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Abstract: Accelerating waves have received significant attention of late, first in the optical
domain and later in the form of electron matter waves, and have found numerous applications
in non-linear optics, material processing, microscopy, particle manipulation and laser plasma
interactions. Here we create angular accelerating light beams with a potentially unlimited
acceleration rate. By employing wavelength independent digital holograms for the creation and
propagation of white light beams, we are able to study the resulting propagation in real and virtual
space. We find that dephasing occurs for real propagation and that this can be compensated for in
a virtual propagation scheme when single plane dynamics are important. Our work offers new
insights into the propagation dynamics of such beams and provides a versatile tool for further
investigations into propagating structured light fields.
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1. Introduction

Over the last decade the demand for complex optical beam shapes has grown rapidly [1]. One
manifestation of this demand is reflected in the enormous diversity of new self-accelerating
beams with carrier fields such as Airy Beams [2,3], parabolic beams [4], radially self-accelerating
beams [5], angular self-accelerating beams [6, 7], bottle beams [8], Mathieu beams [9, 10],
X-waves [11], incoherent accelerating beams [12] as well as beams that resemble the propagation
of coherent random walkers in free space [13]. With more and more of those fundamentally
interesting phenomena finding their way into novel applications [14—16] it seems obvious, that
many of them might benefit from a broadband or multiline spectral approach. This is especially true
for optical microscopy [17, 18], particle manipulation [19] and ultrafast laser applications [20,21].
Unfortunately most beam shaping techniques rely on phase-only devices such as spatial light
modulators (SLMs) or diffractive optical elements that are inherently wavelength dependent and
thus do not appear to be suited for white light applications.
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Despite the wavelength dependence of such devices, here we create and propagate white
light angular accelerating beams using a phase-only SLM. We summarise how it is possible to
design wavelength independent holograms, such that each spectral component obtains the correct
phase distribution with only minor amplitude perturbations. We find that in real propagation
the spectral components dephase over distance. However, by deploying the holograms in the
angular spectrum domain (the far field of the desired observation plane) we are able to implement
a virtual propagation tool that allows us to investigate the propagation dynamics without the
need for any moving parts. Intriguingly, we find that the virtual propagation in conjunction
with the wavelength independent holographic implementation becomes fully non-dispersive. In
other words, the spectral components of the beam behave as if the wave number k£ would be a
wavelength independent constant. This allows for the accelerating dynamics to remain intact
across a broad wavelength range when observing a single plane. Our work offers new insights
into the propagation dynamics of such accelerating white light beams, and provides a versatile
tool for further study of propagating structured white light fields in general.

2. Theory

In this section we provide a generalised description of angular accelerating waves and introduce
the core toolbox for this study. That is to say, we explain how to create the aforementioned waves
via complex amplitude modulation in a wavelength independent manner and we show how to
digitally propagate them such that the propagation itself appears to be non-dispersive. While the
tools for wavelength independent holography and virtual propagation do exist, here we bring
them together into a single hologram to study white light propagation, and thus outline the core
concepts in this section for the benefit of the reader.

2.1. Construction of angular accelerating waves

The fundamental concept of rotating, shape-invariant beams was outlined some time ago and
serves as a guideline for defining [22] and realising [23] such field configurations. Here we
restrict our attention to a recently introduced class of optical beams with helical trajectories and
periodically varying rotation rates [6]. In the context of self-acceleration, one would regard that as
aradial- and (at the same time) angular acceleration scheme. This is because a co-moving observer
would experience not just a radial centrifugal force but on top of that a periodic acceleration and
deceleration in the azimuthal direction. First however, let us discuss how beams with helical
trajectories can be understood. A very common way, though not the most general one [5,22], are
classical helicon beams [24-27]. They are based on the interference of two Bessel waves with
different helical phase orders (i, £) and propagation terms (k;|, k;2). In a circular cylindrical
coordinate system this reads as follows

u(r, ¢, z) = jm(kr|1r) elmeeizhan Jé(krur) ell¥eizkap, (D
u(r, . D = | Ton (ki) [* + | T (K or)
+ 2 Fnlkrp17) o (kr pr) cOS(Amep + Ak:2) . )

Here, ., (k,r) denotes the Bessel function of the first kind and order m with &, being the radial

component to the wave number that relates to the propagation constant via k, = k2 — k2.
Moreover, for convenience, we defined Ay, = m — € and Ak, = k;; — k;p. Equation (2)
immediately shows the structure for a helical trajectory. It also indicates, that all iso-intensity
curves obey A,r ¢ + Ak,z = ¢ with ¢ being an arbitrary constant. From this, the rotation
angle ¢(z), rotation rate w(z) and angular acceleration a(z) can be derived.

