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Abstract—The traditional texture-based fingerprint recognition
system known as FingerCode is improved in this work. Texture-
based fingerprint recognition methods are generally more accu-
rate than other methods, but at the disadvantage of increased
storage requirements. The low storage requirements for a low
resolution texture-based fingerprint recognition method known
as FingerCode enables the combined use of fingerprints with the
additional security of other devices such as smartcards. The low
recognition accuracy of FingerCode is addressed using a novel
texture alignment technique. As a result, an improved recognition
accuracy is achieved without increasing storage requirements.

Index Terms—alignment, FingerCode, fingerprint, texture-
based,

I. INTRODUCTION

Passwords and access cards have been traditionally used to
restrict access to secure systems or locations. However, their
widespread use have introduced security risks such as stolen
passwords and access cards. This resulted in the emergence
of biometrics, which addressed these security risks up to a
certain degree. Biometrics are used as an automated process of
recognizing an individual based on their physical or behavioral
characteristics. Later, devices such as access cards evolved
into smart cards, which contain a limited amount of storage
capacity. This enabled the combination of biometrics with
these smart devices. The fingerprint in particular showed
promise with the breakthrough of a texture-based fingerprint
recognition method known as FingerCode by Jain et al. [1].

The texture pattern of a fingerprint is known to contain
richer information than singular points and minutiae [2].
However, the detailed texture patterns are often too large to
store on compact devices such as smartcards without lower the
resolution substantially as in the case of FingerCode. Texture-
based features, also known as global features, consist of the
ridge texture pattern, orientation and frequency. Minutiae-
based features, also known as local features, contain less
information than the texture pattern, but are very storage
efficient. However, local features are often distorted in bad
quality fingerprint images, resulting in incorrectly detected
features.

Hybridization of texture-based and minutiae-based features
is an efficient way to improve fingerprint matching perfor-
mance [3]. Jain et al. [4] proposed a hybrid system that
summarizes texture-based information as macro features and
combines the result with a minutiae-based approach for an
improved FingerCode recognition performance. The macro
features are determined by a circular tessellation mask on
filtered images centred at a reference point. The minutia
points are used to align the database and test fingerprints.
This fingerprint recognition algorithm is known as the hybrid
FingerCode method and is more robust to low quality input
data than the traditional FingerCode algorithm. Additional
FingerCode templates are created by rotating up to 45° in
both directions to handle unaligned images. They show that
the alignment problem is a critical factor to consider for a high
recognition accuracy and to avoid system failure. However,
they do not address this problem in a reliable way.

Manipulation of minutiae and singular points are considered
as a comprehensive alignment technique for the FingerCode
algorithm. The minutiae features are used as a reference
alignment system for an improved FingerCode algorithm. The
alignment process is extended to include affine transformation
for more accurate alignment of texture. This approach will be
compared with the FingerCode method described in [4].

The rest of the paper is organized as follows: Section II
presents the related studies. Section III discusses the con-
struction of the improved hybrid FingerCode system. The
experimental analysis and results are discussed in Section IV.
Section V concludes the paper.

II. RELATED STUDIES

FingerCode [1] uses circular tessellation of filtered finger-
print images centered at the reference point, which results in
a circular ROI generally containing 80 sectors. The ROI is
further processed to generate eight-dimensional features maps
by computing their average absolute deviation (AAD) features.
Multiple FingerCode templates are created by rotating the
resulting ROI by up to 45° in both directions to handle
unaligned images. The matching performance of this method
is directly proportional to the accurate determination of the



reference point, which is based on the quality of the fingerprint
images. Moreover, this FingerCode method cannot guarantee
that a reference point will be found on every type of fingerprint
image such as the arch-type and for the poor quality fingerprint
images.

Many improved fingerprint alignment and reference point
detection methods have been studied. The new approach by
Jain et al. [4] performed the best by using a fingerprint
alignment technique that exploits the spatial coordinates of the
reference minutia pair, also known as the hybrid FingerCode
method. Other methods such as Chan et al.’s approach [5]
used a rotation-invariant reference point location in combina-
tion with orientation features to improve the reference point
detection performance. Fingerprint texture alignment is still a
problem because the preceding approaches and many others do
not sufficiently enhance the image in the pre-alignment stage
and do not have a fall-back mechanism stage in case reference
point detection fails. Since then, FingerCode has become
a lesser studied problem and limited research is available.
Fingerprint texture alignment is thus a non-trivial task and
requires a new approach as a bid to improve FingerCode
recognition performance.

