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ABSTRACT

The fabric buckling model proposed by Grosberg and Swani has been modified by
mcorporating Huang’s bilinear bending rule. The proposed model is an extension of the
present model and also covers the special cases. The numerical results appear realistic and
conform to the trend observed by other researchers. The effects of fabric bending
parameters on the buckling behavior of woven fabrics were explored by numerical
computations. The second part of this paper includes the recovery from large-scale

buckling of woven fabric.

The buckling, bending and drape behaviors of a woven
fabric influence its performance during actual use and
during the process of making-up into the end product.
These properties are important, particularly when the
fabric is imp, resulting in large-scale deformation even
under small applied forces. The buckling properties of a
woven fabric also influence the sewing of garments and
their resultant quality. Moreover, the development of
robotized sewing operations for reducing unit production
cost is critically important if garment industries in de-
veloped countries are keen to improve their competitive-
ness vis-a-vis low labor cost countries [4, 5]. This has
placed a great responsibility on textile engineers to de-
velop appropriate mathematical models which are capa-
ble of providing realistic information with minimum
complexities, mathematical drudgery and computational
cost. Of course, these models should be based on logical
assumptions reflecting the real physical phenomena, yet
simple to solve for simulating real fabric behavior.

The complexity of textile mechanics in solving the
above problems is complicated by the fact that this
discipline of textile science, despite considerable re-
search eftorts, is based on divergent approaches rather
than on sound fundamental concepts developed after
debate and criticism and validated by competent re-
searchers for universal acceptance [10]. The mechanics
of" the buckling behavior of woven fabric is not an
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exception to this as seen from the large number of
different approaches found when scanning the literature.
It started with the classical paper by Grosberg and Swani
[7] who built a simple buckling model based on Gros-
berg’s idealized bending rule [6], taking into account the
frictional effect and following the principles of elastic
buckling theory for struts reported in classical mechanics
[13, 14]. Their model assumed an infinitely large bending
rigidity of the cloth for the initial nonlinear region of the
bending curve where the applied couple had not yet
overcome the frictional restraining couple. They noted,
however, that, in practice, real fabrics are fairly rigid for
the initial bending region, but they are not infinitely rigid
as assumed in the idealized bending rule [6]. Neverthe-
less, they continued to build their buckling model on the
basis of the idealized bending rule in order to avoid the
complications arising from the additional mathematical
treatments required to obtain the precise solutions. Clap
and Peng [4, 5] later developed a model by utilizing
Timoshenko’s elastica theory [14] in which they as-
sumed the fabric as a curved beam of constant cross-
section. They introduced the effect of fabric weight,
which was ignored by Grosberg and Swani [7], but again
followed the same frictional restraining principle of in-
finite initial bending rigidity as proposed by Grosberg
[6]. More recently, Kang er «l. [9] used regression anal-
ysis to fit an exponential function to initial nonlinear
fabric bending behavior and utilized the derived relation-
ship in building a buckling model similar to that pro-
posed by Clap and Peng [4, 5] based on the assumption
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that the fabric is a continuum of a thin solid beam. The
governing equations of Timoshenko’s elastica theory
[14] and the Bernoulli-Euler’s theorem from classical
mechanics could therefore be directly employed. It may
be argued, however, based on detailed analyses of vari-
ous authors, that the bending behavior of a real fabric is
markedly ditferent from that of a symmetrical solid beam
[1, 6, 12]. Unlike the classical beam theory in solid
mechanics. the bending curves of real fabric above and
below the neutral axis do not exhibit the same magnitude
of extension and contraction. In fact, the tabric experi-
ences a progressively increasing extension above the
neutral axis and progressively increasing compression
below the neutral axis.

Huang [8] modified Grosberg’s [6] idealized bending
rule by incorporating bilinearity, which was further uti-
lized by Leat and Anandjiwala [ 1] in proposing a gen-
eralized model of a plain woven fabric and subsequently
for moditying Huang’s extension analysis [3]. Although,
Kang ¢t «l. [9] have utilized Huang’s bilinearity in their
model, the obvious inconsistency of applying the classi-
cal beam theory to the textile problem remains. Frictional
restraint to bending of the tabric arises from inter-fiber
trictional torces resulting from the fact that the fibers act
as individual units and do not form a solid beam. Nev-
ertheless, it is interesting to note that Kang er al. [9]
themselves have observed better results when incorpo-
rating Huang’s bilinear bending behavior [8] into their
model than when using their own exponential function!
This reaffirms our belief in the bilinear bending rule [8],
which is a more reasonable and realistic approximation
of the real bending behavior of yarn and fabrics, but
relatively easy to handle in mathematical analysis in
comparison with the exponential nonlinearity proposed
by Kang et al. [9] and the quadratic nonlinearity . by
Abbott er af. [1].

