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Abstract—The lack of multi-biometric fusion guidelines at
the feature-level are addressed in this work. A feature-fusion
framework is geared toward improving human identification
accuracy for both single and multiple biometrics. The foundation
of the framework is the improvement over a state-of-the-art
uni-modal biometric verification system, which is extended into
a multi-modal identification system. A novel multi-biometric
system is thus designed based on the framework, which serves
as fusion guidelines for multi-biometric applications that fuse
at the feature-level. This framework was applied to the face
and fingerprint to achieve a 91.11% recognition accuracy when
using only a single training sample. Furthermore, an accuracy
of 99.69% was achieved when using five training samples.

Index Terms—face, fingerprint, feature-level, multi-modal bio-
metrics, state-of-the-art

I. INTRODUCTION

Biometrics are measures of unique biological and be-
havioural patterns of an individual, which are evaluated using
either verification or identification methods [1]. Biometrics are
useful as they cannot be lost or forgotten in the traditional
sense, unlike smart devices and passwords. However, their
popularity has introduced security risks posed by forgers. Fur-
thermore, real-world problems, such as damaged fingerprints
and facial occlusions, pose the risk of unreliable biometric
systems.

Multi-biometric fusion has proven effective in address-
ing real-world biometric applications. Multi-modal biometrics
can also be used to solve non-universality and bad input
data in well-planned applications by intelligently selecting
an appropriate modality [2]. Therefore, uni-modal biometric
recognition performance can be as important as multi-modal
biometric recognition performance in certain multi-modal bio-
metric applications.

Multi-modal biometric studies initially adopted the score-
level fusion approach. However, the feature-level approach
was shown to outperform the score-level in recent studies
[3]. This was attributed to the rich discriminatory information

available at the feature-level. Comprehensive reviews have
been conducted at the matching score-level and the results
were often used to construct fusion frameworks [4]. These
frameworks provide important guidelines that enable the sys-
tematic implementation of multi-modal biometric systems for
future research and applications. Feature-level fusion is in
particular need of these guidelines because of the curse of
dimensionality” problem posed by the rich amount of data in
features. Moreover, the classification of human identification
systems result in a considerably higher dimensionality problem
than human verification systems and thus the extracted features
play a very important role during the classification process.
This paper proposes a framework, based on preliminary ex-
periments, which will be used to implement a state-of-the-art
multi-modal biometric system with high human identification
rates for both individual and fused modalities. Biometric
modalities, represented by an image, are independent and com-
plementary, thus feature-fusion guidelines are determined by
applying the same feature transformation method on different
modalities [4].

In this paper, different feature selection and transforma-
tion methods (feature processing modules) are applied to the
face, palmprint and fingerprint. The fused feature sets are
expected to improve recognition performance compared with
the individual feature sets in the majority of cases. However,
individual feature sets can outperform a fused feature sets con-
taining one or more poor quality individual feature sets. This is
expected to further improve the recognition performance. The
scope includes the use of different sized datasets and varying
the number of training samples used during data modelling.

The rest of the paper is organized as follows: Section
IT presents the related studies. Sections III and IV discuss
the construction and application of the image-based feature-
fusion guidelines. The experimental analyses and results are
discussed in Section V. Section VI concludes the paper and
discusses ongoing work.



II. RELATED STUDIES

The following related studies present multi-modal human
identification systems that combine the face, fingerprint or
palmprint.

Yao et al. [5] combined the face and palmprint and pro-
cessed the fused dataset with four PCA-based feature-fusion
algorithms. The best performing algorithm filters both input
modalities with Gabor filters followed by weighted parallel
fusion of the resulting feature set. The remaining three al-
gorithms either omit the Gabor filtering or use non-weighted
parallel fusion. The best performing algorithm produced a high
accuracy with only a single training sample.

The AR face and PolyU palmprint datasets were used. Each
dataset consisted of 20 images per 189 individuals with a
resolution of 60 x 60. A 91% genuine acceptance rate (GAR)
was achieved with a single training sample and 95% GAR was
achieved using six training samples.

The face and fingerprint feature-fusion studies [6] and [7]
both use a Curvelet transform followed by SVM classification.
The Curvelet transform makes the system resistant to mis-
alignment and multiple capturing angles. However, the datasets
used in both studies are not publicly available.

The limited studies, lack of metrics and the use of private
datasets on face, fingeprint and palmprint feature-fusion sys-
tems make comparisons a non-trivial task. Furthermore, many
of the studies only perform human verification.

III. METHODOLOGY

This section shows the steps taken to determine the multi-
biometric feature-fusion framework.

