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Modal decomposition of light has been known for a long time, ap-
plied mostly to pattern recognition. With the commercialization of
liquid crystal devices, digital holography as an enabling tool has be-
come accessible to all, and with it all-digital tools for the decompo-
sition of light has finally come of age. We review recent advances
in unravelling the properties of light, from the modal structure of
laser beams, to decoding the information stored in orbital angular mo-
mentum carrying fields. We show application of these tools to fibre
lasers, solid-state lasers and structured light created in the laboratory
by holographic laser beam shaping. We show by experimental imple-
mentation how digital holograms may be used to infer the intensity,
phase, wavefront, Poynting vector, polarization and orbital angular
momentum density of some unknown optical field. In particular, we
outline how virtually all the previous ISO-standard beam diagnostic
techniques may be readily replaced with all-digital equivalents, thus
paving the way for unravelling of light in real-time. Such tools are
highly relevant to the in situ analysis of laser systems, to mode divi-
sion multiplexing as an emerging tool in optical communication, and
for quantum information processing with entangled photons.
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1. Introduction

There are many applications where the conventional mode from a laser will not suffice,
for example, laser beams with a flat-top intensity structure are often more desirable for
laser materials processing applications than those with a Gaussian intensity distribution
[1]. Tailored light, structured light, complex light fields, laser beam shaping - these are



terms that are often used to describe the creation of customized light fields [2,3]. Many
tools have been developed over the years to achieve this, ranging from refractive to
diffractive, intra- and external to the laser cavity, passive and dynamic [4]. In parallel
to the development of tools to create optical modes has been the development of tools to
measure them. It was only in the early 1990s that standardized tools for characterizing
laser beams were derived [5], mostly based on intensity measurements to infer, through
propagation, the beam quality factor [6]. Later, wavefront sensors emerged as a real-
time tool, but too expensive to become ubiquitous. Modally resolving the optical field,
through a projective measurement with a match filter, was a known technique (often
used in pattern recognition) but with a few exceptions [7] it was not applied to laser
modes, again due to cost and complexity of the optical match filter.

More recently liquid crystal spatial light modulator technologies have emerged as
an enabling tool for the on-demand creation of arbitrary optical fields. Such devices
(see Fig. 1) have been extensively reviewed in the context of tutorials on getting started
[8–10] as well as their various applications. The ease of use of such devices has spurned
many new applications for real-time structured light, for example, holographic optical
trapping and tweezing [11], quantum information processing [12], mode division mul-
tiplexling [13], microscopy [14], 3D holographic imaging and metrology [15–17] and
even in lasers [18]. The same devices have been used to replicate and advance the pre-
vious static approaches. Today it is possible to create and detect optical modes with
digital holograms, allowing for real-time rewritable tools that are inexpensive and easy
to master.

Here we review the basic ideas for the creation and detection of optical modes with
digital holograms written to spatial light modulators, showing how traditional tech-
niques for the characterization of optical modes can be done with digital equivalents.

FIGURE 1. Liquid crystal spatial light modulators allow unprecedented control
in the generation and detection of structured light fields. (a) Shows a long expo-
sure image of laser light diffracted from the pixellated device. (b) A CCD cam-
era image showing the various diffraction orders. Efficiencies are typically in the
60−85% range.



2. Structured Light with Digital Holograms

We will begin with how to create and propagate optical modes using spatial light mod-
ulators, reviewing the current state of the art. In particular we review the known ap-
proaches for creating arbitrary optical modes by complex amplitude modulation on
phase-only spatial light modulators, and provide some examples of the power of this
technique. For more information on liquid crystal spatial light modulators the reader is
referred to previous review and tutorial articles [8–10]. Consider the transformation of

FIGURE 2. The so-called checker board approach for amplitude modulation on a
phase-only spatial light modulator. A high carrier frequency is introduced across
the device in the form of alternating phase values, with the resultant amplitude
being the DC component. (a) Representation on the complex plane, (b) actual
phase hologram for amplitude modulation, (c) the unwanted light is diffracted
into higher orders which gives complete amplitude control over the desired order,
e.g., from (d) zero transmission to (e) 100% transmission. Figure adapted with
permission from [19].

