

End user programming with personally meaningful objects

Andrew Cyrus Smith

CSIR Meraka Institute and University of South Africa

acsmith@csir.co.za

Helene Gelderblom

University of Pretoria

helene.gelderblom@up.ac.za

Abstract
This project investigated what a tangible programming environment could look like in which the

program is an arrangement of personally meaningful objects. We identified Gestalt principles and

Semiotic theory to be the theoretic foundations of our project. The Gestalt principles of good

continuation and grouping by proximity are particularly relevant to our research. Following the

Design Science Research methodology, four iterations each focussed on a different design aspect

based on the outcome of the previous iterations. The fifth and final iteration combined learning from

the previous designs and introduced the Gestalt principle of grouping by proximity to the

programming environment. We concluded the project by deriving a model that reflects the

programming environment constructs and the relationships between these.

1. Introduction
Current dominant text and graphic based programming environments such as Java (Eckel, 2006) and

Scratch (Resnick et al., 2009) apply the principle of “form follows function”. Krippendorff (1989)

proposed an alternative approach that he called “form follows meaning” and our research considers

what a programming environment could look like in which this is true.

Programming languages are designed by language architects and implemented by software

developers. The architect determines what algorithms to include in the language and the developer

decides how the algorithms are represented. The user then constructs a program using these

representations. In almost all cases, the architect, developer, and user are three distinct persons. The

result is that the user is burdened with making sense of the representations chosen by the developer.

Our research contemplated what a programming environment could look like in which the user

chooses how to represent the language architect’s algorithms. In searching for an answer, we

encountered Semiotic theory and Gestalt principles and found that these helped solve our problem.

We developed five instantiations of a tangible programming environment with each addressing either

a problem identified in the preceding iteration or a new concept that would get us closer to a solution.

Our research concluded with a model of a tangible programing environment that explicitly

incorporates Gestalt principles and Semiotic theory.

The rest of the paper is structured as follows: Section 2 provides the theoretical background that

underpins this research with these being Gestalt principles and Semiotic theory. The methodology we

followed is described in Section 3 and Section 4 describes related work. In Section 5, we describe the

five iterations and the model we developed . Examples demonstrating the usefulness of the model is

also given in this section. Section 6 concludes.

2. Theoretical foundations

2.1. Gestalt principles
As light passes through the eye, it forms an image on the retina at the back of the eye (Young,

Freedman, & Ford, 2007). We see the image, but what we perceive is something else (Shepard &

Levitin, 2002). Instead of perceiving individual and distinct objects in the world, we perceive objects

that are logically connected to each other (Kimchi, Behrmann, & Olson, 2003). The Gestalt school of

thought puts it that our perception of the world is influenced by the way we group and segregate the

stimuli (Kimchi et al., 2003). Perceptual organisation is a neuro-cognitive process that dictates how

we perceive objects in physical space and how we interpret some objects as being distinct from others

and yet other objects as part of a whole (Helm, 2014). The Gestalt School of thought has identified

multiple principles of perception, including grouping by proximity and the principle of good

continuation. The strength of grouping is inversely proportional to the distance between the elements

(Bergman, 2009); therefore, the closer the elements are to each other the stronger our perception is

that these belong to the same group. Perceptual grouping by good continuation puts it that we tend to

follow a gentle curve and not deviate from this path when the curve is interrupted by sudden changes

(Chandler, 2007).

2.2. Semiotic theory
Krippendorff (1989) developed a model (Figure 1) that illustrates the relationship that exists between

an artefact, the designer, and the user. This model separates the designer who creates the artefact from

the user who makes sense of the artefact when observed in context. Artefacts used in tangible

programming environments are created this way. For the user to find meaning in the artefact requires

an initial mental exercise that must be repeated after some time has passed and the meaning associated

with the form has faded from memory.

Our approach differs; instead of separating the designer from the user, we propose that the two roles

be incorporated into a single person called the designer-cum-user. Using this approach, the user

creates a personally meaningful artefact that represents the target product. Although not confirmed,

we anticipate that this approach reduces the initial cognitive load on the user when he uses the artefact

as a program element. Figure 2 is Krippendorff’s model adapted to reflect our approach. This model

does not include the reason the artefact is created. In our model (Figure 4), we make explicit the

reason the artefact is created and indicate it as the instantiation of the system architect’s algorithm

(labelled B9). Algorithms include concepts such as turning off a light or to draw a line on the

computer display.

