

VALIDATION OF REMOTELY-SENSED SOIL MOISTURE IN THE ABSENCE OF *IN SITU* SOIL MOISTURE: THE CASE OF THE YANKIN BASIN, A TRIBUTARY OF THE NIGER RIVER BASIN

Djigbo Félicien BADOU

B. DIEKKRÜGER , E. KAPANGAZIWRI, A. A. AFOUDA

Hotel Africana, 28/10/2016

West African Science Service Center on Climate Change and Adapted Land Use

Background (2/3)

• Acquisition of soil moisture information?

Background (3/3)

Tab.1: Pros and cons of in situ and remotely-sensed SM

	In situ	Remotely-sensed	
	Cost,		
	time-consuming, No free by		
Affordability	destructive	analysis	
Spatial scale	Point scale	Large scale	
Temporal scale	Few days/months	Long term	
Applications	Limited	Unlimited	

Research questions

• How reliable are satellite soil moisture? What is the quality of these data, especially with respect to clouds cover?

 How do we check the quality of these data <u>especially in *in-situ* data</u> <u>scarce regions</u>?

Test the validity of remotely-sensed soil moisture without *in situ* soil moisture.

Methodology:

Use of hydrological modelling for the validation of satellite data

Case study: The Yankin Basin

The Yankin basin

Fig.2: Location of the study area in the Niger River basin.

 Provides lot of ecosystem services (W-Park, forests, etc.) under threat

- Largest cotton production zone (INSAE, 2014)
- Main zone of cattle breeding (ditto)
- Clashes between farmers and herdsmen (Lougbegnon, 2012)

Data used

Tab. 2: Summary of the data collected and used for the study

	Resolution		
Data	(scale)	Relevance	Sources
	Time period		
Climatic	16 stations		DMN Benin,
	1971-2010		
Topographic	30 x 30 m	Delineation of HRU, topographic parameters	ASTER GDEM
Land use	1:50,000	HRU delineation, root depth, leaf area index,	CENATEL
		_albedo, interception factor, etc.	
	1979, 1995, 2006		
<u>Soil</u>	1:200,000	Texture, bulk density, hydraulic conductivity,	ORSTOM
	1978	etc.	
	01 station	To generate proxy	DGEau
Streamflow			
	1984-2008		
<u>Soil moisture</u>	0.25°x 0.25°		ESA-CCI
	Topmost 2 cm		
	2005-2008		

Models used (1/3)• **UHP-HRU** (Giertz et *al.*, 2010) Conceptual, semi-distributed for assessing all hydrological processes Ο Soil moisture simulated for the root and unsaturated zone Ο • 17 parameters but 9 were calibrated Catchment with Interception HRUs Evapotranspiration Surface runoff Root zone Infiltration Interflow Unsaturated zone Capillary rise Percolation Groundwater zone Base flow Deep groundwater recharge Fig.3: Modelling flow chart of the UHP-HRU model

Models used (2/3)

• SWAT (Arnold et al., 1998) based on the concept of HRU

Models used (3/3)

- **WaSiM** (Schulla, 1997)
- Deterministic, physically-based and **distributed** model
- Two main versions:
 - Topmodel and the version using the **Richards-equation**
- <u>Vertical soil moisture extraction</u> <u>for desired soil depth</u>
- 9 parameters calibrated for each land use and soil types

Fig.5: Structure of the WaSiM model

Results and Discussion

Models calibration/validation and extraction of SM

Comparison with Satellite SM: Visual inspection

Comparison with Satellite SM: Quantitative metrics

Tab.: Comparison of remotely-sensed and simulated SM for the period 2005-2008

	UHP	SWAT	WaSiM
Simulated SM (cm ³ /cm ³)	34.40	45.77	29.52
Remotely-sensed SM (cm ³ /cm ³)	42.85	42.85	42.85
Bias (cm ³ /cm ³)	0.030	-0.010	0.048
R ²	0.83	0.57	0.54

• Remotely-sensed SM is reliable

Conclusion and Future Work

- Proxy for the validation of satellite SM was generated using streamflow data;
- A multi-model approach and multi-objective validation were applied in generating the proxy;
- The ESA-CCI soil moisture dataset can be used for impact studies in study area;
- To evaluate the robustness of the suggested methodology, more research on areas of different climatic conditions and variable (e.g. AET) is needed.

• A physically-based extraction of the simulated soil moisture for SWAT and UHP-HRU. Modification of the structure of SWAT and UHP-HRU to enable the extraction of the topmost soil moisture.

Acknowledgements

- **WASCAL Initiative**
- Institution who provided the data
- Meteorological office of Benin, Niger, and Birkina Faso
- Benin Water Directorate, Benin
- Research Center Jülich, Germany

JUNDP

WEBALE NYO for your attention!

Dominant processes per basin

	Coubéri	Gbasse	Yankin	Kompongou
UHP-HRU	B>S>I	B>S	B>S	B >I
SWAT	S>B	S>I	S>I (small)	S>B (small)
WaSiM	S>I	I>S	I>S	I >S

Possible reasons: Paucity of data i.e. four streamflow gauges for an area of 39,726 Km² (Badou et *al.*, 2016) and

• Data quality (e.g. use 1997 rating curves for the Sota River).

Biro, Nikki 01/03/2014 04:50 PM Guenelaga, Segbana

Pictures 2

14/01/2014 11:58 AM

14/01/2014 08:23 AM