
SHA-1, SAT-solving, and CNF

Yusuf M Motara∗, Barry V Irwin∗†

∗Department of Computer Science, Rhodes University, Grahamstown, South Africa
†Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa

1y.motara@ru.ac.za
2b.irwin@ru.ac.za

Abstract—Finding a preimage for a SHA-1 hash is, at present,
a computationally intractable problem. SAT-solvers have been
useful tools for handling such problems and can often, through
heuristics, generate acceptable solutions. This research examines
the intersection between the SHA-1 preimage problem, the
encoding of that problem for SAT-solving, and SAT-solving. The
results demonstrate that SAT-solving is not yet a viable approach
to take to solve the preimage problem, and also indicate that
some of the intuitions about “good” problem encodings in the
literature are likely to be incorrect.

Index Terms—SAT-solving, SHA-1, preimage, CNF encoding

The SHA-1 hash is a 160-bit cryptographic hash, stan-

dardised and promulgated by the National Institute of Stan-

dards and Technology (NIST) in 1995 [1]. It is considered

to be computationally infeasible to find any input for a

cryptographic hash that matches a pre-selected output; this

is called the preimage problem. The preimage problem pre-

specifies the output and is therefore more difficult than the

collision problem that has recently shown greater tractabil-

ity [2]. However, there are many computationally infeasible

problems which have proven to be sufficiently tractable when

the heuristics of a modern satisfiability-solver (SAT-solver)

are used. This research re-examined the preimage problem

and gauged the difficulty of finding solutions using modern

SAT-solvers.

The paper begins by defining the form that SHA-1 must

be converted into in order to use it with a SAT-solver. Some

time is spent discussing the best way to encode SHA-1 into

such a form, taking into account the relevant literature on the

subject. Different modern SAT-solvers are applied, and the

results are presented and discussed. Lastly, conclusions are

drawn about the current applicability of SAT-solvers to the

preimage problem.

I. BACKGROUND

This section encompasses three things: the SHA-1 hash

algorithm, the encoding accepted by SAT-solvers, and a very

brief overview of the field of SAT-solving.

A. SHA-1

The SHA-1 algorithm is formulated in a Merkle-

Damgård [3], [4] structure that relies upon the one-wayness

of the compression function for its security properties. It is

convenient to study the compression function in isolation and

that is precisely what has been done in this research, with the

understanding that obtaining a preimage for the compression

function output can be trivially converted into a preimage

attack on the full hash.

The compression function itself takes place in two stages,

each of which involves the creation of data to be used in one

of 80 rounds. The first stage is called message-expansion,

and involves expanding the input message of 16 32-bit words

(denoted by w0..15 in this work) into 80 32-bit words. The ith

bit of the word to be used in round r can be found using the

following recurrence relation.

wi

r
=

{

wi

r
when r < 16

wi+1

r−3 ⊕ wi+1

r−8 ⊕ wi+1

r−14 ⊕ wi+1

r−16 otherwise

(1)

The usual method of calculating w-values during message-

expansion relies upon previously-calculated w-values. How-

ever, note that Equation 1 is entirely linear and it is therefore

possible to express the value of any particular bit purely in

terms of the bits of the initial w0..15 words. Expressing a bit

in terms of w-values can be called the bitpattern formulation

for a particular bit.

The second stage uses addition, rotation, and the majority

(b∧ c)∨ (b∧d)∨ (c∧d), choice (b∧ c)∨ (¬b∧d), and parity

b⊕c⊕d functions to achieve the confusion and diffusion that

are necessary in a cryptographic hash. The per-round output

in this stage is denoted by the symbol a, and it is therefore the

last five 32-bit words, comprising the final 160 bits generated

by the compression function, which will have particular values

for a given 16-word input.

The output may be regarded as a single 160-bit value.

Let u0 be the most significant bit of this value, where the

superscript denotes the bit position. Each bit of u is associated

with a corresponding set of operations that generated the

appropriate bit of an a value. Let C(n) be the corresponding

equation for un, and let C ′(n) be the negation of C(n). Now

it is true that:

1 =

160
∧

n=0

{

C(n) if un = 1

C ′(n) if un = 0
(2)

This fact can be used to arrive at a single equation which

expresses the output of the SHA-1 compression function for

a given input.

