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Abstract: This research paper investigates a technique to transform network simulation data into linked data through the
use of ontology models. By transforming the data, it allows one to use semantic reasoners to infer and reason additional
insight. A case study was performed, using the Common Open Research Emulator (CORE), to generate the necessary network
simulation data. The simulation data was analysed, and then transformed into linked data. The result of the transformation
is a data file that adheres to the Web Ontology Language (OWL) 2.0 eXtensible Markup Language (XML) format, which can
be read, merged, and reasoned by ontology tools such as Protégé. Using the Web Ontology Language Application Program
Interface (OWL API), it was possible to merge the transformed data with other ontology models to form a knowledge base
for a specific field — particularly network warfare ontologies in this instance. The knowledge base can then be queried
dynamically, similar to semantic based intrusion detection systems (IDS). For example using associated network data during
a warfare operation in order to infer doctrines, operating procedures or related information. Overall, this research provides
a step towards automating the transformation of network data to semantic data to aid network attack and defence
strategies.
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1. Introduction

Network simulation is a technique used to model the behaviour of a network and the associated network nodes,
in a testbed environment. Various attributes of such an environment can be modified, in a controlled manner,
in order to observe the changes in network performance. These simulations are useful when planning a network
attack, as it allows various setups to be tested prior to attack deployment. In addition these steps provide vital
insight when defending a network.

Network simulators play a vital role in terms of supporting defensive and offensive capabilities, including:

=  Network design

= |Impact assessment on existing network

=  Network research and development (R&D)

=  Testing defence applications such as Mobile ad hoc Network (MANET)/Vehicular ad hoc Network ( VANET)

Network simulation can provide a testbed similar to a sandbox model of a cyber battlefield. This allows users to
create or replay scenarios, as well as receive detailed training. In traditional warfare, years of knowledge and
research is passed down, enabling soldiers to be better equipped regarding how to react and handle certain
situations, while optimising the completion of objectives. Unfortunately this is not as apparent in cyber warfare
and as a result the use of semantic models, such as ontologies, has been introduced to aid decision making and
align doctrines.

Ontology is a technology that provides a way to exchange semantic information between people and machines
(Noy et al., 2001). It allows a formal, explicit specification of a shared conceptualisation that can be shared in a
domain (Griber, 1993), providing a common vocabulary.

The languages that represent ontology models include Resource Description Language (RDF) (W3C 2000), Web
Ontology Language (OWL) (W3C, 2012), JavaScript Object Notation-Linked Data (JSON-LD) (W3C, 2014), and
their sub-variations. They allow one to provide a semantic representation of entities through formal constructs
and relationships. The use of these constructs and relationships allows the mapping of classes and instances to
existing knowledge bases, exposing a larger pool of knowledge — enriching existing information and enabling
better situation awareness.
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This paper aims to take advantage of the information enrichment ability of semantic data, and will investigate
the transformation of network data into semantic data, as well as the associated benefits thereof. The research
provides a step towards automating the transformation of network data into semantic data, in order to aid
network attack and defence strategies. The approach that will be taken for this paper is as follows:

=  Transform network simulation data into semantic data.
= Merge semantic data with existing knowledge bases.
= Reason using the merged data to create more enriched information.

In the next section, an overview of network simulations and network simulators that are currently available is
provided. Section 3 then provides an overview of how ontologies are used in network operations. The case study
that was performed is then discussed in Section 4. The paper is then concluded in Section 5, summarising the
results of the investigation and discussing the way forward.

2. Network simulation

Network simulations have been around since the early 1990s, beginning with Realistic and Large (REAL) (Keshav,
1988), which was derived from Network Simulation Testbed (NEST) (Dupuy et al, 1990). While the number of
network simulation tools have expanded since then, many of the features have been carried over.

The main focus of a network simulation is to allow users to evaluate network applications, topologies and
protocols under varying conditions. Allowing them to be studied, both statically and interactively, to gain a
greater understanding of their behaviour and how they operate. Additional features of network simulations
include abstraction, emulation, scenario generation, and trace data (Breslau et al., 2000).

= Abstraction refers to the granularity of the simulator to accommodate for the level of detail that entities
involved in the simulation can have. By supporting detailed protocols, users can define specific protocols,
and even go as far as specifying the associated state machines. On the other hand, users should not need
to configure each network node, if they wish to deploy hundreds of nodes at once. A good example showing
both of these levels of granularity is Riverbed’s proprietary application, called OPNET (Riverbed, 2016).
OPNET allows users to deploy generic nodes, even going as far as to allow configuration of the state
machines of specific routers.

