or more threads within the current program that

wish to exchange information. The information is exchanged

in a unidirectional manner as depicted in Figure 1. Any in-

formation transmitted in the opposite direction is represented

as a separate event.

A constraint that the system must enforce is that all threads

that have initiated a message passing event cannot continue

executing until the event has been resolved. As a message

passing event requires the interaction of two participating

threads, both threads must have reached the message passing

event state in their respective execution paths for it to be

resolved. This constraint effectively enforces that message

passing becomes synchronous by causing whichever thread

first initiates the event to wait until the corresponding thread

reaches the equivalent state.

To implement this synchronous behaviour, a message pass-

ing event usually requires at least two interactions between

the participating parties. As depicted in Figure 2, the first

interaction is the transmission of the message from the

transmitting thread while the second is the acknowledgement

message from the receiving thread. Should the transmitting

thread enter the message passing event before the receiving

thread, message transmission from the context of the receiving

thread occurs. After transmission however, the transmitting

thread is forced to wait for the acknowledgement message

from the receiving thread. When the receiving thread finally

Thread A Thread BMessage

Fig. 1. Abstract representation of a message passing event between threads
A and B (adapted from [10]).

Thread BThread A

Acknowledge

Message

Fig. 2. Abstract representation of a message passing event between threads
A and B.

Source: [send message to destination]

Destination: [receive message from

source]

Fig. 3. Abstracted syntax for message passing.

reaches the message passing event, it is able to acknowledge

the receipt of the message by sending an acknowledgement

message after which both threads can continue executing

normally.

A. Naming

In order to implement synchronous communication through

message passing such as depicted in Figure 2, an important

attribute that must be considered is how the relevant parties

are identified. Considering an abstracted implementation of

message passing, a message could be sent using syntax similar

to that shown in Figure 3 [11] .

In this implementation, the variable message repre-

sents the information being passed from the source pro-

cess to the destination process. The variables source and

destination are used to allow the processes to identify

other members involved in the transaction. This identification

depends on the communication convention to which the event

implementation conforms.

Determining the appropriate naming convention depends

on the underlying hardware of the target system as well as

the target application domain. According to Burns and Davis

[12], there are two elements that should be considered when

defining the communication convention. The first is whether

direct or indirect naming should be used to define endpoints

in a communication event and the second refers to whether

this communication should be symmetrical or asymmetrical.

Considering the different naming aspects, synchronous mes-

sage communication can be divided into one of four quadrants

as shown in Figure 4 and described further in this section.

Direct Naming Indirect Naming

Asymmetric

Symmetric
send x   to process_2Process_1Process_1Process_1

get x from process_1Process_1Process_1Process_2

send x to process_2Process_1Process_1Process_1

get  xProcess_1Process_1Process_2

send x   to chan_aProcess_1Process_1Process_1

get x from chan_aProcess_1Process_1Process_2

send x to chan_aProcess_1Process_1Process_1

get  xProcess_1Process_1Process_2

Fig. 4. Diagram showing the four types of communication considering
naming and symmetry aspects.
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For a message transmission event to be resolved correctly,

the transmitting process must provide a description of the

destination so that the system can determine which processes

is expected to be involved in the event. The simplest method

of archiving this is to use direct naming where some unique

identifier of the target process is provided for the message

transmission event [13], [14]. The abstracted syntax shown

in Figure 3 is thus an example of direct naming where both

communicating parties identify their counterpart processes by

name.

The alternative to direct naming is to provide a communi-

cation medium such as a mailbox, message queue, or channel

to act as an intermediary between the communicating parties

[15]. The specified medium is then associated with the com-

municating parties so that the send and receive primitives only

need to specify the intermediary as the channel endpoints.

The symmetry of a communication event describes the

relationship between the participating processes. For this

event to be considered symmetric, the relationship between

the sending and receiving processes should be one-to-one.

This relationship implies that for a particular communication

event, the transmitting process can only send a message to a

specific target process. The target process in turn, accepts a

message only from the specified transmitter [16]. Symmetric

communication works well in situations such as the pipeline

paradigm where a process receives information from a specific

upstream entity and submits processed information to a known

downstream entity.

For some problems however, the one-to-one relationship

enforced by symmetrical message passing on communicating

parties can be too restrictive. Such problems would instead

benefit from an asymmetric communication model which

allows for a single process to broadcast a message to multiple

receivers [17].