Page 216 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017



B. Conjunctive Normal Form

A satisfiability solver accepts a set of logical statements

phrased in conjunctive normal form (CNF). This form of a for-

mula represents an equation as a conjunction of disjunctions.

Each set of disjunctions is called a clause or covering, and

each variable is called a literal. Clauses cannot be negated, but

individual literals may be. The order of clauses is irrelevant.

Example 1: CNF. Consider the function (x0∧x1)∨ (x2∨

x3) ∧ ¬(x2 ∧ ¬x0). It can be converted to CNF by using De

Morgan’s law to remove all negated clauses, distributing ∨

operations over ∧ operations so that a ∨ (b ∧ c) 7→ (a ∨ b) ∧
(a ∨ c), and then simplifying as follows:

(x0 ∧ x1) ∨ (x2 ∨ x3) ∧ ¬(x2 ∧ ¬x0)

= (x0 ∧ x1) ∨ (x2 ∨ x3) ∧ (¬x2 ∨ x0)

= (x0∨((x2∨x3)∧(¬x2∨x0))∧(x1∨((x2∨x3)∧(¬x2∨x0))

= (x0∨ (x2∨x3))∧ (x0∨ (¬x2∨x0))∧ (x1∨ (x2∨x3))∧
(x1 ∨ (¬x2 ∨ x0))

= (x0∨x2∨x3)∧ (x0∨¬x2∨x0)∧ (x1∨x2∨x3)∧ (x1∨
¬x2 ∨ x0)

= (x0∨x2∨x3)∧(x0∨¬x2)∧(x1∨x2∨x3)∧(x1∨¬x2∨x0)

= (x0 ∨ x2 ∨ x3) ∧ (x0 ∨ ¬x2) ∧ (x1 ∨ x2 ∨ x3)

= (x0 ∨ (¬x2 ∧ x3)) ∧ (x1 ∨ x2 ∨ x3)

= (x0 ∨ ¬x2) ∧ (x3 ∨ x0) ∧ (x1 ∨ x2 ∨ x3)

The clauses of a minimal CNF function can be viewed as a

set of “filters” which exclude 0-valued rows of the truth table.

Therefore, finding a preimage of a CNF function necessarily

involves evaluating each of the clauses of the function, and

discarding those rows which do not match. For functions

where the number of variables is large, and the number of

1-valued rows is small, this process of elimination can take a

great deal of computational effort.

Converting a function to CNF can be difficult; see Example

1. Though mechanical, the process involves computationally-

expensive distribution of terms and application of boolean

identities, and could result in an exponential increase in the

size of the resulting CNF. For example, the formula (a∧ b)∨
(c∧d)∨(e∧f) leads to the CNF (a∨c∨e)∧(a∨c∨f)∧(a∨
d∨e)∧(a∨d∨f)∧(b∨c∨e)∧(b∨c∨f)∧(b∨d∨e)∧(b∨d∨f).
Note that the 3 initial clauses have become 23 = 8 clauses,

each of which is more complex than the initial clauses. In fact,

this expansion of n clauses to 2n clauses is not unusual, and

many parts of the SHA-1 compression function — such as

calculations involving ⊕ — lead to an exponential expansion

of the resulting CNF when ∨s are distributed over ∧s.

However, one of the great advantages of CNF is that

any function can be converted to an equisatisfiable CNF via

Tseitin encoding [5] with, at most, a linear increase in the

number of terms. An equisatisfiable formula has additional

variables, but is only satisfiable whenever the original for-

mula is satisfiable. Tseitin encoding involves replacing each

operation x0 op x1 with a corresponding CNF sub-expression

that uses a new variable x2:

• x0 ∧ x1 7→ (¬x0 ∨¬x1 ∨ x2)∧ (x0 ∨¬x2)∧ (x1 ∨¬x2)
• x0 ∨ x1 7→ (¬x0 ∨ ¬x1 ∨ ¬x2) ∧ (x0 ∨ x2) ∧ (x1 ∨ x2)
• ¬x0 7→ (¬x0 ∨ ¬x2) ∧ (x0 ∨ x2)
• x0⊕x1 7→ (¬x0∨¬x1∨¬x2)∧ (¬x0∨x1∨x2)∧ (x0∨

¬x1 ∨ x2) ∧ (x0 ∨ x1 ∨ ¬x2)

The new variable takes the value of the output of the

expression, and can therefore be used in further expressions as

a proxy for that output. Once a solution has been obtained, the

new variables can be discarded and the values of the original

variables substituted into the the original equation, with the

same result being obtained.