In this paper we have modified Grosberg and Swani’s
buckling theory [7] for woven fabric by introducing
Huang’s bilinear bending rule [8]. The assumption of
infinitely high initial bending rigidity of the fabric in
their model [7] is thus removed. The proposed theory
also eliminates obvious inconsistencies in several earlier
approaches [4-7, 13] based on Grosberg’s idealized
bending rule. The methodology of the theoretical treat-
ment employed here is similar to that proposed in an
earlier paper by Leaf and Anandjiwala [1 1] but is further
suitably modified to accommodate both Grosberg and
Swani’s model [7] and elastic buckling theory of classi-
cal engineering mechanics [13, 14] as special cases. A
numerical solution ot the model is developed and numer-
ical results are presented to study the etfect of fabric
bending parameters, such as initial and final bending
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rigidities, B* and B, respectively, and transition couple,
M, on the buckling of woven fabric.

Theoretical

Consider a piece of fabric, of length /, buckled under
a vertical point force P to create a large-scale deflection
as shown in Figure 1, with the one end of the fabric fixed
at the origin O of the Cartesian co-ordinates. The com-
pressed height Y of the fabric under the force P along the
Y-axis is given by ¥ = 2y, + ¥, as shown in the figure.
Let OZ be the half length of the fabric and the deflection
of the fabric at Z along the X-axis be denoted by D. It is
assumed that the fabric obeys Huang’s bilinear bending
rule as given below [8]:

- X-axis

D, ya+yi2)

Y

"Y-axis

FIGURE 1. Force—compression curve of a buckled fabric.
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M
K= B M=M, (1)
K M, N M-M,
=2 >
e B M>M, (2)

where K is the curvature, M is the moment, M, is the
transition couple and B* and B are the initial and final
bending rigidities, respectively. The point A (x4,v4) In
Figure | is a boundary point at which the applied mo-
ment M begins to overcome the transition couple which
is related to the frictional couple, M, proposed by Gros-
berg [6] by the following relationship:

Mn
M,=——— (3)

-5)

Consider now any general point P (x,y) on the bending
curve which lies between the origin, O and the mid-point
of the fabric denoted by Z. The angle subtended by the
tangent to any point P (x,y) with respect to Y-axis is
denoted by i and the angle at the origin, which is a point
of inflexion, is denoted by 6.

Next consider a general point P (x,y) on OA such that
it follows the bending rule given in equation (1) and the
arc length OP is given by s. At the boundary point A, s
= [, x = x5 and y = y,. Following the methodology
proposed in a previous paper by Leaf and Anandjiwala
[11] the governing equations for the section OA are as
follows:

BT .
[ = \“ P F(“ﬁ) — F(k*, %) )
R
Xy = 2k* \‘TJ cos Py 5

vy = \: H E(/ug) - E(k*,d)i‘{)}

— {F(A:) - F(k*,(/)f()” (6)

where
Je* in 0 7
= §in 5 (7)
o M.,

i\ = cos \cos 0+ PR (8)

A

o sin =
¢ = sin T 9)

3

T
F(k*,—,;) and F(k*,¢%) are complete and incomplete el-
liptic integrals of the first kind, and

T
E(k*,j) and E(k*,¢%) are complete and incomplete el-

lipﬁc integrals of the second kind.

Consider now a general point P (x,y) on AZ such that
it follows the bending rule given in equation (2) and the
arc length OP is given by s. At the boundary point Z, s
=0,s=112=( +05L),x=Dandy= (y, + 0.5y,).
Following the methodology proposed in a previous paper
by Leaf and Anandjiwala [11] the governing equations
for the section AZ are as follows:

1 B

7= \p Flkd} 1 (10)
B |
D:2k\‘/;(l—cosd)»\)+x}\ (1)

Y2 (B | .
27 \p 2E(k,dp) — Flk,d)b  (12)

where,
o .
B “arpr\!' T B (13)
k* sin %
(/)A—'sin"( 7,«) (14)
k
=0 (15)
The fractional compression & is then given by:

oty 16
T (16)

Fk,p) and ECk, ) Fk,$n) and E(k,¢ ) are the incom-
plete elliptic integrals of the first and the second kind,
respectively.