= Emulation refers to the inclusion of real world network nodes. This allows the simulator to interact with
operational nodes and lines. This is useful in the case of testing proprietary hardware, such as firewalls or
end-to-end encryption devices.

= Scenario generation refers to the automatic creation of traffic patterns, topologies, and dynamic events —
allowing for more accurate real world testing, outside of a vacuum environment. Examples include line jitter
and interference.

= Lastly, trace data refers to the capturing of network traffic generated by the simulation. Trace data serves a
vital role in testing and assessing different configurations — to ensure optimal improvements are done to
the network setup. Trace data can also be used for repeatability to confirm the validity of test results.

Trace data is the network data that this research aims to transform into semantic data. The format of the data
will be explored in more detail in Section 4, once a network simulator has been selected for the case study. The
next section provides a short list of some of the open source network simulators that offer the above-mentioned
features.

2.1 Network simulators

This section provides a short list of open source network simulators.

= Cloonix

= COREEmu
= GNS3

=  IMMUNES
= LINE

=  Marionnet
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" Mininet
=  Netkit
= NS-3

= Psimulator 2
= Shadow

At the time of writing, Cloonix, was not available for download and test. GNS3 is primarily focused on supporting
Cisco and Juniper Software, which may be too limited in test that must be conducted as part of this research.
LINE network simulator requires the user to have intermediate network knowledge to construct a simulation.
Although Marionnet was designed to be an educational tool for teaching networks, the lack of documentation
deterred the use of the application. Mininet focuses mainly on Software Defined Network (SDN) technology,
which was considered too specific for the purpose of this paper. Netkit is primarily a command-line based
simulation platform, with a minimal graphical user interface (GUI).

Although the simulators all share similar traits, each have their own limitations. The aim of this research is to
consider the most accessible simulator for the case study. Accessibility refers to the ease of use and the
availability of the software to reproduce the test results. Factors such as user interface and setup time is
considered, as well as the authors experience using the particular tool. As such, CORE Emu was chosen for the
purpose of this research. Case studies regarding the other simulators are considered for future work.

3. Background

An ontology is a formal and explicit description of concepts in a domain, consisting of concepts or classes,
properties of each concept describing its features and attributes of the concept, represented as properties, and
restrictions on the concept. Classes, properties and restrictions, together with individuals — form a knowledge
base within a defined domain. Classes are the main entities of an ontology model, and they represent and
describe a concept. These classes can be further refined into subclasses. For example, a Pet class can be refined
into Cats and Dogs, which can then be further refined into different breeds of Cats and Dogs respectively.

Properties, namely data and objects, describe the classes with relations to other classes. An example of a data
property would be the age of a Pet. Data properties give a class or concept value. In this example, hasAge would
be the data property of a Pet, representing the age of the Pet. Object properties capture relationships of the
class, for example, hasGender which would describe the gender of the Pet.

Individuals are specific instances of a class, such as Fluffy which would be a specific individual under the class
Dog. With the age and gender properties, and possibly other properties, Fluffy can be described uniquely, in a
similar manner to a unique entry within a database. Figure 1 represents an overview of the concepts in an
ontology. In the figure, the example of the Pet class, with the Fluffy individual can be seen. The lines between
the circles, such as hasPet and hasSibling represent the object properties, also known as relationships.
Relationships link multiple classes together to form a network of information.

% Italy
England

Country

Pet

/\/

Figure 1: Ontology concepts
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3.1 Ontology in network operations

The involvement of ontologies in cyber operations, as well as the evolution thereof, can be seen by the advances
of Command and Control (C2) ontologies (Curts, and Campbell, 2005), (Stoutenberg et al, 2007) (Tolk, and
Smith,2011), and other common data models, such as the Unified Cybersecurity Ontology (UCO) (Syed et al.,
2016). Although these upper ontologies are represented at a high level, their importance is highlighted by how
they provide a common understanding of the field that one is working within. Ontologies have also been used
at an operational level. This has been demonstrated by the advances in ontology-based intrusion detection
systems through the years (Abdoli, and Kahani, 2009), (Li, and Tian,2010), (Retnaswamy, and Ponniah, 2016),
and detection of network scenarios (van Heerden, Burke, and Irwin,2012a). These ontologies make use of
automated reasoners to deduce or infer the type of attack based on network traffic or events.