_de(z) _ Ak, _ dez) _

S o)=L~

Z =
#(2) Ame dz Ame dz?
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As expected, since helicon beams do not exhibit a variable rotation rate, the angular acceleration
drops to zero. To achieve non-vanishing acceleration, it is important to understand how the
helical trajectory is formed. Due to the different propagation constants, the phase fronts of both
input fields continuously dephase with respect to each other causing the helical phase fronts to
interfere along a spiraling path. Hence one approach to create beams with a variable rotation rate
is to use non-linear helical phase terms, as was done in Ref. [6] using a clever combination of
linearly-phased Bessel waves, thus still satisfying the scalar Helmholtz equation. Let’s assume a
new input field u(r, ¢, 7) = gn(r, ¢, 2, 7) with

gm(r, 0, 2,1) = J(krr) [cos(1/2) €™ + sin(n/2) e "¢ | e<2. 3)

This field is just a superposition of two Bessel waves but it exhibits a non-linear instead of the
usual linear helical phase ramp. The new conditional variable 7 is a measure for this non-linearity.
Values 1 ~ 0 infer a near-linear phase behavior while values  ~ 7/2 result in an almost step-like
function. Note, that by choosing values 1 > /2 one flips the slope of the phase ramp which is
equivalent to changing the sign of m; thus g_,,(r, ¢, z, 1) = gm(r, ¢, z, ™ — 17). By superimposing
two of those fields (similarly as in the case of Eq. (1)) whereby we change the sign of |m|, we
obtain

u(r,0,2) = Jm(krpr) [cos(r/2) e + sin(n/2) e_im‘p] glkanz

+ Tom (krpor) [cos(n/2) €™ + sin(n)2) e | e*<i®, 4)

Subsequently, we can calculate the resulting field’s intensity |u(r, ¢, z)|2 , and, like before, use it
to obtain the rotation characteristics of the beam:

_ cos(n) sin(Ak, z)
2= 3] | Gy + cos(Ak.2) ©)
_ Ak, cos(n)
w(z) = 2 |m| 1 + sin(y) cos(Ak, z) ©
2 ) )
() = AkZ  sin(2n) sin(Ak,z) )

41ml [1 + sin(n) cos(Ak,2)]?

Since the superposition involves two fields with non-canonical phase orders of opposite sign, the
angular acceleration term is now non-vanishing. Moreover, notice that for 5 — 7/2, the angular
acceleration a(z) diverges to infinity. This is a unique and potentially very useful characteristic
which is difficult, if not impossible, to achieve with other acceleration schemes. This is because
in the angular accelerating case the acceleration takes place in a bounded space - the azimuthal
plane. Thus very large accelerations can be realised without the need for a large transverse space.
Conversely, in transverse accelerating beams ever more transverse space is needed to observe
higher accelerations, and this eventually causes the paraxial limit to be broken. Importantly,
though, in the actual acceleration region there is a predicted spatial energy transfer in order to
conserve angular momentum that is also dependent on 7. As the field accelerates and decelerates
during propagation, so energy is transferred in and out of the central region. This effect has been
confirmed experimentally [6].

2.2. Wavelength independent complex amplitude modulation

When creating self-accelerating optical fields, simultaneous amplitude and phase manipulation on
a single phase-only device is often required. It is possible, by complex amplitude modulation, to
create any optical field in amplitude and phase on a phase-only SLM (see Ref. [28] and references
therein for the various techniques). While controlling monochromatic fields is self-evident, it is
not so obvious when considering white light control by dynamic phase (the operating principle
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of SLMs) since the dynamic phase change through a medium is 2zn(1)d / A, where n(Q) is the
refractive index, d the physical path length, and A the wavelength. Clearly the phase change
is inversely proportional to the wavelength. This is because the refractive index variation with
wavelength in typical liquid crystals used in SLMs is small (about 5 — 10%) across a very wide
spectral range spanning hundreds of nm [29]. Thus, the dynamic phase still provides a formidable
constraint to control white light fields. This is a topical field, and recently it has been demonstrated
in a manner that ensures the hologram is wavelength independent [29, 30]. Here we briefly
outline the core idea to be used in a phase wrapped approach, based on Ref. [30], which we will
use together with the propagation hologram to realise complete control of the white light field.
Imagine that we wish to create our desired optical field in the first diffraction order, described by

u(x, y) = lu(x, y)|exp (i0(x, y) + ikxx), ®)