GROSBERG’S BUCKLING MODEL

Grosberg and Swani [7] assumed a bending law [6] in
which the initial bending rigidity B* tends to infinity and
therefore the initial region OA was assumed to be a
straight line with curvature K = 0, which implies that
(B/B*) = 0, therefore, from equation (3) M, = M,. By
substituting this in equations (4) to (15) and deriving the
simple trigonometric relationships for the initial straight
line region OA, the foliowing is obtained:

1 [

B a M,
5= \; F /\,E) +—P;L05u6 (18)

AQ: 3
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Yy = “cot 0 21)

Equations (18) to (21) are identical to the buckling model
reported by Grosberg and Swani [7].

ELASTIC BUCKLING MODEL

The elastic buckling theory in classical mechanics
assumed a linear relationship between moment and cur-
vature, ignoring the etfect of the frictional couple which
influences the behavior of textile materials, such as yarns
and tabrics. This implies that M, = 0 and B = B*. When
substituting these values in equations (4) to (16) equa-
tions are obtained that are similar to the buckling of a
strut reported in standard textbooks of mechanics [13, 14].

Numerical Results and Discussion

The governing equations for solving the model pro-
posed above were converted into non-dimensional forms
by using B/I7 as unit force and [ as unit length. Then the
governing equations in non-dimensional tforms were

_ Pr
solved tor a known non-dimensional force, P = B
L . — M.l
fabric bending parameters, such as, M, B and

Theoretical Buckling Curves
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A= I and by estimating the value of 6 which is
unknown. The computation was continued until the ini-
tial estimate of 0 is modified to satisfy the known bound-
ary conditions, namely, / = 0.5 and Y, = 0 within
specified tolerance limits. From the calculated values of
the parameters, the fractional compression, 8, was cal-

culated for a known non-dimensionless torce B Thus,

5

by systematically varying the values of B in a realistic

range, a theoretical buckling curve for a woven fabric
can be plotted for the known fabric bending parameters.
M,i

B B¥
systematically varied within a range to study the effect of
fabric bending parameters on the buckling of the woven
fabrics. The corresponding buckling curves for two spe-
cial cases discussed above were also calculated.

2

LA =

The values of M‘ = B and B* were

EFFECT OF M, AND A*

Figure 2 shows the theoretical buckling curves of
woven fabrics for different values of A* at a constant
B
systematically as shown in Figure 2a to d. For each value
ot M, the values for A2 are systematically varied from 0,
for Grosberg’s case, to 0.2, 0.5 and 0.8 for the bilinear
buckling model. Furthermore, the elastic buckling case is
plotted for M, = 0 and A> = 1.0 for comparison with the

value of ﬁ, = . The value of M is also changed
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L p— 10.5 8 i
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. . . /- . . — M,1
TasLe 1. Calculated values of the non-dimensionless force, B at various values of percentage compression, M, = B and A-
M, =05 M, = 075 M, = 1.0 M. =125
% compression 10 30 50 10 30 50 10 30 50 10 30 50

Grosberg 13.66 13.67 15.01 15.27 14.67 15.85 16.85 15.66 16.68 18.41 16.65 17.51
AT =03 13.00 13.27 14.68 14.28 14.07 15.35 15.54 14.86 16.01 16.78 15.64 16.67
AT =05 12.02 12.66 14.17 12.81 13.16 14.59 13.58 13.66 15.01 14.34 14.15 15.42
AT =08 11.04 12.06 13.66 11.35 12.26 13.83 11.65 12.46 13.99 11.94 12.65 14.16
Elastica 10.39 11.65 13.32 10.39 11.65 13.32 10.39 11.65 13.32 10.39 11.65 13.32