A. Uni-modal Biometrics

The experimentation process was initialized by determining
a face verification method that can outperform the current
state-of-the-art, known as GaussianFace [8]. The goal of Gaus-
sianFace was to surpass the 97.53% face verification accuracy
achieved by the human eye, on the cropped LFW dataset.
GaussianFace surpassed this accuracy by 0.99% GAR with
0.15% FAR when training on five additional source domain
datasets. GaussianFace achieved a face verification accuracy
of 90% when only using the LFW dataset.

The face verification method proposed in this paper
achieved a 95% face verification accuracy on the same LFW
dataset. The methodology used a Laplacian of Gaussian (LOG)
filter and a modified version of the extended Local Binary
Pattern (ELBP) texture descriptor, followed by a transforma-
tion to the Eigen space. This algorithm significantly improves
discrimination of between-class and within-class data. There-
fore, this algorithm was extended from human verification to
accurate human identification compatible with the face and
other image-based modalities. Our methodology applies this
image-based biometric identification algorithm to the face,
fingerprint and palmprint modalities as follows.

B. Categories of Datasets

Two multi-modal datasets were formed by pairing the first
40 individuals of FVC2004 Fingerprint DB1 with ORL Face
and SDUMLA Fingerprint right middle fingers with Fei Face,
respectively. Fingerprint images consisted of the following
three quality categories: partials with absent core points,
poorly-defined ridges and well-defined ridges. Performing
experiments on those fingerprint groups helped determine the
feature selection and transformation algorithms most effective
at dealing with all three groups. Face images were also
organized into three categories, consisting of standard frontal
faces, frontal faces that consisted of poses and props, and non-
frontal faces.

More multi-modal datasets were formed by pairing PolyU
palmprints with each of the above datasets, forming bi-modal
and tri-modal datasets. The following subsection details the
interactions of the most relevant feature processing modules
and classifiers.

C. Preliminary Experiments

Uni-modal, bi-modal and tri-modal datasets were evaluated
using various human identification systems based on com-
binations of feature processing modules and classifiers. All
evaluation was performed after basic pre-processing, consist-
ing of image alignment, pixel normalization and histogram
equalization. The following results relate to the various face
and fingerprint datasets only.

Local Binary Pattern Histogram (LBPH) proved to be
a versatile classifier capable of achieving high recognition
accuracy and only requiring basic pre-processing. LBPH was
particularly robust to misalignment, dynamic lighting and
scale. On the other hand, Eigen and Fisher classification per-
formed poorly on the majority of datasets. However, Eigen and
Fisher classification achieved recognition accuracies similar to
that of LBPH for face and fingerprint images consisting of
standard frontal faces and well-defined ridges, respectively.
The improved performance on the latter datasets for both
Eigen and Fisher can be attributed to the low variance in
data across multiple samples of face and fingerprint images
contained within those datasets.

An effort was made to reduce the variance in the majority of
datasets by applying a LOG filter. The LOG filter significantly
improved the recognition accuracy of all the datasets. It was
particularly useful at lowering the data variance of multiple
samples of face and fingerprint images consisting of poses
and props and poorly-defined ridges, respectively. However, a
side effect occurred when applying the LOG filter to a data
class with varied lighting. This side effect occasionally caused
a reduction in recognition performance.

The ELBP operator was modified in an effort to reduce
the variation in data across multiple samples of an individual.
The standard ELBP operator highlights high frequency data
using interpolation, which introduces noise into an image.
The modification to the ELBP operator reduced the noise
captured by the feature descriptor by increasing the radius in
correlation to the interpolated neighbours. The modified ELBP



operator significantly outperformed the histogram equalization
and pixel normalization under dynamic lighting conditions.
This was used before the LOG filter to achieve the optimal
feature set.

The Gabor filter is a popular means of improving feature
discrimination, however, it did not improve the accuracies of
the fused datasets. Moreover, it reduced the accuracy of the
Eigen and Fisher classifiers. However, it achieved an improved
recognition accuracy on non-partial fingerprint datasets and
slightly improved the recognition accuracy of all face datasets
when using the LBPH classifier. On the other hand, the
LOG filter lowered the accuracy of the LBPH classifier. The
LBPH classifier did not respond positively to the majority of
feature processing modules. Reducing the data variance by
1%, using principal component analysis (PCA) produced the
best improvement to LBPH recognition accuracy across all
datasets.

The results on the individual palmprint dataset corresponded
to the interactions described above. However, contrary to the
face and fingerprint datasets, the palmprint dataset was of
consistent and high quality. Fused datasets that consisted of the
palmprint thus achieved perfect accuracies in all cases when
using the modified ELBP and LOG filter combination. The
interactions observed in these preliminary experiments were
used to construct a framework consisting of fusion guidelines.
The framework was applied to the proposed systems in the
following section.

IV. IMPLEMENTING THE PROPOSED SYSTEMS

The proposed systems are implemented based on the
feature-fusion framework determined in Section III. The face
and fingerprint are combined using feature-level fusion in the
final experiments as follows.