A CNF formula can be stored compactly as a vector of

clauses, where each clause may have a maximum of three

terms. The index of the clause in the vector identifies it

uniquely. This representation makes it easy to store a large

formula with minimal overhead. It also makes it simple to

create files in the de facto standard DIMACS format, in which

a simple header line is followed by a single clause per line.

Finding a preimage for a CNF formula is equivalent

to finding a set of inputs which will satisfy the formula.

The ease of converting boolean formulae into CNF via the

Tseitin transformation has led to CNF being accepted as the

de facto standard for use with satisfiability (SAT) solvers,

which exist to solve the well-known (and NP-complete)

boolean satisfiability problem [6]. Despite being theoretically

unsolvable in computationally-feasible time, many practical

boolean satisfiability problems can be solved heuristically

using modern SAT solvers [7]. In the SAT literature, clauses

are often called constraints since they constrain the possible

solution space.

C. SAT-solving

SAT algorithms may be split into two broad categories:

DPLL-based. Davis-Putnam-Logemann-Loveland [8]

(DPLL) solvers (either backtracking or non-backtracking) try

to find logical contradictions between variable assignments,

and thus eventually derive an implication graph which

contains no contradictions. Such an implication graph is

a solution. Powerful modern solvers such as MiniSat [9]

are DPLL-based. Conflict-Driven Clause Learning (CDCL)

solvers are advanced variants of DPLL solvers.

Stochastic Local Search. Whereas DPLL-based solvers

work by proving relationships between the variables, stochas-

tic local search (SLS) solvers — also known as “random

walk” solvers — start with an assignment of random values to

each variable. A limited number of variables is then flipped,

and the solution which has the least number of unsatisfied

clauses is chosen. Using this solution as the new assignment,

the same procedure is repeated until a solution where all

clauses are satisfied is obtained. [10, Ch. 8]

The split is, in some instances, more theoretical than

practical since there is a great cross-pollination of ideas

and techniques between different families of solvers; indeed,

solvers such as SATzilla [11] choose between what they be-

lieve to be the most “appropriate” method for a given problem.

In the case of finding preimages, it is known that the formula

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017 Page 217



is satisfiable (SAT) instead of unsatisfiable (UNSAT). Where

a solution is known to exist, SLS solvers may significantly

outperform DPLL-based solvers [12], [13]. However, when

applied to a hash function, SLS solvers have performed much

worse than their DPLL-based counterparts [14].

A big drawback of SAT-solving solutions is that they are of

limited generality. Although the basic algorithms used during

DPLL-solving stay the same, some of the choices made by

a solver are effectively arbitrary. After how many conflicts

should a solver stop pursuing a branch of reasoning? Which

variable should a solver try to find a value for? How much of

an abandoned branch of reasoning might it be useful to keep

for future reference? These questions are decided in different

ways by different solvers (and different algorithm variants). A

SAT solver, applied to a particular problem, is very sensitive

to the parameters which govern its behaviour. The advantage

of this is that there may be a particular set of parameters —

Lingeling [15], for example, has approximately 340 tunable

parameters! — which could find a SHA-1 preimage within

a relatively short span of time. The disadvantage of such a

solution is that it tells the computer scientist a great deal about

the behaviour of various SAT-solving algorithms, but very

little about the problem domain for which those particular

parameters happened to work. It is therefore unlikely to lead

to a cognitive breakthrough or generalisable understanding.

Even worse, there is a possibility that a SAT solver will only

find a solution for a particular problem case, and not for

problems of a particular type, since “it is exactly the non-

adversarial nature of practical instances that is exploited by

SAT solvers” [7]. One practical consequence of this is that

the time taken to solve a particular problem — even if the

problem may be considered “similar” to a previously-solved

problem — is very difficult to predict.

II. CNF ENCODING OF SHA-1

The most relevant works in this regard are [16]–[19].