Product semanticsProduct semantics

DesignerDesigner

Artefact

Form

Seen as Seen in context

Creates Acts on

Informs

Makes sense

UserMeaning

Product semanticsProduct semantics

Artefact

Form

Seen as Seen in context

Creates

Acts on

Informs

Makes sense

Designer-cum-User

Meaning

Figure 1- Krippendorff’s model of the user and the

designer’s view of an artefact.

Figure 2 - Krippendorff's adapted

model reflects the case where an

individual is both the designer and

the user.

2.3. Combining Semiotic theory and Gestalt principles in a programming environment
Our T-Logo (Andrew Cyrus Smith, 2014) programming environment explicitly incorporates the

Gestalt principle of grouping by proximity to associate objects with each other and result in a program

element. The arrangement of objects within a group is inconsequential. This is similar to how two

English language sentences convey the same meaning: Consider the meaning of the sentences “the red

car” and “the car is red”. Both contain a noun and an adjective that describes the noun. Our approach

is that when the words “car” and “red” are in close proximity to each other, then they are considered

to be related to each other. Figure 3 illustrates this concept. Written in textual form and using an

object oriented language (Java is an example), this can be expressed as car.colour = red where

“car” is a programmatic object.

In terms of the Saussurian (Saussure, 2011) model, the two objects on the left in Figure 3 are

the signifiers and the item on the right is the signified. In terms of Peirce’s (Peirce, 1935) semiotic

model, the two objects on the left are representamen and the imaginary object on the right is the

interpretant. It is the process of semiosis that binds the representamen to the interpretant and it is the

representative character of the toy car and the presentative character of the red cloth that, when

combined, result in the red car on the right. In terms of Peirce’s model, the cloth is a qualisign and the

car is an icon.

Icon signQualisign Program element

Perceptual grouping by proximity

 Figure 3 - An adjective describes the noun.

Semiotics research considers the meaning that objects hold for individuals and recognises the fact that

the meaning one person attaches to an object may be different to the meaning another person attached

to the same object. Our model of a tangible programming environment also makes provision for this

difference in perception by using two representations of the same concept: One representation is in the

form of a user-chosen tangible object and the system software developer chooses the second

representation (being an identification number in the form of an optical marker). The two

representations are reconciled when the user attaches the marker to the selected object.

3. Methodology
We embarked on our research without knowing in advance what theory would support our work. Our

departure point was the domain of computer programming and as we discovered later, the general

research domain of psychology would ultimately provide the theoretical underpinnings for our work.

These are the theory of Semiotics and the principles of Gestalt. We therefore had a starting point but

did not know what was missing in our body of knowledge.

Subsequently, we identified the Design Science Research Methodology (Hevner, March, Park, &

Ram, 2004) as suitable to guide our research. This methodology recognises that at times a researcher

has to rely on experience, intuition, and trail-and-error (Hevner et al., 2004) (and so did we).

Vaishnavi and Kuechler (2015) put it that no single knowledge base is complete and this resonates

well with our experience in this project when we had to access knowledge beyond the research

domain of Computer Science by accessing Psychology domain knowledge. We applied Vaishnavi and

Kuechler’s (2008) process model since it makes explicit that the knowledge base is incomplete when

research commences.

4. Related work
Although a number of tangible environments apply the Gestalt principle of proximity, they do so

without making this theoretical foundation explicit. None of these programming environments support

the user in using personally meaningful objects as program element representations. Our research

identified a group of environments that implicitly use Gestalt principles: The principle of grouping by

proximity is evident in ReacTable (Jorda, Kaltenbrunner, Geiger, & Bencina, 2005) while the

Aggregate Cube in Blackwell and Hague’s (2001) Media Cubes relies on grouping by common

region.

