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Abstract

The high variability of fingerprint data (owing to, e.g.,
differences in quality, moisture conditions, and scanners)
makes the task of minutiae extraction challenging, partic-
ularly when approached from a stance that relies on tun-
able algorithmic components, such as image enhancement.
We pose minutiae extraction as a machine learning problem
and propose a deep neural network — MENet, for Minutiae
Extraction Network — to learn a data-driven representation
of minutiae points. By using the existing capabilities of
several minutiae extraction algorithms, we establish a vot-
ing scheme to construct training data, and so train MENet
in an automated fashion on a large dataset for robustness
and portability, thus eliminating the need for tedious man-
ual data labelling. We present a post-processing procedure
that determines precise minutiae locations from the output
of MENet. We show that MENet performs favourably in
comparisons against existing minutiae extractors.

1. Introduction

At its core, fingerprint recognition is a pattern recogni-
tion problem [1]. Although automatic fingerprint recog-
nition systems have been around for several decades, the
problem is still not entirely solved. This is the result of a
number of difficulties, both in the problem itself, namely
the high intra-class variability (the same fingerprints can
look very different between impressions) and high inter-
class similarity (two different fingerprints can yield similar
features), as well as practical issues including uncoopera-
tive data subjects, elastic distortion during scanning, incon-
sistent moisture conditions, and damaged fingerprints.

Many approaches have been taken to address these prob-
lems. A standard fingerprint recognition process typically
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Figure 1. Examples of minutiae points.

involves the steps of fingerprint enhancement (including im-
age enhancement and thinning), feature detection, and clas-
sification. The most commonly used and standardized fea-
ture is that of minutiae points. It is minutiae point extraction
that is the focus of our research presented herein.

Minutiae points are, in a simplified sense, points where
fingerprint ridge-lines either end (ridge-endings) or split
(bifurcations). These are the features that have an origin and
long history of use in forensic science when comparing fin-
gerprints. They are exemplified in Figure 1. Although other
types of minutiae points exist, they remain defined by the
same pattern (endings or splits). Bansal et. al [2] provides
a thorough review and explanation of minutiae extraction.

Minutiae detection itself is a difficult problem, subject to
the large amount of variation inherent in fingerprint images,
the circumstantial variation in the manners in which minu-
tiae points present themselves, and ridge-valley thickness
and consistency variations.

As a result, minutiae extraction is difficult to generalize.
Moreover, the critical dependency on sub-components of
the conventional minutiae extraction process (such as image
enhancement), coupled with the aforementioned sources of



data-variation, has the unfortunate effect of causing param-
eter tuning to become unnecessarily important.

These inherent uncertainty-based challenges suggest the
opportunity for addressing minutiae extraction as a learn-
ing problem. Posing it in this manner does away with the
requirement for enhancement procedures wherein the solu-
tion must be manually optimized for each use case — these
can instead be learned from the (sufficiently generalized)
fingerprint data itself.

Extending this argument further, we posit that while the
approaches taken for minutiae extraction in the past have
proven to be functionally useful, it is unclear that the pro-
cesses followed — such as fingerprint enhancement, bina-
rization, thinning, and conventional minutiae extraction —
are indeed optimal. We thus also seek to learn an appropri-
ate minutiae extraction pipeline in a data-driven manner.

To this end, we draw on deep learning approaches, based
on recent success in other image recognition tasks and high
profile applications [3]. In particular, deep networks have
a great capacity for representation learning [4], which di-
rectly addresses our desideratum of learning the appropri-
ate lower-level features and steps required for this prob-
lem. Thus, instead of carefully tweaking algorithmic com-
ponents and their accompanying parameters, we propose
learning, using deep neural networks, the data-informed
representation of minutiae points. As a result, this research
endeavours to explore the application of deep learning to
minutiae extraction. Moreover, unlike earlier research in
this domain, we take the perspective that the amount of, and
variation within, training data is paramount to the success
and general applicability of a learning approach. Thus, we
present an automated labelling procedure that allows for the
easy use and augmentation of large fingerprint datasets.

In this paper, we propose a model for minutiae detection
based on deep convolutional neural networks and show that
it outperforms commercially available systems on standard
datasets considering several metrics.