where u(x, y) is the field with phase 6(x, y) and k, is a spatial carrier frequency as a consequence
of a linear grating of pitch p, = 2n/k,. Here we assume the grating is applied in the x-axis but
may be in any direction and the mathematics generalised to a tilt described by k - r. Now if the
hologram is calibrated for a design wavelength, Ay to produce a phase change of ¢¢, then at a
new operating wavelength A the new phase change will be given by ¢ = ¢ X (19/1). But SLMs
do not allow for continuous phase profiles but rather modulated phase changes. Therefore, at the
new operating wavelength the modulation is not over 27 but instead 27 X (1p/2). Consider now
the phase-wrapped linear grating term: the pitch (or spatial carrier frequency) does not change,
only the modulation depth. It is easy to show that such a wrapped saw-tooth phase ramp about
the improper phase may be expressed as a suitably weighted superposition of plane waves, i.e.,

exp (ikx%x) rect (%x) ® Z 6(x —npy)
. n=-—o0o (9)
= Z sinc(n[n — (Ao/)]) exp (inkyx) .

n=—o0o

Imprecise phase-wrapping results in several new diffraction orders appearing (denoted by n), but
in multiples of the original carrier frequency, k. This seemingly innocuous fact has a significant
consequence: since any complexed valued function can be written in the form of a linear phase
gradient suitably sampled, e.g., | f(x)| exp(idn,) = | f(xm)| exp(idh X/ xm)8(x — x,y,), this result
implies that the new field at wavelength A given by ii,(x, y), differs from the desired field, u(x, y),
as

(o)

ia(x,y) = Z sinc(zw[n — (Ao/D)]) |u(x, y)| exp (inf(x, y) + inkyx) . (10)

n=—oo

If only the first order n = 1 is filtered out, then the hologram produces the field
fa(x, y) = Ay |u(x, y)lexp (i6(x, y) + ikyx) = Aqu(x, ). (1

where A, = sinc(n[AA/1)]) is a constant amplitude term that only depends on the wavelength
range used in the experiment. This is the only wavelength dependent term left in the equation and
introduces an amplitude only modulation to the original field, i.e., it is a slowly varying function
with wavelength where over the entire visible range the efficiency changes by approximately
1%. Since this efficiency change is negligible, the approach can be considered as effectively
controlling all spectral components of our white light field in an identical manner.
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2.3. Virtual propagation

In addition to real space propagation, we also propagate our field using a motion-free approach
that employs a SLM to mimic the angular spectrum method for beam propagation [31,32]. Here
we briefly summarise the idea. According to the angular spectrum approach an optical field can
be regarded as a superposition of plane waves, which are spatial Fourier components, and travel
in different directions. The propagation of our desired field u(x, y, z = 0) in the direction of the
z-axis can be described with the help of the transfer function of free-space exp(ik,z):

u(x, y,2) = F{Flu(x, y, 0)] exp(ik.2)}, (12)

where ¥ and F~! denote the Fourier transform and its inverse, respectively, and k;, is the z-
component of the wave vector. In a physical picture, the Fourier transformation can be realized by
a lens, where the focal length f determines the wave vector components: k, = k+/1 — r2/ f2. The
phase function exp(ikz) can then instead of physically propagating the field also be implemented
by digital means, e.g., with an SLM. Since the phase pattern displayed on the SLM can be
addressed dynamically, different propagation steps z can be programmed easily and the propagated
beam can be recorded in a fixed observation plane. By way of example Fig. 1 shows step by
step how different phase patterns affect the observation plane and how, as a last step, the virtual
propagation scheme can be implemented.