More specific to the domain of this research, is the use of ontology in network planning. Chan (Chan, Theron,
van Heerden and Leenen, 2015), and van Heerden (Van Heerden, Chan and Leenen, 2016) have shown the ability
to aid network planning by using ontologies. They proposed a top-down approach to provide detailed
information on tasks. An example would be to show the chain of command when querying which military
personnel has access to a network tool. To better explain this, one can use the analogy of a cook-book where
users can query how to make a given meal and the results would highlight the required ingredients — capturing
both the explicit and implicit items. The research in this paper aims to address the reverse, where one would
start with a bottom-up approach where items in a network simulation should be mapped to operational level
entities. For example, a perimeter firewall should be tied to a specific military base’s policy or doctrine that is
not necessarily modelled in a network simulation. This doctrine can be also linked to specific operating
procedures and chain of command for work authorisation. This information may not be modelled in a network
simulation, but can be vital on the operational level. By enriching network simulations, it can provide operational
awareness to both the technical team and the commander. This extends the simulation by going beyond just
the network and incorporating the people, and the processes involved during an actual operation.

4. Test case

The test case investigates the viability of transforming network simulation data into semantic data, and how this
enriched data can provide more valuable information, facilitating better decision making in network operations.
In order to create the test case, the preliminaries are identified. This includes the investigation of the data
structure of CORE Emu and how to integrate the transformation capability into the application.

4.1 CORE Emu

In order to implement the transformation function, one must first understand the design of the CORE Emu
application. This can be seen by the CORE Emu architecture, which is illustrated in Figure 2.

£ A
COREGUI vmed coreendmsg
(Tcl/Tk frontend) (command-line)
COREAP|
IPC
£ N F \
CORE daemon Pycore
(Python backend) (Python modules)
\ s [
scripts
(Python)

Nodes
farng] Bridging &
N i Packet
virtualisation ; .
manipulation

Figure 2: CORE Emu architecture
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With reference to Figure 2, the Tcl/Tk frontend component, as well as the python backend which is used to
handle the save file message events was the focus of our research. As part of this research’s contribution, the
function to transform data directly into an OWL file has been implemented in CORE (version 3.7), by expanding
upon these components. Figure 3 illustrates the function that was added to the GUI of the application.

® @ @ CORE (37187 on ubuntu) demo1t.owl

File | Edit Canvas View Tools Widgets Session Help

New Ctri+N : 1

Open... Ctrl+0

Behad ..................

Save Ctri+S

Save AsXML.. | P 1;52'4'

Save As imn... W5601:5::1/64
N3 20B; 15164

Export Python script... s

Execute XML or Python script... [

Execute Python script with options... 10.0.1

200%:1:

Figure 3: CORE — Save As OWL function

The following sections discuss how the source data structure can be transformed and the transformation process
thereof.

4.2 CORE data

On the standard Graphical User Interface (GUI), the user can export the created network topology in XML or
IMUNES network configuration (.imn) file format. Live data requires traffic capturing tools to be running while
traffic is flowing through the network. Previous research, highlighted in the background, has shown how such
live data can be used with ontologies in security fields such as the IDS environment. The focus for this paper is
on the network topology data. Topology data is generated by populating the canvas with entities, such as nodes,
switches and routers. Configured information on each node — such as the number of Ethernet ports, IP
addresses and the associated services — can also be exported. Figure 4 shows a simple network configuration
accomplished by populating the CORE canvas.

@ CORE (38098 on ssislive) untitled2.xml

File Edit Canvas View Tools Widgets Session Help

10.0.0.1/24

< 0.8

Figure 4: CORE canvas
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The XML documents generated by exporting the network topology, adhere to the standard XML structure. In
this manner the XML documents form a tree structure that starts with a root element that branches off to leaf
elements, with parent and child relationships captured by each branch. The data is classified or named using
element tags.

The IMN file format comes from IMUNES, which was an open source project from the University of Zagreb as a
custom project within the Boeing Research and Technology’s Network Technology research group in 2004
(IMUNES, 2015). The format of the IMN file contains a Tcl lists of nodes, links and their properties. The tabs and
spacing in the topology files serve a vital role. These files begin by listing every node, followed by the links,
annotations, canvasses, and then the associated options. Each entity within the file is captured in a block of
braces.