In particular, [16] comprehensively discusses a minimal en-

coding of SHA-1 in order to find preimages, and conducts

numerous experiments to identify the best ways to SAT-

solve the resulting CNF. Most of the work was done on a

reduced-round variant of SHA-1, focusing on the first 20–

23 rounds. Interestingly, this range ends just before the Strict

Avalanche Criterion is satisfied [20], which effectively means

that there remain some correlations between bit values within

the examined range.

A SAT solver uses the technique of unit propagation to

simplify a problem. A unit clause is a clause consisting

of a single literal (which may be negated). When such a

clause is encountered, all clauses containing the literal may

be removed: if the problem is satisfiable, then the literal will

make all clauses containing it satisfiable as well. In addition

to this, if a clause containing the negation of the literal is

encountered, then the literal may be removed from this clause:

it cannot possibly be true in any solution, and can therefore

not contribute to the meaning of the clause.

Eén highlights the importance of arc consistency as a

worthwhile property of an encoding [19]; an arc consistent

encoding allows unit propagation to be used much more

effectively, often to the extent of solving a problem entirely.

A definition of arc consistency taken from [19] that is specific

to CNF encoding is:

Definition. Let x = (x1, x2, . . . , xn) be a set of

constraint variables, t = (t1, t2, . . . , tm) a set of

introduced variables. A satisfiability equivalent CNF

translation ϕ(x, t) of a constraint C(x) is said to be

arc-consistent under unit propagation iff for every

partial assignment σ, performing unit propagation

on ϕ(x, t) will extend the assignment to σ′ such that

every unbound constraint variable xi in σ′ can be

bound to either True or False without the assignment

becoming inconsistent with C(x) in either case.

More informally, a formula has constraints that must be

satisfied by any solution; an equisatisfiable formula should try

to represent these constraints faithfully; and an arc consistent

equisatisfiable formula is one where an assignment leads

unambiguously to constraint satisfaction or unsatisfiability.

Thus, arc consistent representations of a formula may be

efficiently solved for satisfiable solutions.

Xor constraints occur during message-expansion, during

the encoding of addition, and during the parity function

(used as the f -function in 40 of the 80 SHA-1 rounds).

Unfortunately, they also involve the longest clauses (four 3-

term clauses) and the largest number of these clauses (four, as

opposed to a maximum of three to encode other operations).

A naı̈ve encoding of an xor constraint such as p⊕ q⊕ r thus

involves taking any two of the variables, applying the Tseitin

transformation, and then using the resulting additional Tseitin

variable as a participant in another Tseitin transformation; viz.

p⊕ q ⊕ r = ((¬p ∨ ¬q ∨ ¬t0) ∧ (¬p ∨ q ∨ t0) ∧ (p ∨ ¬q ∨
t0) ∧ (p ∨ q ∨ ¬t0))⊕ r

= (¬p∨¬q∨¬t0)∧ (¬p∨ q∨ t0)∧ (p∨¬q∨ t0)∧
(p ∨ q ∨ ¬t0) ∧ (¬t0 ∨ ¬r ∨ ¬t1) ∧ (¬t0 ∨ r ∨
t1) ∧ (t0 ∨ ¬r ∨ t1) ∧ (t0 ∨ r ∨ ¬t1)

Thus does a constraint involving n terms expand to 2n−1

3-clause constraints. Bard [21], observing that n causes prob-

lems of scale, suggests a pre-processing of n-term xor-clauses

to break them down into c-term xor-clauses, c < n, where

each new clause introduces an additional variable; c is called

the cutting number.