A notable advantage of an asymmetric communication

model is that it can effectively act as a less restrictive variant

of a symmetric model. The notation for asymmetric communi-

cation is usually the same as its symmetric counterpart, except

that the receiving process does not specify a from clause.

Alternatives include a selective wait [12] where the receiving

process specifies a range of sources from which a message can

be received. The asymmetric model could effectively reduce

to the symmetric model by simply reducing the multiplicity

of parters participating in a message passing event to one. A

consequence of this model is the loss of identity for processes

waiting on a message from multiple sources. Knowledge of

the transmitting identity must also be relayed to the receiving

process along with the message so that a receipt for the

message can be relayed to the correct process.

III. MESSAGE PASSING IN GO

Concurrency and synchronous communication are core

attributes of the Go programming language [18]. To support

this, Go includes a basic primitive for concurrency referred to

as a goroutine, which is a play on the more traditional term

coroutine, formally described by Conway in 1963 [19]. As

with a coroutine, a goroutine is intended to allow independent

functions or routines that can be executed asynchronously

to be multiplexed so that they can progress in a concurrent

manner [8], [20].

A. Goroutines vs. Threads

As discussed in the language documentation [21], a gor-

outine is a function that executes concurrently with other

goroutines in the same address space. Since this definition is

very similar to that of a thread, as included in other common

languages such as Java or C++, it is important to highlight

the differences between the two.

In effect, a goroutine can be thought of as an independent

function that can be resolved asynchronously and is assigned

by the Go runtime to a thread for execution. The important

factor here is that a single thread can process multiple

goroutines concurrently, allowing for many more functions to

be executed asynchronously then there are threads available.

Should a goroutine be assigned to a thread block while

waiting on an event, the non-blocked goroutines multiplexed

on that thread are migrated to another thread, allowing them

to continue executing [22].

B. Goroutine Channel Communication

As noted by Chrisnall [8], one of the chief advantages

of concurrent programming in Go is the ease with which

communication between goroutines can be implemented. The

primary communication method between goroutines is the

channel, which is a synchronous indirect message passing

scheme modelled after Communicating Sequential Processes

(CSP) proposed by Tony Hoare [23] in 1978 [24].

In Go, a channel is a first class object that must be typed

so as to specify the kind of information than can be passed

through it [20], [25]. Once declared, a channel can either be

explicitly passed to a function or simply used if it is within

scope even if the caller is being executed concurrently as a

goroutine.

Channels implemented in Go are bidirectional and asym-

metric as they support many-to-many communication. Chan-

nels can also be buffered allowing the medium to accept

multiple messages asynchronously and only blocking when

full. The asynchronous behaviour of the channel can be mit-

igated by reducing the buffer size to zero or simply omitting

the parameter from the constructor [25]. Goroutines can also

perform the equivalent of a selective wait [12] by using

the select statement and specifying multiple channels on

which to wait. The select statement can optionally assign

conditions or guards to channels, which must be satisfied

before they can be considered eligible for selection.

IV. NFP COMMUNICATION PRIMITIVES

The NFP architecture has been designed to achieve high

throughput in network traffic processing. As discussed in Sec-

tion I, this is facilitated by the use of FPCs or microengines,

each of which executes independently, supporting up to eight

contexts or threads.

To allow for communication between the NFP-400 and

the host, the network processor includes a PCIe module that
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Process A
CT Memory 

Unit
Process B

Signal: Data Ready
Signal: Data Ready

Read: Remote Read 

and SignalRead

Signal: Read Complete

Write

Signal: Write Complete

Fig. 5. Breakdown of synchronous message passing within the NFP.

provides an interface conforming to the PCI Express Gen3

standard. As described in the databook [26], this module

is capable of supporting up to eight lanes at 8 GT/s. The

module is also capable of acting as either a PCIe endpoint

or a Root Complex. When configured to act as an endpoint,

the PCIe controller allows visibility of the system bus and

its connected targets such as memory units and the internal

microengines. When configured to act as a Root Complex,

the PCIE controller can generate the necessary transactions

to perform endpoint discovery and configuration .

From the context of applications operating on the micro-

engines it is possible to use the PCIe module to submit MSIX

interrupts to the host provided the PCIe module is in endpoint

mode [26]. With appropriate modifications to the NFP driver,

the host OS can be equipped to listen for such interrupts and

generate a software interrupt for user space applications.

A. Reflect Operations

Though each microengine executes independently, the ar-

chitecture does provide support for moving data between

microengines. This transfer operation is a subset of the reflect

operation set and is performed by one of two types of

memory units present on the device [26], [27]. Read and

write reflect operations occur by first allocating a subset of

transfer registers, either read or write, and then sending a

reflect command to one of the compatible memory units,

requesting that it performs the transfer operation on behalf of

the microengine. Details such as target microengine, direction

of transfer, size of transfer, and signal requirements are also

sent as part of the command.

B. Implementing Message Passing

Using the communication tools supported by the NFP

architecture, a message passing framework has been designed

and implemented. The framework has been shown to conform

to the synchronous message passing described in CSP pro-

posed by Tony Hoare [23] and to be scalable across multiple

contexts and microengines without introducing deadlocks due

to resource contention.

The framework operates using reflect operations, which al-

low signals and data to be relayed between two microengines

as depicted in Figure 5. A context wishing to communicate,

writes the relevant data into a write transfer register and

then constructs the ID of the target process based on its

context number, microengine ID, and island number. The

communicating process then sends an inter-thread signal to

a known signal number on the target process indicating that

it is ready to participate in a message passing event before

sleeping. This message is actually addressed to the memory

unit, which performs the reflect operation on behalf of the

sending process.

The receiving process goes to sleep upon entering the

message passing event until the appropriate signal is received.

At this point the receiving process wakes up, performs a

reflect read on the predetermined transfer registers, again

via the memory engine, and informs the engine to signal

the initiating process after the transfer is complete. This

resolves the message transfer event. It must be noted that

the receiving process needs to know the process ID and

write transfer registers of the transmitting process as such

information cannot be relayed within the initial inter-thread

signal operation.

V. COMPARISON OF MESSAGE PASSING IN GO AND NFP

Considering Figure 4, it is clear that message passing in

Go is positioned in the bottom right quadrant as channels are

used to identify parties involved in a message passing event.

These channels however enforce no restrictions on the number

of functions that can read or write to them and so asymmetric

message passing is possible.

MicroC on the other hand is clearly situated in the top left

quadrant as the ID of each process involved in the message

passing event must be directly named. The NFP architecture

does not natively support intermediaries that would allow

for indirect naming. An intermediary could be created in

shared memory but this risks introducing a major performance

impact on any system implementing such an approach. The

architecture does however support hardware rings, which

could act as the intermediary for indirect naming, however

these are limited in number thereby impacting scalability.

Though both architectures support message passing that

is synchronous and conforms to the message passing events

described in CSP, it is clear that the two protocols are not

compatible. To resolve this communication mismatch some

form of translation must be implemented.

Another limitation to consider is how data are transmitted

between the CPU and NFP. The NFP-400 is connected to the

Host via the PCIe bus and interactions between the NFP and

the PCIe fabric must go through the PCIe block [26]. For

message passing, this means that all data in transmission will

converge before being transmitted over the PCIe bus.

VI. DESIGN OF AN INTERMEDIATE MANAGER PAIR

Given the limited number of hardware rings on the NFP

and the fact that all communication takes place over the PCIe

interconnect, the proposed solution is to implement a pair

of dedicated channel management engines to span both the

NFP and the CPU. Together, these managers are responsible
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Fig. 6. Channel manager overview.

for relaying messages between the two architectures as well

as bridging the semantic divide in both naming schemes and

symmetry as depicted in Figure 6.

From the perspective of the NFP architecture, the managers

act as the required intermediary that all NFP processes can

address for message transmission. This allows processes on

the NFP to address a single target for the reflect operation

and to encapsulate the actual message in a header indicating

the target process. The details of the metadata are resolved at

compile time by a preprocessor responsible for building the

managers.

For a goroutine executing on the CPU, interacting with the

manager is largely abstracted as communication takes place

through a channel. From the perspective of the goroutine,

the channel is connected to the target process regardless of

whether that process is being executed on the CPU or the

NFP. Should the target process be executing on the NFP, the

host manager is responsible for receiving, encapsulating and

transmitting the message to its actual destination.

The design of each manager is distinct so as to cater for

the type of message passing it is expected to process. The

goal of these managers is to allow synchronous transmission

without introducing excess latency on the communication.

Each message transmission is performed using a combination

of MSIX signals, NFP specific signals, and shared IO memory

for the message body.

A. NFP Channel Manager

For receiving messages from processes operating on the

NFP device, the NFP channel manager provides a circular

buffer or hardware ring which such processes can address

directly. Writes into this ring can be considered atomic as

the underlying hardware resolves simultaneous writes from

multiple processes to ensure both operations are committed.