theoretical curves. The numerical results obtained from
the present model are consistent with results reported by
other researchers [4, 5, 7, 9]. As expected, at constant
value of M, in general, the load required to buckle the
fabric at the same percentage compression level in-
creases as the value of A% decreases from | for elastic
buckling to O for Grosberg’s case, other values of A
taking intermediate values in decreasing order, for the
bilinear buckling model. The corresponding values of the
Pr
calculated non-dimensional force B at various values
of M, percentage compression and A* are given in Table
| for better clarity of the observed trends. As can be seen
from Table I, the values of the non-dimensional force
increases from 11.65 for elastic buckling to 13.67 for
Grosberg’s model for M, = 0.5 and percentage contrac-
tion = 30; the bilinear model giving intermediate values
of 12.06, 12.66, and 13.27 for A> values of 0.8, 0.5 and
0.3, respectively. The trend observed is consistent in all
cases as can be seen from Table 1. This is due to the fact
that the bending resistance of the fabric in elastic buck-
ling is minimal and progressively increases as the value

J—
20 e

- —

Fiaure 3. Effect ol’ﬁ on fabric buckling for
(a) A = 0.3, (b) A* = 0.6, {¢) A” = 0.7 and (d)

3

A7 = LS.

non-dimensional load: PI%B

of A? decreases, with the maximum bending resistance at
A = 0 for the Grosberg’s model, where the initial
bending region is assumed to be infinitely rigid. This
implies that the elastic buckling case underestimates the
required buckling load, whereas Grosberg’s model over-
estimates it. The present model, based on the bilinear
bending rule. therefore, provides the correction to these
two extreme theoretical cases, which is based on the
experimentally measurable bending parameters.

Figure 3 shows the theoretical buckling curves of

woven fabrics for ditferent values of M, but at a constant
value of A% To reconfirm the trend observed in the
previous paragraphs, different values of M, and A” are
chosen in this computation in comparison to Figure 2.
The values of A* are also varied as shown in Figures 3a

to d. From these figures, in general, as the value of M,
increases at a constant value of A%, the load required to
buckle the fabric at a constant percentage compression
level also increases. The increase in M, at a constant A
(ratio -of*B-to B*) implies the requirement of a higher
trictional couple which opposes the initial bending of the

Grosera Theoretical Buckling Curves

e M08

0.8
s S— - .
Elastic A=as |

A =08

48 A5 50

% compression
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tabric due to the restriction of yarn slippage at interlac-
ings and also due to inter-fiber frictional resistance which
prevents easy bending of the fibers in the yarns, leading
to increased resistance to buckling. Table | also shows
the calculated values of the non-dimensional force for
different values of M, at constant values of percentage
compression and A, At A = (1.5 and percentage com-
pression = 30, the calculated values of the non-dimen-
sional force are 12.66, 13.16, 13.66 and 14.15 for corre-
sponding values of 0.5, 0.75, 1.0 and 1.25 for M
respectively. The increase in M, at a constant A* (ratio of
B to B*) also implies increased hysteresis in bending.
The effect of hysteresis in bending on buckling and
recovery will be discussed in detail in the second part of
this paper. The results obtained here are consistent with
the published reports by other researchers {4, 5, 7, 9]. To
compare the bilinear buckling model with the elastic
buckling and Grosberg’s models, they have also been plot-
ted on the same graph as shown in Figure 3. As expected,
these two special cases of the present model occupy two
extreme positions. Once again, the elastic buckling model
underestimates the required buckling load whereas that
of Grosberg’s model overestimates it. The present
model, therefore, provides the necessary correction to
these two extreme theoretical cases, which 1s based on
the experimentally measurable bending parameters.

EFreCTS OF INITIAL (B*) AND FINAL (B) BENDING
RIGIDITIES

Figure 4 shows the theoretical buckling curves of
woven fabrics tor different values of B* at constant

Theoretical Buckiing Curves
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values of M, and final bending rigidity, B. The values of
M, are also changed systematically as shown in Figure 4a
to d. For each value of M, and B, the values of B* are
systematically varied from 5 to 15 in steps of 5, the
Grosberg’s and the elastic buckling graphs also being
shown for comparison. The non-dimensional load, EBI— at
constant values of percentage compression, M, and B,
increases with an increase in initial bending rigidity as
shown in Figure 4a. The increase in initial bending
rigidity, B*, implies that the initial resistance to buckling
increases. In general, the lowest buckling load is required
tor elastic buckling and the highest for Grosberg’s model
where the value of B¥ tends to infinity, while all bilinear
cases occupy intermediate positions between these two
extreme cases as shown in Figure 4a to d. The increase in
initial bending rigidity, B*, at constant M, and final
bending rigidity, B; implies that the fabric will require a
higher load for the onset of buckling. This resistance
results from the frictional forces restricting the move-
ment of the yarns and fibers. This frictional force is
produced by a pressure which arises from inter-yarn
forces at intersections due to yarn interlacings in the
woven fabric. The real effect of this frictional force is to
produce the coercive couple which has to be overcome
before any bending takes place [6]. Table 2 shows the
Pr

calculated values of the non-dimensional force, I tor a

constant value of the final bending rigidity, B, but with
different values for percentage compression, M,, and
initial bending rigidity, B*. For M, = 0.5 and 30%