Example 2: Pre-processing xor clauses [21]. Assume that

the 8-term formula p ⊕ q ⊕ r ⊕ s ⊕ t ⊕ u ⊕ v ⊕ w must

be converted to CNF. As above, this would require 28−1 =
128 3-term clauses in a naı̈ve Tseitin encoding. If we apply

Bard’s procedure using c = 4, however, we end up with the

equisatisfiable clauses p⊕ q⊕ r⊕ s⊕x0, x0⊕ s⊕ t⊕u⊕x1,

and x1 ⊕ v ⊕ w . The single clause has been split into three

clauses, each having a maximum of c + 1 terms, and the

corresponding number of clauses when converted to CNF is

24+24+22 = 16+16+4 = 36; 92 clauses fewer than would

be obtained from a naı̈ve encoding. The cost of each clause is

Page 218 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017



the introduction of an additional “dummy” variable, denoted

by xi above. According to Bard, the optimal cutting number

is 6. It is also known that the clauses-to-variables ratio of a

CNF formula is correlated with the difficulty of solving that

formula [22, p. 110–111]. Nossum [16] therefore attempts

to reduce this ratio, encoding the addition step of a SHA-1

round by using the Espresso heuristic logic minimizer [23]

to express formulae using the least number of terms; using

the CryptLogVer toolkit [24] for a similar reason; and using

a straight Tseitin transformation (for comparison purposes).

By comparison, Legendre [18] hand-crafts the SHA-1 CNF

encoding in an attempt to decrease the complexity of solving

the formula, from the perspective of a DPLL-based SAT

solver. The clauses-to-variables ratio is ignored in favour of

simplifications and creating “logical bridges” [18, p. 16] —

clauses containing only two variables — that may help during

solving. Unfortunately, while improved results for the MD5

algorithm are demonstrated, improved results for SHA-1 are

absent. The importance of this approach in the context of

SHA-1 is therefore uncertain.

TABLE I
CNF ENCODINGS, 80 ROUNDS OF SHA-1

Ref. Encoding Clauses Variables Ratio 2-clauses

[16] Espresso 478,476 13,408 35.69 unknown
[16] CryptLogVer 248,220 44,812 5.54 unknown
[16] Simple 223,551 56,108 3.98 unknown
[18] Hand-crafted 491,791 12,779 38.48 259
[18] ”, simplified 375,195 12,771 29.38 908

Both [18] and [16] call out the addition step as being

worthy of special effort when encoding. [16] try several

approaches: using the Espresso heuristic logic minimizer [23]

to express formulae using the least number of terms; using

the CryptLogVer toolkit [24] for a similar reason; and using

a straight Tseitin transformation. The clauses, variables, and

ratios for various 80-round encodings are presented as Table I.

TABLE II
THE EFFECT OF GLUCOSE 4.0 SIMPLIFICATION OPTIONS ON A

210,121-VARIABLE, 629,597-CLAUSE CNF ENCODING OF SHA-1

Simplification options Clauses Variables 2-clauses

-elim 356,395 66,457 81,446
-elim -asymm 350,673 64,901 85,185

-elim -grow=50 -asymm 482,577 23,653 16,476
-elim -grow=100 -asymm 486,735 16,730 5,687
-elim -grow=200 -asymm 470,176 12,700 1,314
-elim -grow=500 -asymm 506,669 11,587 751
-elim -grow=10000 -asymm 2,486,170 9,277 534

No such encoding optimisations have been enacted in this

work. A simple, naı̈ve encoding of the SHA-1 algorithm, as

described by Equation 2, results in 210,121 variables and

629,597 clauses, giving a clause-to-variable ratio of 2.996

— which is a “better” ratio than any listed in Table I. [18]

focuses on longer clauses with more 2-clause bridges, giving

a higher ratio. When this naı̈ve encoding is passed to the

Glucose 4.0 solver1 [9], [25] along with suitable simplification

1Glucose version 4.0, with Glucose Syrup

options, the result is a CNF encoding with 470,176 clauses,

12,700 variables, and 1,314 2-clauses — arguably a “better”

encoding than the hand-crafted one, under the assumption that

simplification works towards making solving easier. Table II

shows the effect of using various simplification options on the

simple CNF encoding that has already been described.

TABLE III
THE EFFECT OF GLUCOSE 4.0 SIMPLIFICATION OPTIONS ON A

267,603-VARIABLE, 857,477-CLAUSE CNF ENCODING OF SHA-1

Simplification options Clauses Variables 2-clauses

-elim 582,924 98,119 81,093
-elim -asymm 577,616 96,653 85,542

-elim -grow=50 -asymm 983,082 38,184 16,690
-elim -grow=100 -asymm 1,185,483 28,789 5,323
-elim -grow=200 -asymm 1,186,745 24,930 1,247
-elim -grow=500 -asymm 2,304,868 20,423 659
-elim -grow=10000 -asymm 14,422,346 14,835 448

For comparison purposes, Table III presents figures for an

encoding of SHA-1 that uses bitpatterns. The figures demon-

strate that the trends caused by simplification are similar, even

when the initial encoding of the problem is quite different:

the number of variables decreases, the number of clauses

increases, and the number of 2-clauses decreases. The 2-

clauses column, in particular, is interesting because of how

similar it is between the encodings.

Not directly evident from Tables II and III, but worthwhile

to note, is the time and space costs of different initial

encodings. More effort spent on simplification requires more

computational power, and the final rows of Tables II and III

took 7 minutes and 120 minutes respectively, and resulted

in simplified DIMACS files that were 113Mb and 858Mb

respectively.

No encoding tricks, such as those already described, have

been used to simplify the CNF encoding in this work.

Taking into consideration the previous work on this topic,

the experimental results detailed above, and the possible

advantages and disadvantages, the conclusion reached is that

the built-in simplification routines used by modern solvers

(see, for example, [26]) are likely to be powerful enough for

all practical purposes; there is little to be gained by hand-

tweaking a SHA-1 encoding.

There are basic encodings which appear to be objectively

worse to begin from; a comparative examination of Tables II

and III appears to show that the bitpattern w-formulation leads

to one such encoding. However, the results of the following

section will demonstrate that this appearance is deceptive.

III. SAT-SOLVING

The Glucose [9], [25], YalSAT2 [27], Plingeling3 [15],

and CryptoMiniSat4 [28] SAT solvers were chosen as being

representative of a cross-section of SAT-solving approaches.

Glucose is a modern, state-of-the-art CDCL solver; YalSAT

2YalSAT version 03l
3Plingeling version bbc-9239380-160707
4CryptoMiniSat version 5.0.0 (with gaussian elimination)

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017 Page 219



is a modern take on a Stochastic Local Search solver; Plin-

geling is a SAT solver that attempts to exploit multi-core

architectures; and CryptoMiniSat is a well-regarded open-

source CDCL solver, originally targeted towards solving cryp-

tographic problems, which supports a xor-clause extension to

the DIMACS format. All solvers were run in their default

configurations and solvers which did not find a solution within

10 minutes were terminated.

TABLE IV
SAT-SOLVING TO FIND A PREIMAGE

Input bits Solver
Time taken (s)

standard bitpattern

6

Glucose 1.3 1.3

YalSAT / ProbSat / CSCCSat14 – –

Plingeling 1.0 1.4

CryptoMiniSat 2.5 2.2

12

Glucose 16.4 7.1

YalSAT / ProbSat / CSCCSat14 – –

Plingeling 15.9 7.6

CryptoMiniSat 3.6 16.6

16

Glucose 135.6 252.0

YalSAT / ProbSat / CSCCSat14 – –

Plingeling 25.8 250.0

CryptoMiniSat 256.1 18.5

18

Glucose 403.6 138.2

YalSAT / ProbSat / CSCCSat14 – –

Plingeling 82.7 463.2

CryptoMiniSat – 181.9

20

Glucose 227.8 132.0

YalSAT / ProbSat / CSCCSat14 – –

Plingeling – –

CryptoMiniSat – –

22

Glucose – –

YalSAT / ProbSat / CSCCSat14 – –

Plingeling – –

CryptoMiniSat – –

For each run, a particular number of bits were allowed to

vary and the remaining bits were set to fixed values. This

made it possible to examine the behaviour of the SAT-solvers

as the search space increased.

SAT solver results are presented in Table IV. YalSAT, in

line with the reported results of [14], was unable to solve any

of the problems. To check whether this was a problem with

YalSAT or with the SLS approach, two other independently-

developed SLS solvers (ProbSat [29] and CSCCSat14 [30],

[31]) were applied to the smallest (6-bit input) problem. Both

failed to arrive at a solution within 10 minutes, and this con-

firms that the problem is likely to be the SLS approach rather

than the YalSAT solver itself. CDCL-based solvers worked

somewhat better, with Glucose outperforming both Plingeling

and CryptoMiniSat. The time taken to find solutions varied

significantly and unpredictably, and neither the standard w-

encoding nor the bitpattern w-encoding showed itself to be

definitively superior. Glucose seemed to find the bitpattern

w-encoding to be easier to solve for bit-lengths 18 and 20,

but more difficult for bit-length 16; Plingeling found the

bitpattern w-encoding to be uniformly harder to work with;

and CryptoMiniSat seemed to find the bitpattern w-encoding

to be uniformly easier to work with. This unpredictability

casts some doubt on the weight that should be given to

“second-guessing” a solver by simplifying or hand-tweaking

a CNF encoding.

IV. DISCUSSION & CONCLUSIONS

No solver could find a preimage for more than 20 bits of

input. With that being said, finding a preimage for hash inputs

of ≤ 20 bits on consumer-level hardware is no mean feat; if

anything, it demonstrates the enormous advances that have

been made in the field of SAT-solving over the past decades.

Another two decades of progress in the field may make SAT-

solving for larger bit-lengths much easier. It would currently

be faster to exhaustively check all n-bit inputs than it would be

to run a SAT-solver for n bits, and this means that SAT-solvers

are worse than brute force solutions as far as the preimage

problem is concerned.

This result is not surprising. However, the vastly different

behaviours of the different SAT-solvers when faced with

different encodings is surprising. Much research, mentioned

in this work, has tried to find the “best” encoding for SAT-

solving and these results appear to show that that effort is

misdirected: additional 2-clauses, fewer clauses, and clause

length have vastly different effects, depending on the SAT-

solver being employed. The relationship between SAT-solver,

heuristics, problem, and encoding is complex and deserving

of further study.

Bellare [32] has demonstrated that the SHA-1 hash pos-

sesses an admirable amount of balance: that is, the output

of the compression function contains approximately the same

number of ones and zeroes. Previous research undertaken by

the authors analyzed the strict avalanche criterion in relation to

SHA-1 [20] and found that there was no statistical correlation

whatsoever between input and output bits, starting from very

early in the compression function. Taken together, these two

results would imply that a solver which is able to find

preimages for inputs of ≈ 160 bits would also be able to

find a preimage for most SHA-1 hashes.

ACKNOWLEDGEMENT

This work was undertaken in the Distributed Multimedia

CoE at Rhodes University, with financial support from Telkom

SA, Tellabs, Easttel, Bright Ideas 39, THRIP and NRF SA

(UID 75107). The authors acknowledge that opinions, find-

ings and conclusions or recommendations expressed here are

those of the author(s) and that none of the above mentioned

sponsors accept liability whatsoever in this regard.

REFERENCES

[1] NIST, “Federal information processing standard (FIPS) 180-1. Secure
hash standard,” National Institute of Standards and Technology, vol. 17,
1995.

[2] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov,
“The first collision for full sha-1,” Cryptology ePrint Archive, Report
2017/190, 2017, preprint; http://eprint.iacr.org/2017/190.

[3] R. C. Merkle, “Secrecy, authentication, and public key systems,” Ph.D.
dissertation, Department of Electrical Engineering, Stanford University,
1979.

Page 220 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017



[4] I. B. Damgård, “A design principle for hash functions,” in Conference

on the Theory and Application of Cryptology. Springer, 1989, pp.
416–427.

[5] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” in Automation of reasoning. Springer, 1983, pp. 466–483.

[6] S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-

ceedings of the Third Annual ACM Symposium on Theory of computing.
ACM, 1971, pp. 151–158.

[7] S. Malik and L. Zhang, “Boolean satisfiability from theoretical hardness
to practical success,” Communications of the ACM, vol. 52, no. 8, pp.
76–82, 2009.

[8] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem-proving,” Communications of the ACM, vol. 5, no. 7, pp. 394–
397, 1962.

[9] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and

applications of satisfiability testing. Springer, 2003, pp. 502–518.

[10] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability, ser.
Frontiers in Artificial Intelligence and Applications. IOS press, 2009,
vol. 185.

[11] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “SATzilla:
portfolio-based algorithm selection for SAT,” Journal of Artificial

Intelligence Research, pp. 565–606, 2008.

[12] H. Kautz and B. Selman, “Pushing the envelope: planning, propositional
logic, and stochastic search,” in Proceedings of the National Conference

on Artificial Intelligence, 1996, pp. 1194–1201.