an optical mode, uA = A0 exp(iφA), of real-valued amplitude A0 and real-valued phase
φA, into a new mode uB = B0 exp(iφB) in a single step through an optic with transmis-
sion function t. Then (with a few caveats):

uB = tuA⇒ t = (B0/A0)exp[i(φB−φA)]. (1)

We see in this simple example that the transmission function requires both an am-
plitude and phase modulation. It is possible to encode this into optical elements and
has for several decades now been possible with diffractive optical elements [20–23].
Such elements are rather difficult to fabricate and consequently such transformations
have typically been executed in two steps with phase-only optics. In this approach, the
first element creates the desired intensity pattern, leaving the phase as a free parameter,
and the second element corrects the phase [4]. For this reason, many laser beam shap-
ing solutions comprise two elements (one can think of a simple two-lens telescope in
a similar fashion). This two-element approach can also be mimicked with phase-only
spatial light modulators; the ease of implementing digital holograms on such devices
has seen a resurgence in approaches to implement general complex amplitude modu-
lation for the creation of arbitrary fields in a single step. The problem is to take the



FIGURE 3. A comparison of two approaches for creating complex amplitude
holograms on a phase-only device. The desired field (a) and its hologram (b) are
encoded by the methods in refs [24] and [25], with the results shown in (c-d) and
(e-f), respectively. Figure reprinted with permission from [25].

required transformation and convert it into a form that is phase-only, at least in some
diffraction order:

t = (B0/A0)exp[i(φB−φA)]→ exp(iΦslm). (2)

Many techniques have been developed over the years to achieve this [24–36]. The core
idea is to remove light from the first order in some spatially resolved manner. Since the
device is phase-only, the light must go somewhere. As such, the techniques to do this
can broadly be divided into two classes: (i) more light is directed to the zeroth order, or
(ii) more light is directed to the higher diffraction orders. In the case of the former, the
idea is simply to lower the diffraction efficiency spatially across the SLM by decreas-
ing the depth of the phase step, while in the latter a high spatial frequency grating is
added with a period that is spatially varying, so that more light is diffracted away from
the first order. Both techniques rely on suitable filtering, usually at the Fourier plane
after the SLM, to select the desired diffraction order. An example of this is shown in
Fig. 2: a high spatial frequency in the form of a “checker board” diffracts light away
from the first order. By filtering these orders out, the amplitude and phase of the de-
sired order can be controlled. It has been shown that the quality of the created modes
can be very high indeed [37–39], and that virtually any optical field can be created.
The choice of approach depends largely on the problem being addressed, and results
can vary if inappropriate encoding approaches are used (see example in Fig. 3). The
creation of structured light fields by complex amplitude modulation has been applied
and studied in the context of creating non-diffracting Bessel beams [19,40–42], vortex
beams carrying orbital angular momentum [43], vector beams [44–46] optical trapping
and tweezing [11, 36, 47–49], quantum optics [50–52] and mode division multiplexing
in free space and fibers (see for example [13] and references therein) to name but a



few. It is also possible to create these holograms in a wavelength independent manner:
the phase transformation can be exact across a wide wavelength range albeit with some
efficiency loss, opening the way to white light beam shaping with spatial light modu-
lators [53]. Some examples of structured light fields and the associated holograms to
create them are shown in Fig. 4. For example, in the creation of vortex beams that carry
orbital angular momentum, either a phase-only hologram with a phase singularity can
be encoded (part (a)) to produce an azimuthal phase, or complex amplitude modulation
can be used (part (b)) to produce a Laguerre-Gaussian mode of the desired azimuthal
order.

FIGURE 4. Examples of digital holograms employing various methods for
the creation of structured light fields: (a) azimuthal phase-only; (b) