Implications of renewables on energy planning Presentation at the SAIREC 2015

Dr Tobias Bischof-Niemz, CSIR Energy Centre Manager

Dr Tobias Bischof-Niemz Head of CSIR's Energy Centre

Professional Experience

- Member of the Ministerial Advisory Council on Energy (MACE)
- Extraordinary Associate Professor at Stellenbosch University
- Jul 2014 today: Centre Manager at the CSIR, responsible to lead the establishment of an integrated energy research centre
- 2012 2014: PV/Renewables Specialist at Eskom in the team that developed the IRP; afterwards 2 months contract work in the DoE's IPP Unit on gas, coal IPP and rooftop PV
- 2007 2012: Senior consultant (energy system and renewables expert) at The Boston Consulting Group, Berlin and Frankfurt, Germany

Education

- Master of Public Administration (MPA) on energy and renewables policies in 2009 from Columbia University in New York City, USA
- PhD ("Dr.-Ing.") in 2006 in Automotive Engineering from TU Darmstadt, Germany
- Mechanical Engineering at Technical University of Darmstadt, Germany (Master – "Dipl.-Ing." in 2003) and at UC Berkeley, USA

The Context

In 2014, 93 GW of wind and PV were newly installed globally

This is all very new: Almost 90% of the globally existing PV capacity was installed during the last five years alone!

Renewables until today mainly driven by US, Europe and China

Globally installed capacities for three major renewables wind, PV and CSP end of 2014

Actual results: solar PV & wind in South Africa cost competitive today

First four bid windows' results of Department of Energy's RE IPP Procurement Programme (REIPPPP)

Notes: For CSP Bid Window 3, the weighted average of base and peak tariff is indicated, assuming 50% annual load factor

Sources: StatsSA on CPI; Department of Energy's publications on results of first four bid windows http://www.energy.gov.za/IPP/List-of-IPP-Preferred-Bidders-Window-three-04Nov2013.pdf; http://www.energy.gov.za/IPP/Renewables_IPP_ProcurementProgram_WindowTwoAnnouncement_21May2012.ppt; http://www.energy.gov.za/IPP/Renewables_IPP_ProcurementProgram_WindowTwoAnnouncement_21May2012.ppt; http://www.ipprenewables.co.za/gong/widget/file/download/id/279; CSIR analysis

Consequence of renewables' cost reduction: Solar PV & wind cheapest new-build options per kWh in South Africa

Note: Changing full-load hours for conventionals drastically changes the fixed cost components per kWh (lower full-load hours → higher capital costs and fixed O&M costs per MWh); Assumptions: average efficiency for CCGT = 50%, OCGT = 35%; coal = 37%; nuclear = 33%; IRP cost from Jan 2012 escalated with CPI to May 2015; assumed EPC CAPEX inflated by 10% to convert EPC/LCOE into tariff; CSP: 50% annual load factor and full utilisation of the five peak-tariff hours per day assumed to calculate weighted average tariff from base and peak tariff Sources: IRP Update; REIPPPP outcomes; StatsSA for CPI; Eskom financial reports on coal/diesel fuel cost; CSIR analysis

The New Energy World

Cost competitiveness of renewables has two consequences

Today: production and balancing of supply/demand happens centrally

Today's system Generation Load ^{architecture} Conventional power plant Electricity transport Balancing of supply/demand Maximum voltage 220 / 380 kV on central system level Industry High voltage 110 kV One-directional power flow Distribution network Industry / Trade Medium voltage 6-30 kV On end-consumer level mostly no generation, no storage/balancing Households / small businesses capabilities, no manageable load Low voltage 230 / 400 V

our future through science

Future: Production and consumption occurs on all levels, power flows are bi-directional, an ICT layer is required on top of the energy layer

Sources: SMA; CSIR analysis

Thought experiment: Build a new power system from scratch

		•	8. **
Annual demand:	11.1 TWh/yr (4-5% of today's South African demand)		
Base load:	1 GW		
Day load:	1.3 GW in summer 1.5 GW in winter		

What is cheaper to supply that profile?

- Base and mid-merit coal? 1)
- A blend of wind and solar PV, mixed with gas to fill the gaps? 2)

our future through science

A mix of new baseload-operated coal and new mid-merit coal costs 7.3 \$-ct/kWh for the pure cost of power generation

Weighted cost: 7.3 \$-ct/kWh

CO2:

A fully dispatchable mix of PV, wind and flexible gas can supply the demand similarly in the same reliable manner as the coal mix

Technology:Coal base / coal mid-meritSize:1.18 / 0.56 GWEnergy:11.1 TWh/yr

Weighted cost: 7.3 \$-ct/kWh

CO2: ~0.95 kg/kWh

By 2020, a mix of PV, wind and flexible gas (LNG-based) costs the same as new coal, even without any value given to excess wind/PV energy

In addition, the cost of a PV / wind / gas power plant scale more with reduced demand and thus unit cost per kWh stay more or less constant

In reality, flexible, dispatchable loads and/or storage would utilise the excess energy – if value is assigned to it, cost of useful energy go down

Weighted cost: 7.3 \$-ct/kWh

Weighted cost: **6.8 7.3 \$-ct/kWh** (7.3 \$-ct/kWh goes down to 6.8 \$-ct/kWh, even if only 4.2 \$-ct/kWh value is given to

excess energy)

Thank you!