A. Dataset

The face and fingerprint datasets were used from the
SDUMLA multi-modal database [9]. Since it is a true multi-
modal database, all individuals, totalling 106, were used in the
final experiments discussed in Section V. Eight samples of the
left thumbprint were selected from the fingerprint images. The
frontal faces were selected consisting of various poses and
props — normal, smile, frown, surprise, looking down, eyes
shut, hat and glasses. The training samples were sequentially
chosen from one to five and the rest were used for testing. To
the best of our knowledge there are no studies that fuse face
and fingerprint data acquired from the SDUMLA multi-modal
database.

B. Pre-processing

Pixel normalization sets the pixel values of an image to a
constant mean and variance for improved consistency of light-
ing and contrast. Histogram equalization is another method
for improving the consistency of lighting and contrast across
a dataset [10]. Histogram equalization is often more effective
than pixel normalization, but the greyscale range is distributed
uniformly by applying a non-linear transformation, which can

cause a slight side effect on the histogram shape. Therefore,
histogram equalization should be avoided in most histogram-
based matching methods.

C. Feature Selection

The LOG filter enhances the discrimination of the face
and fingerprint images by removing unwanted features on the
very high frequency spectrum, while effectively increasing the
mean image component. However, increased feature discrim-
ination can further highlight the difference among multiple
samples of badly aligned images, consequently reducing the
recognition accuracy.

A cropping method based on multiple Haar cascades and
Poincaré index was used to automatically prune noise and
resize the face and fingerprint datasets to a 75 X 75 region
of interest (ROI), respectively. Multiple Haar cascades were
iterated to detect the face, eyes, nose and mouth. Many Haar
cascades were in place for redundancy purposes in the case
of detection failure. The outlining as illustrated in Fig. 1 was
determined based on the detected face, eyes, nose and mouth
and was used to eliminate or reduce partial occlusions that
affect face recognition. Non-local means filtering [11] was
used to enhance the fingerprint before applying the Poincaré
index algorithm. The inconsistent pressure applied during
fingerprint capturing was dealt with by cropping the fingerprint
around the core point.

Feature discrimination was further improved by applying
our proposed novel algorithm, consisting of the modified
ELBP operator and LOG filter, to the face and fingerprint
ROIs.

D. Feature-Fusion Transformation

The highly discriminative face and fingerprint feature vec-
tors are combined using serial vector fusion. Eigen and Fisher
classifiers require the feature vectors to be transformed to
the Eigen space. This Eigen space representation is only a
reconstruction for visual purposes and is not used during
classification. The LBPH classifier makes use of a spatial
histogram representing standard image space and will be
elaborated further in the next subsection. Instead of showing
histograms of data, the more descriptive ELBP representation
is shown in the figure. The fused feature vectors representing
the Eigen and Fisher methods as well as the LBPH method is
illustrated in Fig. 1 on the left and right side, respectively.

E. Multi-modal Classification

The key element of the Eigen classifier is represented by the
following total scatter matrix, when given N sample images
x [12]:

N
Se=> (xr—p)(wr —p)" (1)
k=1
where m € R™ is the mean image obtained from the
samples.
The Fisher classifier performs extra class-specific dimen-
sionality reduction by clustering same class data tightly and
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Fig. 1: Overview of Proposed Methodology.

maximizing the separation of different classes in a lower-
dimensional representation. The key element of the Fisher
classifier is thus represented by the following between-class
and within-class scatter matrix.

Given C classes the between-class scatter matrix is defined
as [12]:

C
Sy = Ni(p — ) (wx — )" )
=1

while the within-class scatter matrix is defined as:

C
Sw=_ > (wx—p)zr — )" 3)

=1z €X;

The LBPH classifier is a feature descriptor based on the
local binary pattern (LBP) operator. We use a special kind of
LBP operator known as ELBP. This operator uses spatially
enhanced histogram matching, which can perform partial
matching and automatic pixel normalization on a pixel level,
circular neighbourhood level and image level. The advantages
of this are illumination, scale and rotation invariant texture
classification as opposed to Eigen and Fisher classification
[13]. The disadvantages are the limited or negative effects on
recognition performance when applying image pre-processing
and feature selection techniques before LBPH classification.

Three baseline systems are created by dividing the fused



dataset into classes processed by the three classifiers.

V. EXPERIMENTAL ANALYSIS AND RESULTS

The various proposed systems are identified by the fol-
lowing combinations of feature selection and transformation
schemes with the Eigen, Fisher or LBPH classifier: Pixel nor-
malization is used for the LBPH baseline system, Histogram
equalization is used for the Eigen and Fisher baseline systems,
referred to as Eh; LOG is referred to as L; Modified ELBP
is referred to as LBP; Modified ELBP followed by LOG is
referred to as LBPL; LOG followed by modified ELBP is
referred to as LLBP; and PCA reduction is referred to as PCA.