2. Related Work

We are not the first to propose a learning approach to
fingerprint recognition. Most notably, Jiang et. al [5] pre-
sented a two-phase deep convolutional neural network ar-
chitecture that is applied directly to fingerprint images. The
first part of their approach used a neural network, ‘Jud-
geNet’, to detect the presence of minutiae in large overlap-
ping regions (63 x 63 pixels). The output of JudgeNet was a
binary classifier. ‘LocatNet’ was another deep convolution-
ary neural network designed to accurately locate the pixel
location (in a 27 x 27 pixel centralized box, accurate to 9x 9
pixels) within a smaller region (45 x 45 pixels).

They applied data augmentation by rotating the training
patches, blurred exterior regions of patches to remove ir-
relevant details and improve performance, and performed

model averaging (using the same architectures).

Their approach resulted in accurate minutiae extraction
in terms of precision, recall, and qualitative assessment.
Furthermore, they showed how machine learning can be ef-
fectively applied to the minutiae extraction problem. How-
ever, there are a number of shortcomings to address.

They performed pre-processing (image normalization) to
eliminate the differences between scanning devices. This
normalization of the input data, along with the limited diver-
sity and quantity of said input data (200 fingerprints from
the Chinese criminal investigation fingerprint database),
begs questions of model robustness and overfitting.

Much of this limitation is as a consequence of the effort
required to label data as a human being. The impractical-
ity of labelling vast numbers of fingerprints for minutiae is
pointed out by the researchers. Conversely, the approach
we disclose in this paper is novel in that it uses an auto-
matic labelling procedure that employs the functionality of
commercial software. This means that the primary limit to
the training data becomes the availability of fingerprints.

The decoupling of human effort in this application has
the desirable effect of making it possible to train a neural
network toward robustness and portability. This is simply
because the input data can be augmented and tailored ac-
cording to the desired outcomes or evidenced shortcomings.
Extending this idea of vast and extensible training data,
we incorporate noise and contrast data augmentation that
caters specifically for fingerprint regions of very poor qual-
ity, while Jiang et. al stated that the only regions their ap-
proach had difficulty with were fringe (i.e., the outer edges
of fingerprints) and noisy regions.

The architecture we present herein is similar to the
above-mentioned research, but different in that we use a
single deep neural network to determine the probability that
the central pixel is a minutiae point. Our post-processing
procedure is what yields precise locations.

Maio et. al [6] used a neural network to filter minutiae
after detection to improve the certainty regarding minutiae
detection using a different minutiae extractor. Leung et.
al [7] also used a neural network to extract minutiae on
thinned fingerprint images. Gour et. al [8] used a neural
network to confirm minutiae extraction success.

Tang et. al [9] presented an approach for minutiae ex-
traction on latent fingerprints using a fully convolutional
neural network. This is a difficult problem in that these im-
ages are often occluded by the graphics on the surfaces on
which they are found. The results they achieved were com-
parable to the state-of-the-art which showed how deep neu-
ral networks can be used to solve complex problems in this
domain. Sankaran et. al [10] used stacked autoencoders (a
class of neural networks) to detect minutiae in latent finger-
prints. This problem and the complexities involved therein,
however, are outside of the scope of our research.
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Figure 2. Minutiae extraction using MENet — an overview

Neural network approaches have also been taken regard-
ing fingerprint comparisons, thus evidencing the utility of
this technique. Werner et. al [11] used a neural network
to increase the efficiency of a comparison algorithm. Jea
and Govindaraju [12] used a neural network to compare
minutiae from partially overlapping fingerprints, while Ab-
dullah [13] used a neural network to compare fingerprints
based on a constructed twelve parameter feature vector.

There have been many uses of neural networks in the fin-
gerprint domain. However, certain considerations must be
made. The recent popularity of neural networks in many do-
mains has much to do with the availability of large amounts
of data, and the advances in training methods and network
architectures. That said, much of the fingerprint related re-
search is limited in that they either use pre-processing, train
using a very small dataset, or use a shallow network archi-
tecture [5]. Considering the recent advances in deep learn-
ing, minutiae extraction must be reassessed using method-
ologies that use a wholly data-driven approach. Paying heed
to the need for data-driven perspectives and deeper architec-
tures in the application of neural networks, the research pre-
sented in this paper details a manner in which large amounts
of fingerprint data can be used to build a robust minutiae ex-
tractor.

The following section outlines the approach we have
taken to apply deep learning to minutiae extraction.