The Gestalt principle of good continuation can be seen in programming environments such as Tern

(Horn & Jacob, 2007) and GameBlocks (Andrew Cyrus Smith, 2007). Perlman’s (1974, 1976)

TORTIS slot machine is the first documented tangible programming environment and it enforces the

Gestalt principle of good continuity. Tern and GameBlocks both infer good continuity along straight

lines; however, Gallardo et al.’s (2008) Turtan takes this a step further by including curved

trajectories in the program layout.

4.1. Navigation Blocks
Camarata (2002) developed a database query system based on tangible cubes that each represent a

thing, time, place, and a person in a database. Each of the six sides represents a unique place or

person. By placing a cube next to a second cube, a database query is constructed that can be written as

a logical AND condition. Camarata suggested, but did not implement, OR and NOT logical conditions

because the author was concerned that the additional expressions would result in an interface that is

less understandable. The awkward cube combination suggested to represent logical OR is easily

avoided by applying the Gestalt principle of grouping by proximity: Assuming items grouped closely

together implies that everything should hold true in that grouping, then the grouping constitutes a

logical AND. Conversely, if objects are in separate groups, then each group is considered

independently of the others and are therefore a logical OR representation.

4.2. Media Cubes
Media Cubes inspired our approach to use grouping by proximity in our solution. Blackwell and

Hague’s (2001) ontological programming paradigm includes sensing of events and actuation to

change something in the environment. Events in a domestic setting include the ringing of the doorbell

and the sounding of an alarm clock. Actuation includes changing a television channel or initiating a

video recording. A Media Cube represents an “abstraction” and includes the change of state of a

device. Media Cubes are combined to form small programs and rely on close proximity to other cubes

to form a program. Although not implemented, Blackwell (2001) suggests that an object that

represents time might actually look like a clock. This fits well with our overall aim and our model

makes provision for the user to select his own time representamen. Association is achieved by

placing the cube next to the appliance being controlled (A.F. Blackwell & Hague, 2001).

5. T-Logo

5.1. The initial iterations
The first two iterations explored placing cubes in a linear sequence. The tangible programming

environments that resulted from these iterations are respectively called GameBlocks I and II. The

tangible elements in GameBlocks I (Andrew C. Smith, 2006) are constructed using acrylic sheets

whereas those in GameBlocks II (Andrew Cyrus Smith, 2008) make use of soft closed-cell foam. The

third iteration considered hand-made programming elements carved from natural stone as an attempt

to get the user closely involved in the design of the program artefacts. The resultant implementation is

called RockBlocks. The fourth design explored repurposing everyday materials as program objects

and resulted in a tangible programming system called Dialando (Andrew Cyrus Smith, 2010).

Learning that emerged from the first iteration prompted the application of Gestalt principle of good

continuation in the three iterations that followed. The Gestalt principle of grouping by proximity was

introduced in the fifth and final iteration.

5.2. The final iteration
The final iteration incorporates both Gestalt principles of grouping by proximity and the principle of

good continuation. It also includes Semiotic theory by making the user responsible for choosing the

objects that represent program elements. Program elements are tangible objects that play a specific

role in the program and elements include parameters, actions, and states. An object becomes an

element when the user associates the object with a role. Association is done using a numbered optical

marker (also known as a fiducial) attached to the object. An element has two representations: The first

representation is in the physical world and the second is in the digital domain. The user interacts with

the element using the physical representation and the software interacts with the digital representation.

This final instantiation is called T-Logo (Andrew Cyrus Smith, 2014).

5.3. The model
From our learning based on the five iterations, we designed a model that captures the constructs

involved in tangible programming. The model explicitly includes elements of semiotics and Gestalt

principles. Figure 4 illustrates our model of a tangible programming environment in which the user

chooses personally meaningful objects as program elements.

Tangible program

Tangible object

User

Meaning

Semiotic theory

Interpreter

Developer

Gestalt principles

Grouping by
proximity

Good
continuation

Material

Sensor

Executabale
code

Marker

Developer

`

object and parameter

object and action

object and condition

B1

marker and parameter

marker and condition

marker and action

User

User

User’s problem

User

UserB2

B5 B6

B9

B11

B13

B14 B16

B15

B12

B7

B8

B4

B3

An algorithm

ArchitectB10

Software routine that
implements an algorithm

Parameter

Condition

Action

Developer

Digital associations

Cognitive associations

Computing system

User

Figure 4 - A model of the T-Logo programming environment.