3. Experimental concept and setup

Here we bring together the aforementioned tools to create and propagate a white light field, with
the experimental concept sketched in Fig. 1. The Fourier transform of the optical field to be
studied, u(x, y, 0), is programmed by complex amplitude modulation onto the SLM to create the
desired white light field. The SLM is then also programmed with the phase function exp(ik;z)
and the resulting field is (inverse) Fourier transformed by a lens to produce the propagated version
of the optical field u(x, y, z) for a propagation distance of z. The propagated output is finally
recorded, using a CCD camera. This concept was implemented experimentally in the manner
shown in Fig. 2, and used to demonstrate and compare the angular acceleration of a white light
source for both real and digital propagation. We used a linearly-polarized, super-continuum
laser (Fianium super-continuum SC400-4) which was expanded and collimated by a telescope
(fi = I5Smm and f, = 125 mm) to illuminate the liquid-crystal display of a phase-only SLM
(HoloEye, PLUTO-VIS, with 1920 x 1080 pixels of pitch 8 um), labelled SLM;. The hologram
encoded on SLM; consists of two ring-slits, representing Durnin’s ring-slit aperture [33,34],
which were programmed via complex amplitude modulation [35]. Each ring was encoded with a
non-linear phase variation 7 = 7/5 of order £ = +1 and m = —1, respectively. This was achieved
by multiplying the two ring-slits with the corresponding bracketed term in Eq. (4). Note, that
the phase orders ¢ and m can be used to control the rotational symmetry of the beam [6]. The
digital propagation was later performed by adding the phase exp(ik,z) to the hologram on SLM;,
whereby we simultaneously create and virtually propagate the beam in the output plane. The
Fourier transform of the field at the plane of SLM; was obtained with lens, L3 (f3 = 200 mm) and
the resulting beam profile in the first diffraction order was selected by the pin-hole aperture (A).
Due to the way the annular apertures are implemented on SLMj, i.e., by means of a blazed
grating, the hologram is rendered wavelength independent in the first diffraction order (see
section 2.2) [30]. For the first part of the experiment, whereby we investigated the real propagation
of each individual wavelength (selected by an acousto-optic tunable filter within the source), a
10x objective in conjunction with a CCD camera (PointGrey CCD) were positioned at plane A
and moved along an optical rail to measure the rotation rates of the resulting petal structures. In
the case of digital propagation the detection system remained static while the effect of propagation
was digitally simulated on SLM| [31]. For the final part, where all wavelength components were
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Fig. 1. The concept of the experiment requires the Fourier transform of the desired field
u(x, y,0) to be encoded on the SLM in conjunction with a blazed grating. This procedure can
be understood as follows: (a) With no grating present, all light remains on-axis and the CCD-
image dark. (b) With a uniform grating, all light is redirected into the first diffraction order. (c)
Local modulation of the grating enables amplitude modulation. In addition a slowly varying
phase can be added to the grating whereby, for example, angular accelerating beams can be
achieved. (d) When adding the phase given by the free-space transfer function exp(ik;z), the
output plane is shifted with respect to z whereby the beam is digitally propagated without
moving the CCD-camera.

(a) Telescope
Broadband
5o \
1 2
v (4 3 SLAL
Ly R Lj

: ; O Ccp
s, L
4f - imaging system = ~——=

Fig. 2. Experimental implementation with (a) layout of our setup [L:Lens, SLM: Spatial Light
Modulator, fi = 15mm, f, = 125mm, f3 = f; = 500mm, f5 = 200 mm], (b) hologram on
SLM; showing the amplitude-modulated annular apertures [R; = 1.24 mm, R, = 1.56 mm],
(c) hologram on SLM, with inverted grating to SLM.
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combined to obtain a full white light beam, the lens L4, together with L3, imaged SLM;’s filtered
hologram on to the second SLM, SLM,. To compensate for the angular dispersion caused by
the blazed grating encoded on SLM;, an identical (but inverted) blazed grating was encoded on
SLM,. The plane at SLM; was then Fourier transformed by the lens Ls and the first diffraction
order was imaged with a 10X objective onto our camera, allowing us to repeat the previously
mentioned measurements on a multi-wavelength (white light) angular accelerating beam. Here a
Logitech web camera was used in addition to the CCD camera as it allowed us to distinguish the
individual wavelength components — this characteristic would not be noticeable on the PointGrey
CCD.

4. Results and discussion

Using the introduced setup, first, a white light angular accelerating beam with a non-linear
parameter 7 = /5 was implemented. In order to assess the properties of each wavelength
individually, the other wavelengths were disabled in an alternating fashion using the acousto-optic
tunable filter implemented in the source. All available wavelengths in the range from 532 nm to
690 nm showed the behaviour expected from the monochromatic case [6], i.e., a helical beam
trajectory with an accelerating and decelerating rotation rate. Since the SLMs were calibrated to
632.8 nm, i.e., a 2 phase-shift on the SLM equals 632.8 nm, this verifies that the wavelength-
independent holographic implementation indeed works as anticipated. However, upon closer
examination, it appears that the rotation period of the individual wavelengths is not strictly
identical. By plotting the angular rotation of one of the lobes in the petal structure as a function
of its propagation distance, as shown in Fig. 3(a), it is evident that the individual wavelength
components would disperse during propagation. The reason for that lies in the fact that not only
the phase profile but also the amplitude distribution influences the rotation period of the beam. In
Eq. (5), this dependence is contained within Ak, since

, 2
kzjn = k()41 - % (13)

with k() being the wave number, R, the radius of each ring on the SLM and f the focal length of
the Fourier lens. Figure 3(b) shows a simulation based on Eq. (5) which matches our experimental
result very well. Note that this, and all following theoretical graphs, are exclusively based on the
analytical equations (5) to (7) and do not involve any fit-parameters.