3. Approach

We term our proposed convolutional neural network
model MENet, for Minutiae Extraction Network. The con-
tribution of this research is in the conjunction of our model
with the automated supervised training procedure and the
post-processing. Moreover, the intention of this paper is
to present and expound upon the utility of these learning
tools within the pattern-recognition domain of fingerprint
biometrics.

The following section provides an overview of our ap-
proach.

3.1. Overview

Figure 2 outlines our proposed methodology. Each pixel
of an input fingerprint is processed by considering a window
surrounding said pixel (exemplified by the surrounding re-
gion highlighted in blue). This window can vary in size but
is set according to the architecture of the neural network.

Our MENet model, described in Section 3.2, has as out-
put two softmax normalized probabilities corresponding to
‘yes’ and ‘no’. The softmax normalization function gives
the probability that the central pixel belongs to one of these
classes, indicating the predicted presence or absence of a
minutiae point, respectively.

The resultant probability map (prior to post-processing,
Figure 2) captures an estimate, over the entire fingerprint,
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Figure 3. Automated labelling of training data. Note: the displayed is merely a portion of a fingerprint.

of minutiae point positions. In order to capture the precise
location of minutiae points from this map, a post-processing
procedure is followed (the lower half of Figure 2).

The output probability map is smoothed using a 3 x 3
median filter. This is thresholded at iteratively lower thresh-
olds in order to extract blobs, the centres of mass of which
are the minutiae points. These are shown as red crosses
in Figure 2. At the final threshold value, all minutiae with
at least that level of certainty will have been detected.The
reason for this is that each detected minutiae point can,
in this manner, have a corresponding probability esti-
mation (confidence) at which it was detected. Simply
thresholding at the final (lowest) threshold would result in
the same minutiae detection but would not yield any confi-
dence estimates. These could be used as a measure of minu-
tiae quality in future research.

The orientation of these minutiae are calculated by a
standard method of local orientation estimation using the
principal axis of variation of the image gradients [14].
Minutiae orientations are crucial for fingerprint compar-
isons. That said, using the simple aforementioned approach
suffices since it was used consistently throughout testing
which allows for fair evaluations.

The following section describes our proposed deep
learning architecture. Section 3.3 then details our approach
to collecting training data and the training procedure used.

3.2. The MENet Architecture

As discussed in Section 1, the issue of selecting appro-
priate intermediate representations (in this case to identify
minutiae points from raw pixels) is a generally difficult
one. The strength of deep learning has largely been enabled
through its success in learning representations, where each
layer of such a neural network can be considered a progres-

sively more abstract representation: ranging from low-level
input pixels to a high-level classification decision.

MENet was constructed with 5 convolutional layers, fol-
lowed by 2 fully connected layers of 1024 nodes, and finally
a softmax output layer. Each convolutional layer consists of
32 5 x b filters, and the first two of these layers use pooling.
All units apart from the output layer use ReLU activation
functions. The input to MENet was obtained by moving a
30 x 30 sliding window over the full input fingerprint. Ten-
sorFlow [15] was used for implementation.

This architecture was empirically found to outperform
shallower networks on the same fingerprint data. A ma-
jor concern with deep neural networks is that they require
large amounts of training data, which in this case involves
labelling. Section 3.3 next discusses our approach to au-
tomating this procedure, and covers the training of MENet.

3.3. Data Generation and Training

In order to provide optimal conditions when training a
deep neural network, the manner in which training data is
constructed, organised, and provided is an important con-
sideration. This section details our proposed approach.

First, our training data consisted of all real constituent
fingerprints from the 2000 [16], 2002 [17], and 2004 [18]
fingerprint verification competitions. This resulted in a
database of 7920 fingerprints. These fingerprints encapsu-
late a wide variety of real world scenarios. That is, some fin-
gerprints are of an exceptionally good quality, while others
display severe quality degradation owing to either a dam-
aged fingerprint, a poor scan (since the scanning procedure
was not always systematically controlled), wet or dry fin-
gers, or elastic distortion.

Second, training data was derived by applying five com-
mercially available minutiae extractors. These are parts of



the following systems/software development kits (SDKs):

e NIST: the National Institute of Standards and Technol-
ogy’s [19] mindtct, using a quality threshold of 30% to
alleviate the high number of false minutiae detected;

e DP: Crossmatch’s DigitalPersona [20] system;

e SG: the SecuGen [21] software development kit
(SDK);

e NT: the Neurotechnology [22] SDK; and
e GL: Griaule Biometrics’ [23] SDK.