20 20
= Groshery
8 .5 Ma=0.5:5=3 Ma:0.75:B=3
18 . 18
—_— .10
: 15

16, —©-— Elastic

@
a
3
o —~ - e . PR
= Ficure 4. Effect of the initial bending rigidity,
g 60 60 B* at a constant value of the final bending rigid-
@ ity, B, for (@) M, = 0.5, (b)y M, = 075, () M, =
Q . —
£ =125 1653 1.0 and (d) M, = 1.25.
B 181\ -
< 16k e
14 e
/e/Q/’O
® - cad
10 . : wa : . ;
10 20 30 40 50 60 10 20 30 40 50 80

(c) (d)
% compression
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. Pr . . ,
TanrLE 2. Calculated values of the non-dimensionless force, R at various values of percentage compression,
M1
M, = B and B* B = 3 = constant.
M, =05 M, = 075 M, = 1.0 M, = 1.25

Y compression 10 30 50 10 30 50 10 30 50 10 30 50
Elastica 10.39 11.65 13.32 10.39 11.65 13.32 10.39 11.65 13.32 10.39 11.65 13.32
B =3 11.69 12.46 14.00 12.32 12.86 14.34 12.94 13.26 14.67 13.53 13.65 15.00
B* =10 12.67 13.07 14.51 13.79 13.33 15.09 14.89 14.46 15.68 15.97 15.14 16.25
15 13.00 13.27 14.68 14.28 14.07 15.36 15.54 14.86 16.01 16.79 15.64 16.67
Grosberg 13.66 13.67 15.01 15.27 14.67 15.85 16.85 15.66 16.68 18.41 16.65 17.51

compression, the values of the non-dimensional force
increases from 11.65 for elastic buckling to 12.40,
13.07 and 13.27 for B* values of 5, 10 and 15, respec-
tively, with the highest value of 13.67 for Grosberg’s
model where B* tends to infinity. As observed in the
previous section, the calculated values of the non-
dimensional buckling load required to produce the
same percentage compression increases with an in-
crease in M. For example, as shown in Table 2, at B*
= 10, and percentage compression = 30, the corre-
sponding non-dimensional loads are 13.07, 13.33,
14.46 and 15.14 for M, values of 0.5, 0.75, 1.0 and 1.25,
respectively.

Figure 5 shows the theoretical buckling curves of
woven fabrics for different values of B and at constant
values of M, and initial bending rigidity, B*. The values
of M, are also varied systematically as shown in Figure
Sa to d. For each value of M, and B*, the values of B are

systematically varied from 5, to 10 in steps of 2.5,
together with the Grosberg and elastic buckling cases
calculated for comparison purposes. The non-dimen-
)
sional load, % at constant values of percentage com-
pression, M, and B*, decreases with an increase in final
bending rigidity as shown in Figure 5a. The increase in
final bending rigidity, B, at a constant value of initial
bending rigidity, B*, implies that the buckling of the
fabric becomes relatively easy since the initial resistance
arising from frictional restraint mechanism is already
overcome. Moreover, A? is the ratio of B to B*, which
tends to unity signifying that the buckling of the tabric
becomes close to elastic buckling. The reduction in the
values of the final bending rigidity at a constant value of
B* implies that the ratio A tends to zero which signifies
that the fabric resists buckling, similar to Grosberg's
model. Table 3 shows the calculated values of the non-