Each message written to the ring does not actually contain

any message data but instead contains the encapsulating

information which is used to construct the message header

and allow the manager to retrieve the associated message

data. This header includes the ID of the writing process,

the message size and destination, an address of the transfer

registers where the data is stored, and a signal that must be

set when the transmission is complete.

For consuming these messages, up to four manager engines

are subscribed to the ring and are woken up when work is

available to consume as depicted in Figure 7. These engines

fetch the message body associated with the consumed mes-

sage and build the message packet, which is then transferred

into the PCIe SRAM. To inform the host channel manager that

Hardware Ring

Manager SIG

Manager SIG

Manager SIG

Manager SIG

PCIe SRAM

MSIX 

Generator

Fig. 7. Layout of the NFP channel manager components.

Manager

Mmap PCIe 

SRAM

Driver: 

MSIX Handler
IOCTL

NFP

Signaler

Channel

Channel

Channel

Channel

Channel

.....

Fig. 8. Layout of the host channel manager components.

a message is available for processing, the MSIX generator

is signalled to send the interrupt to the host CPU. When

a specified signal on the active manager engine is set by

the host, the signal is forwarded to the initiating process,

completing the message transfer.

B. Host Channel Manager

The host manager is largely configured by a preprocessor

as it is intended to support a channel interface for every

process executing on the NFP device. Messages destined for

the NFP device are received over one of the known channels

and encapsulated in a message packet containing the ID of

the channel over which it was received, its length, and the

destination NFP process ID associated with that channel.

The message packet is then written to a shared memory

location shown in Figure 8 before the NFP channel manager

is signalled indicating that a new message is available to

be processed. A goroutine is spawned to wait on an MSIX

interrupt specified in the message packet which indicates

that the target process has received the message. When the

interrupt occurs, the contents of the channel over which the

message was initially transmitted is consumed, allowing the

transmitting process to continue operation.

Unfortunately, due to a channel operation being an atomic

event in Go, it is currently not possible to view the channel

contents without consuming them. As a consequence, a single

channel transaction can no longer be used to guarantee a

synchronous event. The currently implemented solution to this

is to enforce that any channel communication with processes

operating on the NFP must write a second message onto the

channel, which is consumed by the manager after the message

transmission event has completed.

VII. RESULTS AND CONCLUSION

Preliminary testing of the proposed channel manager pair

shows the successful transmission of messages between a

producer process operating on the NFP and a consumer
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process written in Go. Some performance limitations were

however identified, most of which are attributed to two aspects

of the communication.

The first aspect which inhibited throughput is the use of

shared memory through which the body of the message is

transmitted. In the current implementation, the shared memory

for both managers is situated on the NFP device itself and

so the CPU must perform a non posted read operation to

access the message data. The consequence of a non posted

read is that the CPU stalls until a completion Transaction

Layer Packet (TLP) is received from the endpoint device [28],

consuming resources and introducing increased read latency.

Write operations in this situation are posted transactions so no

completion TLP is required from the NFP device to indicate

a successful transmission of the data.

The proposed solution to this memory access limitation is

to allocate memory on the host for the host channel manager

and have the NFP device write the message bodies to the

reserved memory via DMA transfers prior to synchronising

with the host channel manager.

The second limitation is due to the signalling of the NFP

channel manager from the host. This is continually done using

an API supplied with the device which is capable of resolving

an address to a specific signal within the NFP channel

manager. Currently this operation has a recorded latency

of approximately 3 µs which can introduce a significant

bottleneck when message payloads are relatively small. An

evaluation of the operation to determine how the latency is

introduced will be performed in an attempt to mitigate this

limitation.

Though still in its infancy, the proposed message passing

model has been shown to resolve the naming disparity be-

tween the two message passing paradigms, thereby providing

an effective communication fabric for the heterogeneous NFP-

CPU framework. This means that network analytic applica-

tions can leverage the benefits of the high-level programming

features provided by Go, as well as wire speed processing

available through the NFP.

Future work relating to the proposed message passing

model entails resolving the noted performance limitations and

developing a a full scale implementation of the communica-

tion management system. Other aspects to evaluate include

the feasibility of supporting asynchronous communication

between the two architectures and introducing support for

bulk data transfers which may be better implemented as single

operations rather than a series of message passing events.
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