III. METHODOLOGY

This section describes the image processing techniques used
to develop the proposed hybrid FingerCode algorithm.

A. Orientation Map

Turonni ef al. compare several orientation estimation al-
gorithms and show that reliable orientation extraction in low-
quality fingerprint regions is still a problem [6]. However, they
show that applying denoising algorithms during pre-processing
and block averaging techniques during post-processing signifi-
cantly improve orientation estimation. The orientation map is a
key step for accurate reference point detection, thus a reliable
ridge enhancement algorithm is necessary.

Buades et al. [7] created an image denoising algorithm,
called non-local means filtering (NL-means), described as
neither local nor global. NL-means differs from typical neigh-
bourhood filters as it compares the geometrical configuration
in an entire neighborhood instead of a single greyscale pixel of
one neighbourhood corresponding to another thus preserving
the edges of an image, but also smoothing some of the
detail. The NL-means filter is thus combined with an inverted
Gaussian filter to denoise the image followed by enhancing
the fingerprint ridges before calculating the orientation map.

B. Reference Point Detection

At global level, there are unique points on the fingerprint
located on ridge curvatures that are sharper or unique to
other areas. They are commonly known as singular points
and generally refer to a core point and one or more delta
points. The core point, also known as the reference point,
is often defined as the sharpest concave ridge curvature [4].
It is especially useful as it serves as a guide during image
registration and segmentation.

The Poincaré index is determined based on the orientation
map [4]. This method works well in good quality fingerprint
images, but fails to correctly localize reference points in poor
quality fingerprints with cracks, scars or poor ridge and valley
contrast. Utilizing the NL-means filter before calculating the
orientation map sufficiently improves most poor quality fin-
gerprints for reliable core detection. However, in this paper a
fall-back mechanism is implemented to prevent system failure
in the rare case that this enhanced Poincaré index approach
fails.

The fall-back mechanism uses the local binary patterns
histogram (LBPH) feature descriptor as a confidence score for
reference point detection. LBPH uses a special local binary
pattern (LBP) operator known as extended LBP (ELBP).
The neighbourhood is extended to include interpolated pixels,
based on a circular mask, capturing finer grain texture. This
fall-back mechanism precisely provides the best case reference
point given a trained image and test image.

C. Image Segmentation

A fingerprint image has a region of interest (ROI), contain-
ing ridges and valleys, known as the foreground. A circular
80 pixel radius ROI is cropped around the core point. The
rest of the image processing is applied on the ROI to reduce
computation time and noise.

D. Gabor Filter

Feature extraction is performed by the convolution of a
Gabor filter bank with orientations corresponding to the texture
of the image. These local orientations are extracted from the
orientation map. Eight orientations are used to describe both
local and global features.

E. Ridge Thinning

Ridge thinning is used to eliminate the redundant pixels
of ridges. Fingerprint thinning algorithms should preserve the
topology of the ridges and connectivity. The thinning should
be applied to a binarized fingerprint image by thinning certain
pattern shapes until it is represented by 1-pixel wide lines,
using morphological operations [8].

The modified Zhang-Suen thinning was implemented after
considering multiple thinning algorithms [8].

F. Minutiae Detection

Minutiae extraction and labelling is the next important step
after ridge thinning. Minutiae extraction can be performed
using the crossing number method and typically uses a 3 x 3
pixel sliding window [9]. This effectively creates an eight-
directional minutiae mask.

After the fingerprint ridge thinning, marking minutia points
is the next important step. False minutiae are reduced by
considering ridge endings and bifurcations as a single type.



Fig. 1: Unaligned Test Image.

G. Novel Alignment Algorithm

Minutiae triplets or triangles are formed using three minu-
tiae. It provides more discriminative information than a single
minutia point correlation and reduces deformation effects due
to skin elasticity and inconsistent contact pressure during
fingerprint acquisition. Triangle side length constraints are
used to guarantee a constant number of triplets. Remaining
false minutiae are catered for using an appropriate binning
mechanism based on the shortest Euclidean distance among
stored triplet points [2].