We drew on these tools to drive generation of train-
ing data, as detailed in Figure 3 which depicts the process
by which regions of a fingerprint are marked as minutiae
points. The minutiae locations are extracted from the five
aforementioned minutiae extractors. An encompassing cir-
cle (for each minutiae point) is drawn on an accompanying
‘mask’ image for each extractor. These masks are then av-
eraged and thresholded. The threshold is set at (n — 1)/n
where 7 is the number of minutiae extractors used.

The thresholded result is closed using image dilation and
erosion. Blobs are detected and any separate regions are en-
circled as minutiae regions for training. The result of this
procedure can be seen in Figure 3 as the ‘Training Data’.
The green circles are used as positive training cases and the
black region (the background) is used as negative training
cases. The red, however, is ignored during training. It is
this functionality of ignoring uncertain regions that allows
us to train the neural network to a satisfactory degree. Note
that this procedure requires no manual labelling. Al-
though better approaches to combining minutiae from var-
ious sources may exist, the technique described herein is
simple and yields reliable training data for this research.

For training, batches are constructed by first randomly
selecting a fingerprint and then randomly selecting loca-
tions from it. The method above is used to define the corre-
sponding labels. An equal number of positive and negative
training cases are always provided for unbiased training.

In order to improve the robustness of the model trained
on this data, data augmentation was used. A pseudo-
random selection of grayscale colour inversion, contrast
degradations, contrast improvements, and noise degrada-
tions were applied to every fingerprint selected during train-
ing. The parameters for this augmentation were also ran-
domly selected within limits.

The input data (the FVC datasets) was split into training
(80%) and testing (20%) sets. Training using the backpro-
pogation algorithm with stochastic gradient descent contin-
ued with a batch size of 500 and 50% dropout for approxi-
mately 1.3 million epochs. Owing to the similarity of minu-
tiae between both training and testing data, there was no

sharp testing-accuracy loss over time. Thus, when conver-
gence was maintained for a sufficient period, training was
stopped.

4. Experimental Results and Discussion

This section exhibits the results obtained for minutiae ex-
traction. Three experiments were carried out, all of which
were designed to test the accuracy of minutiae location de-
tection using our model, MENet, compared to the five com-
mercial minutiae extractors:

1. Minutiae extraction versus ground truth minutiae. A
set of 100 fingerprints were randomly chosen from the
testing dataset and minutiae point locations were man-
ually extracted. This is discussed in Section 4.1.

2. Biometric performance evaluation. Minutiae were ex-
tracted and compared from two FVC datasets. This is
detailed in Section 4.2.

3. Qualitative assessment. Two examples were chosen
from the above-mentioned hand-labelled dataset in or-
der to understand under which circumstances minutiae
extraction succeeds and/or fails. This is shown and dis-
cussed in Section 4.3.

4.1. Minutiae Extraction vs. Ground Truth

A set of 100 fingerprints were hand-labelled for this as-
sessment. This set was randomly selected from the testing
dataset (a subset of the collated FVC dataset) and contained
both good and poor quality fingerprints. These fingerprints
were carefully individually labelled, yielding a total of 4730
minutiae points.

Each minutiae extractor (i.e., the commercial extractors
and MENet) was used to process the same fingerprints and
comparisons were made (manually/visually by us against
the ground truth) in order to determine: (1) the number of
correct minutiae extracted relative to the ground truth, (2)
the number of minutiae missed relative to the ground truth;
and (3) the number of false minutiae. This is presented in
Tables 1 and 2.

Table 1. Minutiae Extraction Results. Red highlights the worst
results and green highlights the best results achieved.

Tnput C"gect M‘f/:ed False | EER: | EER:
of the ground truth % 2002 2004
NIST 67.1 32.9 22.7 2.778 | 15.075
DP 74.1 25.9 21.3 1.181 | 6.072
SG 74.9 25.1 16.2 1.191 | 8.876
NT 74.2 25.8 15.9 1.299 | 8.986
GL 65.0 35.0 19.7 2.292 | 19.766
MENet | 85.8 14.2 18.6 0.781 | 5.450




Table 2. NFIQ breakdown. Red highlights the worst results and
green highlights the best results achieved.