The model includes constructs and shows the relationships between the constructs. Constructs include

persons such as the user who wants to solve a problem (B1), a system architect who specifies which

algorithms (B10) to be include in the programming environment, and a software developer who

interprets the algorithms and implements them as actions, conditions, and parameters (B12).

Additional constructs are a tangible program (B2) that addresses the user’s problem, the computing

system (B3), materials (B14), tangible objects (B13), Gestalt principles (B8), Semiotic theory (B16),

meaning that objects hold to the user (B15), and the user’s cognitive associations (B11) between

tangible objects and software routines. The computing system in turn consists of executable code (B4)

that address the user’s problem, markers (B5), a marker sensor (B6), an interpreter (B7), software

routines (B12), and digital associations between markers and software routines (B9), .

A developer implements software routines based on algorithms defined by the system architect.

Making a drawing on paper is an example of an algorithm. An algorithm is realised using software

routines that consist of actions, conditions, and parameters. Conditions reflect the world state while

actions change the world state. Condition examples include facts such as “it is windy”, and starting a

drawing and ending the drawing are examples of actions. Parameters refine the conditions of interest,

and detail how actions are applied to the world. Parameter examples include ink colour and wind

speed. To the user, the routines hold meaning.

Based on Gestalt principles and Semiotic theory, the user either creates a tangible object using

available materials or chooses an existing object to instantiate a personally meaningful representation

of actions, conditions, or parameters. This establishes an association in the user’s mind between the

object and an action, condition, or parameter.

The user attaches a marker to the object and instructs the computing system to associate the marker

with a particular routine. Because the marker and the object are now cognitively and digitally

combined, the user and the computing system associate the combination with the same routine.

The user addresses his problem by constructing a program that incorporates personally meaningful

objects representing routines. Individually, objects hold meaning to the user, while an arrangement of

objects carry another meaning. Whereas the user views a program as an arrangement of one or more

objects, the system interprets the program as a collection of one or more markers. Using information

from the sensor, the interpreter identifies the markers and how these are arranged. It segments the

arrangement according to the Gestalt principles of 1) good continuation and 2) grouping by proximity.

It then produces executable code according to the user-created digital associations. The outcome is

executable code that addresses the user’s problem.

5.4. The model applied
In practice, a user is presented with concepts and he can craft or repurpose existing objects to signify

them. For example, a hypothetical user has chosen to represent the program termination instruction

using a soft toy of a sleeping puppy. In addition, three posable mannequins represent the commands

FORWARD, RIGHT, and LEFT respectively. A dog modelled from clay represents GROWL (a

growling sound) and a bobblehead toy giraffe is the user’s interpretation of SHAKE (a shaking

motion). Finally, a handheld torch represents the IR-BEAM test condition (is the beam active?) while

two toy cars do the same for BUMP (has a bump been detected?). Table 1 summarises the user’s

selection of tangible objects for these commands and conditions. Another user may have chosen

different representations.

Table 1 – User’s mapping between program concepts and tangible objects, and Tern sign equivalents.

Concept Object of user’s choice Tern sign

(Command)

FORWARD

(Command)

LEFT

(Command)

RIGHT

(Command)

GROWL

(Command)

SHAKE

(Command)

Terminate the program

(Test condition)

IR-BEAM = FALSE

(Test condition)

IR-BEAM = TRUE

(Test condition)

BUMP = FALSE

(Test condition)

BUMP = TRUE

To test our approach to having the user select tangible program objects, we chose three previously

published Tern programs and show how they can be implemented using our hypothetical user’s

objects. The first (Figure 5) is a sequence of six program statements: FORWARD, GROWL, RIGHT,

FORWARD, SHAKE, and LEFT. Since the T-Logo programming environment continually executes

the user’s code, we added a program termination object (the soft toy in this example) at the end of the

T-Logo sequence in Figure 5b. The dashed line highlights the principle of good continuation. Six

slanted lines show the correlation between the Tern (Figure 5a) and the T-Logo implementations.