The Eigen baseline fusion system always outperforms the
face and fingerprint as illustrated in Fig. 2. The LBPL feature
vector outperforms the other system when using a single
training sample with an accuracy of 90.84%. The LLBP
feature vector achieves the best accuracy when using five
training samples with an accuracy of 99.69%.

In Fig. 3 the Fisher classifier performs noticeably weaker
than the Eigen classifier when using two training samples. This
is attributed to the fact that the second sample of the dataset
is generally of a different category (as defined in Subsection
III-B) compared with the first sample. This affects Fisher in
particular due to its high sensitivity to differences in training
samples.

The LBPH baseline fusion system produces a lower ac-
curacy than the face when using three training samples as
illustrated in Fig. 4. This is of huge significance because
the fusion versions of all other systems perform better than
their face and fingerprint counterparts. This also shows that
while LBPH is a good general texture classifier, it excels at
face classification. PCA reduction improves the recognition
accuracy by 3% on average. Other LBPH methods that use
feature selection before classification performed poorly, in
general, and were omitted from the results.

The receiver operating characteristic (ROC) curve in Fig
5 shows that all three systems have a low FAR in general.
The EigenLLBP system provides a highly significant improve-
ment over the FisherLLBP and LBPHPCA. FisherLLBP and
LBPHPCA achieved the same maximum GAR at about 2.4%
FAR. However, FisherLLBP achieved a better overall FAR
than LBPHPCA across thresholds.

It is clear based on the four figures that the ELBP operator
was successfully combined with the LOG filter to significantly
improve feature discrimination in the Eigen space. EigenLLBP
in particular showed the strength of a good feature selection
algorithm by achieving the highest recognition accuracy of
all the fusion schemes, at 99.69%. The individual results
of EhL and LBP improved the accuracies over the baseline
systems on average, but only their combinations are evaluated
in this paper. LBPL achieved the best average recognition
accuracy and shows great promise for single sample human
identification. The results observed in this paper demonstrate
the importance of a feature-fusion framework.
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VI. CONCLUSION AND ONGOING WORK

An accurate multi-modal biometric identification system
was created based on our accurate uni-modal verification
system that outperformed the state-of-the-art. Preliminary ex-
periments were conducted on the face, fingerprint and palm-
print to discover a framework that provides feature-fusion
guidelines. A comparison was performed on fingerprints, faces
and their fused dataset using three baseline classifiers as
a performance reference. The comparison was extended by
combining a modified ELBP operator and a LOG filter and
producing a highly accurate multi-modal biometric system
based on the framework. The LBPH classifier achieved the
best accuracy in the baseline fusion systems and for the
face biometric. LBPH proved to be robust to misalignment,
dynamic lighting and scaling. The Eigen and Fisher classifiers
produced the highest accuracies after combining the highly
complementary ELBP operator and LOG filter. The lack of
metrics and the use of private datasets in many multi-modal
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feature-level fusion studies make isolating the contributing
feature processing modules a non-trivial task. The research
introduced in this paper serves as a foundation for selecting
appropriate features for image-based multi-modal fusion and
solving the generalized feature-fusion framework problem.

In future, more combinations of biometric modalities and
feature processing modules will be investigated with additional
experimentation in an effort to extend this multi-biometric
feature-fusion framework. An intelligent modality context
switching algorithm will also be added. This context switching
algorithm will automatically determine an appropriate modal-
ity and whether the system should operate uni-modal or multi-
modal biometrics, based on LBPH quality scoring.

A comparison was performed on fingerprints, faces and their
fused dataset using three baseline classifiers. The compari-
son was extended by combining a modified ELBP operator
and a LOG filter. Additionally, principal components were

removed from the LBPH training and testing images. The
LBPH classifier achieved the best accuracy in the baseline
systems and was robust to misalignment, dynamic lighting
and scaling. The Eigen and Fisher classifiers yielded the
best accuracies when combining the strengths of ELBP and
LOG. Feature-level fusion research often makes use of well-
known image processing and classification techniques without
reasoning. Analyzing and testing many of these techniques
to measure progress in the state-of-the-art is a non-trivial
problem. Therefore, the guidelines introduced in this paper
are the first step to solving the generalized feature-fusion
framework problem.

An extended list of guidelines for designing optimal feature-
fusion schemes is being investigated. This requires a com-
prehensive review of the important factors covered in this
paper as well as additional experimentation on more biometric
modalities, feature processing modules and more datasets.
Additionally, an intelligent system that can dynamically switch
between uni-modal and multi-modal operations is being inves-
tigated for solving the case of non-universality and bad input
data in some modalities during data acquisition.
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