Correct Missed False
NFIQ Input % % %
of the ground truth
NIST 68.6 314 16.2
DP 75.2 24.8 15.6
1 SG 76.0 24.0 10.6
(45% of data) | NT 74.7 253 11.1
GL 65.8 342 13.1
MENet | 86.8 13.2 14.0
NIST 68.8 31.2 21.5
DP 76.6 234 19.1
2 SG 74.5 25.5 13.9
(33% of data) | NT 74.9 25.1 144
GL 66.9 33.1 17.4
MENet | 86.8 13.2 18.3
NIST 61.1 38.9 40.8
DP 66.2 33.8 35.1
3 SG 75.0 25.0 29.8
(15% of data) | NT 75.0 25.0 21.7
GL 61.9 38.1 36.0
MENet | 83.5 16.5 28.4
NIST 47.5 52.5 40.0
DP 60.4 39.6 52.0
4 SG 61.4 38.6 28.7
(2% of data) | NT 594 40.6 444
GL 45.5 54.5 53.1
MENet | 72.3 27.7 41.1
NIST 62.1 37.9 40.5
DP 72.7 27.3 40.6
5 SG 69.6 30.4 44.0
(5% of data) | NT 67.1 329 46.0
GL 59.0 41.0 39.5
MENet | 77.0 23.0 33.0

As is shown in Table 1, MENet performed favourably
when compared to the ground truth minutiae. It only missed
14.2% of these, while the closest competitor — SecuGen —
missed 25.1%. Although it was not the top performer with
regard to false minutiae detection, it still managed to yield
a success rate above 80%.

Table 2 gives a breakdown of the minutiae detection ac-
curacy grouped by the NIST NFIQ score. NFIQ is a qual-
ity assessment ranging from 1 (best) to 5 (worst). MENet
performed best regarding correctly detected minutiae in all
cases. What is most noteworthy here is the accuracy re-
garding poor-quality fingerprints. MENet was still able to
detect 77.0% of the minutiae in the poorest quality finger-
prints. These test cases were randomly selected.

The following section details how this minutiae extrac-
tion success relates to biometric comparison performance.

In order to ensure that this assessment remained objec-

tive, only the locations of the extracted minutiae varied. Lo-
cations were extracted using the commercial extractors and
MENet. The orientation was calculated [14] and a minu-
tiae file was constructed. This was then used to compare
fingerprints in the FVC 2002 DB1A [17] and FVC 2004
DB1A [18] databases. These databases consist of 100 fin-
gers with 8 impressions for each. The former consists of
better quality fingerprints and is generally considered an
‘easier’ database to test against. The latter contains dry and
wet impressions as well as distorted impressions, making
it a more challenging database regarding biometric evalua-
tion. Testing was limited to these two databases for space
considerations and because they are sufficiently diverse.

The Minutiae Cylinder Code [24] (MCC) ! was used to
perform these assessments. MCC is robust against false
minutiae. A comparison protocol [25] was followed in or-
der to calculate the True Positive and False Positive Rates.
Each impression was compared against all impressions of
the same finger for 2800 genuine comparisons and the first
impression of each fingerprint was compared against all
other first impressions for 4950 impostor comparisons.

It must be noted at this stage that NT failed to extract
minutiae in 1 case for the 2002 DB1A database, and in 18
cases for the 2004 DB 1A database. This resulted in 7 miss-
ing genuine comparisons on the 2002 DB1A database. For
the 2004 DB1A database, 120 genuine comparisons and 99
impostor comparisons were consequently missing. These
‘failed to enroll’ cases were accounted for during experi-
mentation by making the score equal to zero.

The consequent receiver operative curves are presented
in Figures 4 and 5. These are presented with a log-scale
for the False Positive Rate in order to better accentuate the
differences between algorithm performance. In both cases
MENet performed best. Furthermore, Table 1 shows that
the equal error rates (EERs) yielded by MENet are superior
to those yielded by the other minutiae extractors.
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Figure 4. Receiver operating curves: FVC 2002, database 1A
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4.2. Biometric Evaluation

The improved accuracy of MENet had the consequence
of a higher number of true minutiae detected. This evidently
improved the performance of MCC. It must be noted, how-
ever, the standardization of minutiae orientation detection
(to a range of 0° — 180° [14]) may have a negative im-
pact on the performance in all cases. Additional features
such as minutiae type may also improve comparisons. That,
however, is not the focus of this research. Instead, we are
attempting to best detect the presence and consequent loca-
tion of minutiae points.