Figure 5 - Example of a linear program.

The second example (Figure 6) demonstrates a conditional IF statement and the use of a parameter.

This is a typical code segment for a toy robot and determines the robot movement when a bumper

(being the parameter) is activated. Figure 6a is a program using the Tern language while Figure 6b is

the same program logic implemented using T-Logo.

 (a) Tern (b) T-logo

Figure 6 - Example of a conditional statement in a loop.

The third example illustrates a logical AND expression. In this example, the compound AND

expression in Figure 7a has been rewritten as four expressions and implemented using T-Logo. The

original expression is:

IF (IR-BEAM = TRUE) AND (BUMP = TRUE) THEN do RIGHT ELSE do FORWARD.

Figure 7b shows the Tern implementation. Equivalent logic can be composed and the result is

expressed in Figure 7c using the T-Logo language:

IF (NOT-IR-BEAM = TRUE) AND (NOT-BUMP = TRUE) THEN do FORWARD

IF (IR-BEAM = TRUE) AND (NOT-BUMP = TRUE) THEN do FORWARD

IF (NOT-IR-BEAM = TRUE) AND (BUMP = TRUE) THEN do FORWARD

(a) Tern

(b) T-Logo

IF (IR-BEAM = TRUE) AND (BUMP = TRUE) THEN do RIGHT

IF (IR-BEAM = TRUE) AND (BUMP = TRUE)

THEN do RIGHT

ELSE do FORWARD

IF (IR-BEAM = TRUE)

 AND (BUMP = TRUE)

THEN do RIGHT

IF (NOT-IR-BEAM = TRUE)

AND(NOT-BUMP = TRUE)

THEN do FORWARD

IF (IR-BEAM = TRUE)

AND(NOT-BUMP = TRUE)

THEN do FORWARD

IF (NOT-IR-BEAM = TRUE)

 AND (BUMP = TRUE)

THEN do FORWARD

(a) Pseudo code

(c) T-Logo

(b) Tern

Figure 7 - Example of the logic AND conditional statement.

6. Conclusion
We have set out to develop a tangible programming environment in which the user can choose his

own objects to represent program elements but discovered that we had insufficient knowledge on how

to proceed. Our search for an appropriate research methodology identified Design Science Research

as appropriate. We subsequently found theory and principles in the Psychology domain to underpin

our research, specifically Semiotic theory and Gestalt principles. An analysis of existing tangible

programming environments revealed that some Gestalt principles were implicitly present.

We presented a model for a tangible programming environment in which the user can use personally

meaningful objects and apply Gestalt principles when constructing a program. Finally, to test the

effectiveness of our T-Logo programming environment we constructed three hypothetical programs

that are equivalent to previously published Tern code segments.

7. References
Bergman, M. (2009). Peirce’s philosophy of communication: The rhetorical underpinnings of the

theory of signs. Continuum studies in American philosophy. London: Continuum

International Publishing Group.

Blackwell, A. F., & Hague, R. (2001). AutoHAN: An architecture for programming the home.

Human-centric computing languages and environments, 2001. Proceedings IEEE symposia

on (pp. 150–157). IEEE.

Blackwell, A. F., & Hague, R. (2001). Designing a programming language for home automation.

Proceedings of the 13th annual workshop of the Psychology of Programming Interest Group

(PPIG 2001), 85–103.

Camarata, K., Do, E. Y.-L., Johnson, B. R., & Gross, M. D. (2002). Navigational blocks: Navigating

information space with tangible media. IUI ’02: Proceedings of Intelligent user interfaces

(pp. 31–38). San Francisco, California, USA: ACM Press.

doi:http://doi.acm.org/10.1145/502716.502725

Chandler, D. (2007). Semiotics- the basics (second.). Abingdon, Oxon: Routledge.

Eckel, B. (2006). Thinking in Java (fourth.). Boston: Prentice Hall Professional.

Gallardo, D., Julia, C. F., & Jorda, S. (2008). TurTan: A tangible programming language for creative

exploration. TABLETOP 2008. 3rd IEEE International workshop on horizontal interactive

human computer systems (Vol. 10, pp. 89–92). doi:10.1109/TABLETOP.2008.4660189

Helm, P. A. van der. (2014). Oxford handbook of perceptual organization. In J. Wagemans (Ed.), .