Theoretical Buckling Curves

20 ; 20
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Tapie 3. Calculated values of the non-dimensionless force. Iy at various values of percentage compression,
— M,
M“:T and B, B = 12 = constant.
M, =03 M, = 0.75 M, = 1.0 M. = 125
e compression 10 30 50 10 30 50 10 30 50 10 30 50
Grosberg 13.66 13.67 15.01 15.27 14.67 15.85 16.85 15.66 16.68 18.41 16.65 17.51
B =35 12.29 12.83 14.31 13.22 13.41 14.80 14.13 13.99 15.29 15.02 14.56 1577
B =175 11.61 12.41 13.96 12.20 12.79 14.27 12.78 13.16 14.59 13.33 13.52 14.90
B =10 10.93 11.99 13.60 11.19 12,16 13.74 11.44 12.32 13.88 11.68 12.48 14.02
Elastica 10.39 11.65 13.32 10.39 11.65 13.32 10.39 11.65 13.32 10.39 11.65 13.32

N

dimensional force, B for a constant value of the hnal

bending rigidity, B*, but with different values of percent-
age compression, M, and initial bending rigidity, B. The
calculated values of the non-dimensional buckling load
required to produce the same percentage compression
increases with an increase in M,. For example, as shown
in Table 2, at B = 7.5, and percentage compression = 30,
the corresponding non-dimensional loads are 12.41,
12.79, 13.16 and 13.52 for M, values ot 0.5, 0.75, 1.0 and
1.25. respectively.

The foregoing discussions based on numerical results
indicate that the buckling behavior of a fabric based on
bilinear bending rule can be calculated from experimen-
tally measurable bending parameters, such as the fric-
tional couple, and the initial and final bending rigidities.
An extensive numerical analysis has been undertaken to
verity the theoretical behavior of the proposed model
within a realistic range of input parameters. Based on the
numerical work, graphical nomograms and correspond-
ing tables have been prepared which can help to know
the buckling behavior. It is felt that these nomograms and
tables will be very useful information for estimating the
buckling behavior of a fabric without having to go
through the computational exercise that was done in this
work. All relevant nomograms and corresponding tables
have been stored in the electronic format and can be
made available to interested readers upon request to
authors.

Conclusions

The theoretical buckling model of fabric presented
here. which is based on the bilinear bending rule, mod-
ities Grosberg and Swani’s buckling model. The pro-
posed model also includes, as subsets, other models, such
as that of Grosberg and Swani and the elastic buckling
models. The proposed model behaves well numerically
and its solution can be easily obtained by utilizing es-
tablished und commercially available numerical analyses

programs. The numerical results appear realistic and are
consistent with theoretical assumptions. The second part
of this paper will deal with the recovery behavior ot the
fabric buckled to a finite deformation, the effect of bend-
ing hysteresis, and experimental validation of the theory.
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Appendix
NOMENCLATURE

! = length of tabric

P=vertical point force

Y = compressed height of the fabric

= ¥-coordinate of point A

= X-coordinate of point A

s-= length of fabric measured from the origin O
to any point P (x,y)

[, = length of fabric from origin O to point A
('xA’.yA)
1,/2 = length of fabric from point A to the half
length of the fabric at point Z
v-/2 = compressed height of the fabric from point
A to the half length of the fabric at point Z
D = deflection of the tabric at point Z along the
X-axis
K = curvature of the fabric
M = moment at any point P (x,y)
M, = transition couple
B* = initial bending rigidity of the fabric
B = final bending rigidity of the tfabric
M, = frictional couple
Yy = inclination of tangent to any point P (x,y)

with respect to Y-axis



AQ:

| tapraid4/24g-trj/24g-1rj/z4900905/24g1442d05g | tillotsj | S=18 | 8/19/05 | 20:57 | Art: 057957 | |

MonNTH 2005

i at origin O where s = 0
¥, == Inclination of tangent to point A (x,,v,)
with respect to Y-axis

5) = complete elliptical integral of the first kind
with modulus k*

T
L(/\f) = complete elliptical integral of the second

kind with modulus k*

5. b% )y = incomplete elliptical integral of the first

kind with modulus &* and amplitude ¢

kb)) = incomplete elliptical integral of the second

kind with modulus &* and amplitude, ¢%

F(k,,) == incomplete elliptical integral of the first

kind with modulus £ and amplitude ¢,

Elk.dy) == incomplete elliptical integral of the second

12
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kind with modulus & and amplitude ¢,
& == fractional compression of the fabric
i, == iy at point Z

- P

P == non-dimensional force = B
M= . M,
non-dimensional transitional couple = B

A~ == ratio of final bending rigidity, B to initial
bending rigidity, B*
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