[13] B. Selman, H. Kautz, B. Cohen et al., “Local search strategies for satis-
fiability testing,” Cliques, coloring, and satisfiability: Second DIMACS

implementation challenge, vol. 26, pp. 521–532, 1993.

[14] F. Massacci, “Using Walk-SAT and Rel-Sat for Cryptographic Key
Search,” in Proceedings of the Sixteenth International Joint Conference

on Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1999,
pp. 290–295.

[15] A. Biere, “Lingeling, Plingeling and Treengeling Entering the SAT
Competition 2013,” Proceedings of SAT Competition 2013, pp. 51–52,
2013.

[16] V. Nossum, “SAT-based preimage attacks on SHA-1,” Master’s thesis,
Department of Informatics, University of Oslo, Norway, 2012.

[17] F. Legendre, G. Dequen, and M. Krajecki, “Encoding hash functions
as a SAT problem,” in 24th International Conference on Tools with

Artificial Intelligence (ICTAI 2012). IEEE, 2012, pp. 916–921.

[18] ——, “Logical Reasoning to Detect Weaknesses About SHA-1 and
MD4/5,” IACR Cryptology ePrint Archive, vol. 2014, p. 239, 2014.

[19] N. Eén and N. Sörensson, “Translating pseudo-boolean constraints into
SAT,” Journal on Satisfiability, Boolean Modeling and Computation,
vol. 2, pp. 1–26, 2006.

[20] Y. M. Motara and B. V. Irwin, “SHA-1 and the Strict Avalanche
Criterion,” in Proceedings of the 2016 Information Security for South

Africa (ISSA 2016) Conference. IEEE, 2016.

[21] G. V. Bard, “Algorithms for solving linear and polynomial systems
of equations over finite fields, with applications to cryptanalysis,”
Ph.D. dissertation, Department of Mathematics, University of Maryland,
United States of America, 2007.

[22] F. Van Harmelen, V. Lifschitz, and B. Porter, Handbook of knowledge

representation. Elsevier, 2008, vol. 1.

[23] R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued mini-
mization for PLA optimization,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 6, no. 5, pp. 727–750,
1987.

[24] P. Morawiecki and M. Srebrny, “A SAT-based preimage analysis of
reduced KECCAK hash functions,” Information Processing Letters, vol.
113, no. 10, pp. 392–397, 2013.

[25] G. Audemard and L. Simon, “Predicting learnt clauses quality in
modern SAT solvers,” in Proceedings of the 21st international joint

conference on Artifical Intelligence. Morgan Kaufmann Publishers
Inc., 2009, pp. 399–404.

[26] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in International conference on theory and

applications of satisfiability testing. Springer, 2005, pp. 61–75.

[27] A. Biere, “Yet Another Local Search Solver and Lingeling and friends
entering the SAT competition 2014,” Proceedings of SAT Competition

2014, pp. 39–40, 2014.

[28] M. Soos and M. Lindauer, “The CryptoMiniSat-4.4 set of solvers at the
SAT Race 2015,” SAT Race, 2015.

[29] A. Balint and U. Schöning, “Choosing probability distributions for
stochastic local search and the role of make versus break,” in Interna-

tional Conference on Theory and Applications of Satisfiability Testing.
Springer, 2012, pp. 16–29.

[30] C. Luo, S. Cai, W. Wu, and K. Su, “Focused random walk with config-
uration checking and break minimum for satisfiability,” in International

Conference on Principles and Practice of Constraint Programming.
Springer, 2013, pp. 481–496.

[31] ——, “Double Configuration Checking in Stochastic Local Search for
Satisfiability,” in Proceedings of the 28th AAAI Conference on Artificial

Intelligence, 2014, pp. 2703–2709.
[32] M. Bellare and T. Kohno, “Hash function balance and its impact on

birthday attacks,” in Advances in Cryptology (EUROCRYPT 2004).
Springer, 2004, pp. 401–418.

Yusuf M Motara is a lecturer at Rhodes University and a member of
the Security and Networks Research Group (SNRG) at that institution.
His interests are information security, programming languages, software
development, and the intersection of these areas.

Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2017 Page 221