Figure 5 illustrates the difference between the two formats. The content of the files represents the network
topology as seen in Figure 4. The left panel illustrates the XML file structure, and the right panel illustrates the
IMN structure.
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namse"sthl™ Ast="]15008"
cew"mac o800 B aa 108 1f
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Service name="DefaultRoute
Node H
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Figure 5: CORE — XML vs IMN formats

4.3 Transforming in semantic data

The lack of constructs in the IMN file, meant that it would be rather complex to generate relations between the
contained network items. With regards to XML, there has been previous research proposed on the
transformation of XML file structures into semantic data, using OWL (Matheus and Ulicny, 2007), (Yahia,
Mokhtar, and Ahmed, 2012) (Barakat, Tan, and Tarasov, 2015). For these reasons CORE’s XML was used as the
source input to be transformed into semantic data.

Fortunately, XML documents were intended to easily exchange data in a structured manner, supporting

interoperability and information exchange between systems and simulations. The similarities to OWL files, which
are based on a structured manner to support information exchange, can be easily noticed. As a result it is
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possible to use XSLT to transform data between these two structures. The figure below provides an overview of
how the process works with regards to XSLT.

XSLT Stylesheet

Source XML
Document

Result
XSLT Processor Document

Figure 6: XLST process

4.4 Transformation structure

The following is a list and description of the data and object properties that were defined for the transformation:

Data Properties

= haslD: a data property that is generated by CORE and provides each node or entity with a unique ID.
= hasIPAddress: a data property that provides a node with a set of IP address values.

= hasEthernet: a data property that provides a node with Ethernet interface values.

= hasMacAddress: a data property that provides a node with a set of MAC addresses.

Object Properties

= hasService: an object property that defines that a node or entity has a relation to some sort of network
service.

= hasType: an object property that defines the type of network entity, for example PC or a network switch.
= onNetwork: an object property that defines the relation of a node and the network that it resides on.

The transformed OWL file was loaded in Protégé (Figure 7), an ontology modelling tool developed by the
University of Stanford, to illustrate that the file is recognisable and usable.
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Clans Anmotations | Elad Ulhge |
%] | P

¥ 8 NetworkPlan
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Figure 7: Transformed data in Protégé
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With regards to the transformed file, additional nodes were introduced to make the data more complex. The
classes are shown on the left panel, with each node’s data and object relation shown in the lower right panel.

4.5 Merging ontologies

Now that the network topology is in an ontology format, it can be linked to existing ontologies. Merging
ontologies or ontology models can be done with the Protégé application, through the use of the OWL API (OWL,
2016). Note that at this stage, merging of ontologies is largely a manual process. The merging process requires
a user to have ontology engineering knowledge and a deep understanding of the structures of the two ontologies
being merged. This process is labour-intensive and would greatly benefit from a semi or automated approach.
This is a known limitation in the merging process that will be investigated in greater detail in future work.

The following figure illustrates a possible merging hierarchy of the transformed data. In this case study, the
transformed ontology was merged with the Network Attack Planning (NAP) Ontology in order to infer knowledge
on known or previously identified nodes to further enrich the network data. Merging this result with Network
Domain Ontologies, can then provider deeper insight.

Network Domain
Ontology

NAP Ontology

Transformed
Ontology

Figure 8: Merging hierarchy

Preliminary results indicate that merging or mapping show that the transformation of network simulation
information into semantic-linked data yield enriched information on given subjects, namely network nodes. This
can be seen by how the merged ontology model could infer useful information, as well as be queried to retrieve
particular information. The merging process, however remains largely a manual intensive task and further
investigation to accelerate this process is recommended before it is operationalised.

5. Conclusion and future work

Network simulations provide the ability to test network applications and protocols in a controlled environment,
allowing users to observe how changes in configurations affect the network behaviour. This makes network
simulations a valuable tool in military network operations.

By using ontologies to enrich network simulation data, it can provide awareness to both the technical operator
and to the commanding staff. This was illustrated by transforming network simulation data into semantic data
and then linking it to existing knowledge models. A test case, using network topology data from CORE, was
conducted to show the viability of such technique. As part of the contribution, the function to perform the
transformation directly from CORE was integrated into the application. The transformed ontology was then used
in the Protégé ontology modelling tool to show that the transformation was successful. The resulting ontology
was then merged with an existing ontology models to explore the inference and querying ability to enrich the
information of selected network nodes. One particular challenge that was encountered was the merging
process, which remains largely a manual process.
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Future work will focus on streamlining this merging process and will explore the ability to allow the generic
transformation of network data such that other network simulators can be automatically transformed and
merged to better support network attack and defence strategies.
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