Oxford, United Kingdom: Oxford University Press.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design science in information systems

research. MIS Quarterly, 28(1), 75–105. Retrieved from http://www.jstor.org/stable/25148625

Horn, M. S., & Jacob, R. J. K. (2007). Tangible programming in the classroom with Tern. CHI ’07

extended abstracts on human factors in computing systems (pp. 1965–1970). San Jose, CA,

USA: ACM Press. doi:http://doi.acm.org/10.1145/1240866.1240933

Jorda, S., Kaltenbrunner, M., Geiger, G., & Bencina, R. (2005). The reacTable. Proceedings of the

International computer music conference (ICMC 2005). Barcelona, Spain.

Kimchi, R., Behrmann, M., & Olson, C. R. (Eds.). (2003). Perceptual organization in vision–

behavioral and neural perspectives. Lawrence Erlbaum Associates, Inc.

Krippendorff, K. (1989). On the essential contexts of artifacts or on the proposition that "design is

making sense (of things). Design Issues, 5(2), 9–39. Retrieved from http://0-

www.jstor.org.oasis.unisa.ac.za/stable/1511512

Peirce, C. S. (1935). The collected papers of Charles Sanders Peirce. (C. Hartshorne, P. Weiss, & A.

W. Burks, Eds.) (Vol. 1–8). Cambridge: Harvard University Press.

Perlman, R. (1974). TORTIS: Toddler’s own recursive turtle interpreter system. MIT Artificial

Intelligence Lab.

Perlman, R. (1976). Using computer technology to provide a creative learning environment for

preschool children. (No. 24 (Logo Memo), MIT Artificial Intelligence Lab Memo 360). MIT

Artificial Intelligence Lab.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A.,

et al. (2009). Scratch: programming for all. Communications of the ACM, 52(11), 60–67.

doi:http://doi.acm.org/10.1145/1592761.1592779

Saussure, F. de. (2011). Course in general linguistics. (P. Meisel & H. Saussy, Eds.). New York:

Columbia University Press.

Shepard, R. N., & Levitin, D. J. (2002). Foundations of cognitive psychology - core readings. In D. J.

Levitin (Ed.), (pp. 503–514). The MIT Press.

Smith, A. C. (2006). Tangible cubes as programming objects. Proceedings of the 16th International

conference on artificial reality and telexistence–workshops (ICAT’06) (pp. 157–161).

Hangzhou, China: IEEE Conference Publications. doi:10.1109/ICAT.2006.121

Smith, A. C. (2007). GameBlocks: an entry point to ICT for pre-school children. Meraka Innovate

Conference. CSIR Convention Centre, Pretoria South Africa. Retrieved from

http://hdl.handle.net/10204/1778

Smith, A. C. (2008). A low-cost, low-energy tangible programming system for computer illiterates in

developing regions. 4th International workshop on technology for innovation and education

in developing countries (TEDC). Retrieved from

http://playpen.meraka.csir.co.za/ acdc/education/TEDC 2008 Proceedings - Technology for

Innovation and Education in Developing Countries: 978-0-620-43087-6/Smith_08.pdf

Smith, A. C. (2010). Dialando: Tangible programming for the novice with Scratch, Processing and

Arduino. 6th International workshop on technology for innovation and education in

developing countries (TEDC). Retrieved from http://hdl.handle.net/10204/4048

Smith, A. C. (2014). Cluster-based tangible programming. Digital information and communication

technology and it’s applications (DICTAP), Fourth international conference on (pp. 405–

410). IEEE. doi:10.1109/DICTAP.2014.6821720

Vaishnavi, V. K., & Kuechler, W. (2008). Design science research methods and patterns: innovating

information and communication technology. Auerbach Publications.

Vaishnavi, V. K., & Kuechler, W. (2015). Design science research methods and patterns: innovating

information and communication technology. CRC Press.

Young, H. D., Freedman, R. A., & Ford, L. (2007). University Physics. Addison Wesley.