The test image that requires alignment is shown in Fig 1.
Triplets of both the test and database image are aligned relative
to the reference point. Fig 2 shows the test skeleton image
with the green minutiae, corresponding to the database image,
and the blue minutiae, corresponding to the test image, which
is represented by the skeleton image in the figure. The red
point signifies the reference point of the database image. This
initial minutiae triplet alignment serves as a foundation for the
following alignment process. The initially aligned test image
and database image are illustrated on the left and right of Fig
3, respectively.

Fig. 2: Initial Stage of Aligning the Test Image using Minutiae
Triplets of the Corresponding Database Image.

The novelty of the proposed system lies in the combination
of the initial minutiae triplet alignment with the affine trans-
formation based on the calculation of the enhanced correlation
coefficient (ECC) [10]. This method attempts to warp the
initially aligned texture of a test image according to the trained
image in the database. The confidence score is once again
determined by the LBPH method. This is also used as a pre-
classifier before FingerCode extraction and matching. The final
aligned test image and database image are illustrated on the
left and right of Fig 4, respectively.

H. FingerCode Extraction
The FingerCode feature vector is determined as follows.

1) The ROI is tessellated into six concentric circles divided
into 16 sectors. Grey-level normalization is performed
on individual sectors rather than the entire image in order
to capture the intensity variations in different parts of the
image.

2) The AAD is computed from the mean of grey values in
individual sectors of filtered images to define the feature
vector. AAD features give slightly better performance



Fig. 3: Initial Alignment of Test Image vs. Corresponding
Database Image.

Fig. 4: Novel Alignment of Test Image vs. Corresponding
Database Image.

than variance features and are therefore used. Each of
the 80 sectors are Gabor filtered at eight directions, thus
totaling 640 features per fingerprint, which are stored as
a compact FingerCode.

Referring to Fig 5, the first four FingerCodes and their
corresponding AAD images are at the bottom and top, re-
spectively.

IV. EXPERIMENTAL ANALYSIS AND RESULTS

A total of 48 fingerprint images are used for this experiment.
The images were obtained from the BioSecure sample mul-
timodal database, consisting of the thumb, index and middle
fingers of one male and one female. The database FingerCodes
were trained on 6 of the total images. The remaining 42 were
used as the test set.

The accuracy of this FingerCode biometric system, given in
Figure 6, is illustrated as a Receiver Operating Characteristic
(ROC) curve showing the relationship between the Genuine
Accept Rate (GAR) and the False Accept Rate (FAR) at
different Euclidean distance thresholds.

The proposed FingerCode approach achieves a 100% GAR
at an 5.56% lower FAR and a 0% FAR with an improved GAR
of 8,33% over the hybrid FingerCode system. The results show
that the proposed fingerprint recognition system can be a good
initial fusing candidate in a multi-modal biometric system.

V. CONCLUSION

Texture-based features contain richer information than
minutiae-based features, but require a lot of storage capacity.
The traditional FingerCode algorithm showed promise with
low storage requirements, but reduced the recognition accuracy
potential of high resolution texture-based methods. Hybrid
FingerCode improved the recognition accuracy to acceptable
levels. This paper proposed an improved hybrid FingerCode
system with the same low storage requirements, but achieved
a significantly higher accuracy than the original hybrid Fin-
gerCode. Furthermore, our system is not susceptible to the
accuracy loss caused by low quality input data resulting in
system failure during reference point detection. The proposed
hybrid FingerCode system thus achieved a higher accuracy
than the hybrid FingerCode method by eliminating system
failure. This was also attributed to a novel texture alignment al-
gorithm that used minutiae triangles and affine transformations
based on ECC with a fall-back mechanism in the rare case of
system failure. The initial results of this alignment algorithm
are promising as it offers a reliable solution to the texture
alignment problem on the well-studied FingerCode system.
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Fig. 5: Four FingerCodes and their corresponding AAD images.
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Fig. 6: The ROC curve comparing the accuracy of the old filter-based FingerCode approach to the proposed approach
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