Although the two test databases were involved in train-
ing MENet, only a maximum of 80% of possibly augmented
data was seen. Moreover, owing to the voting system used
for data generation, the majority of challenging minutiae
would never have been seen. Nevertheless, future work
will involve testing on databases never seen during training.
Moreover, it may even be advisable to create new testing
datasets using scanners that were not used for the training
data.

4.3. Qualitative Assessment

This section contains two fingerprint examples and the
result of minutiae extraction. Figure 6 exhibits minutiae ex-
traction on a poor quality fingerprint, while Figure 7 ex-
hibits minutiae extraction on a good quality fingerprint.

Considering the minutiae extracted by NIST and DP on
the poor quality fingerprint (Figures 6(a) and (b), respec-
tively), it is evident that dryness has an impact in the success
of these extractors. MENet was able to detect the highest
number of correct minutiae in this case.

The minutiae extraction on the good quality fingerprint
serves to exemplify the tension between undetected minu-
tiae and falsely detected minutiae. For instance, while NIST
only missed four minutiae, it detected many false minutiae.
MENet performed best in this case, with the lowest number

(f) MENet

Figure 6. Minutiae Extraction, example 1: a dry fingerprint ex-
hibiting poor quality regions. The circles are the ground truth
minutiae: blue circles are detected, and green circles are the unde-
tected minutiae. The red arrows indicate false minutiae.

of undetected and false minutiae. An ideal situation would
be the co-minimization of both false and undetected minu-
tiae, but this is a very challenging task. Future work may
see an improved post-processing procedure for MENet that
accounts for local certainty and quality measures when de-
termining blob thresholds (see Figure 2).

5. Conclusion

This paper addressed the problem of minutiae extraction
for fingerprint comparison, by posing it as a machine learn-
ing problem and providing training data in an automated
fashion. To this end we developed MENet: a deep convolu-
tional neural network model that was shown to outperform
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Figure 7. Minutiae Extraction, example 2: a good quality finger-
print. The circles are the ground truth minutiae: blue circles are
detected, and green circles are the undetected minutiae. The red
arrows indicate false minutiae.

commercially available algorithms on benchmark datasets
using several standard assessment criteria.

With superior equal error rates on two FVC datasets and
a minutiae miss-rate of only 14.2%, the minutiae extraction
model presented in this research exhibits detection accuracy
that may serve to augment and improve the existing finger-
print identification pipeline.

Moreover, and possibly most importantly, the approach
taken in this research has been one that utilizes the strengths
of existing algorithms and the availability of large real-
world fingerprint datasets. By learning directly from the
data, robust and accurate models can be learned to either

emulate or improve upon existing solutions. By collating
the 2000, 2002, and 2004 FVC datasets and using an auto-
mated voting system for minutiae labelling prior to training,
the tedious task of manually labelling minutiae was circum-
vented. This is significant in that it causes the primary limi-
tation on training data (which has a direct impact on model
performance) to be the availability of fingerprints, and not
the availability of time of human experts.

Although the speed of neural networks may concern the
reader, it must be noted that the purpose of this research is
to show the utility of neural networks in this domain. More-
over, speed and efficiency improvements are actively being
researched. Network binarization or quantization [26], dis-
tilling the knowledge in a neural network [27], and speed-
ups gained through the use of widely available GPU im-
plementations are options for future implementations of
MENet.

Future research will explore other aspects of fingerprint
identification and comparison that are equally easily posed
as machine learning problems.

Regarding the minutiae extraction model presented
herein, future work will be undertaken to: (1) improve the
post-processing procedure by local quality considerations;
(2) derive a local quality estimation based on the varia-
tion patterns of the minutiae probability maps; (3) deter-
mine whether orientation information is inherently encoded
within the the trained neural network; and (4) use MENet to
solve other fingerprint-related problems such as fingerprint
masking.

Finally, we will investigate addressing the full finger-
print comparison problem using deep learning alone. To
this end, other techniques in neural network research such
as Siamese networks [28] and attention modelling [29] will
be investigated.
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