Naturally, the dephasing of the spectral components will limit the propagation distance over
which the beam can be considered a white light beam. Nonetheless, please notice that our
experiment shows an exaggerated case where the wavelength range covers almost the entire
visible spectrum. In typical applications, such as beam shaping with ultrashort laser pulses, this
effect would be barely noticeable. In order to still account for the dephasing, multiple approaches
are viable. For example, by cleverly engineering the chromatic aberrations of the system it could
be possible to give each spectral component the appropriate ring radius, such that the dephasing
is counteracted. Another option, which we want to follow here, is the digital propagation method.
Since the propagation term exp(ik;|,z), in this case, is implemented alongside the beam on
SLMy, k), is rendered wavelength independent as well. Specifically, the wave number now
follows k = 27/A. = const. with A, being the calibration wavelength of the SLM. Note, that
this does not resolve the problem of dephasing in real space. However, in the observation plane,
during digital propagation, all spectral components should remain in phase. This can be useful
for applications where only a small volume is treated by the laser radiation, like for example
laser trepanning of thin workpieces with femtosecond pulses, material surface studies, or optical
delivery in microfluidic and optical trapping systems. Importantly, this compensation scheme is
not a full compensation, but may be effective for applications where the dynamics at an individual
plane are of primary interest.
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Fig. 3. Experimental results and simulations in real- and digital propagation for the spectral
components of an angular accelerating white light beam with £ = +1, m = —1 and p = /5.
Panels (a-b) show experiment (left) and simulation (right) of the rotation angle for real
propagation. Panels (c-h) show experiment (left column) and simulations (right column) for
digital propagation. Panels (e, g) are obtained from Panel (c) via numerical differentiation.
Panels (d, f, h) are directly obtained from Egs. (5) to (7) with k = 27/632.8 nm.
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Fig. 4. Measured rotation period for real (blue) and digital (orange) propagation. Error
bars refer to half the distance between two consecutive data points in Figs. 3 (a) and (c),
respectively.

Figures 3(c)-3(h) show our experimental results as well as simulations for the digital propagation
case. Both match each other extremely well, including the absolute numeric values. We also
point out that comparison of Figs. 3(a) and 3(c) highlights the additional benefit of the virtual
propagation tool: it resolves the propagation dynamics without unwanted perturbations due to
experimental alignment errors: in (a) we note the “noisy” data due to small errors in alignment
when moving the detector, whereas in (c) there are no moving parts and therefore the data is far
“cleaner” and reveals the dynamics under study. In Fig. 4, we finally compare the obtained periods
for real and digital propagation. As expected, the dephasing is reduced to almost zero within
experimental uncertainty, though it is not removed entirely. This small discrepancy could be
based on the pixel-based and digitalized nature of the SLM. The theoretical concept we employed
here [30] is after all based on continuous filters and does not include those specific technological
limitations of the SLM. Nevertheless, a small dephasing is not a major obstacle as it is hardly
noticeable over the anyway (physically) limited propagation range of angular accelerating beams.

For our last experiment, all wavelength components were adjusted in brightness to contribute
equally to the CCD or webcam image, respectively, and were spatially combined using SLM,.
Moreover, the nonlinear parameter was adjusted to = 7/3 to create an even more obvious
angular acceleration with a period of approximately 14 mm. Figure 5 provides an iso-intensity
graph of the subsequently recorded volume data where the iso-surface corresponds to two-thirds
of the peak intensity. In addition, a short movie recorded with the aforementioned webcam can
be found in the supplementary material to this article (see Visualization 1).

5. Conclusion

In this work we have studied the propagation dynamics of angular accelerating white light beams
where such beams have been created and propagated using a phase-only SLM. The approach
allows for virtual and real propagation to be studied simultaneously, and may be generalised
to any structured white light beam. We have compared both the digital and real propagation
and found that while in real propagation dephasing occurs, the digital propagation becomes
non-dispersive due to the wavelength-independence of the employed holograms. We expect
this work to inspire further studies in the application of structured white light, for example, in
controlling white light, supercontinuum sources and ultrafast lasers for spectroscopy, microscopy,
machining and lab-on-chip applications.


https://osapublishing.figshare.com/s/dc9935ff59779ef1e08f
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Fig. 5. Recorded behaviour for a white light angular accelerating beam with £ = +1 and
—1, and n = n/3. Top: Beam profiles recorded with a commercial rgb-webcam. Bottom:
Iso-intensity plot obtained from beam profiles recorded with a high-quality monochromatic
CCD. The iso-surface corresponds to two-thirds of the peak intensity. All wavelength
components were set to contribute equally to the overall exposure.
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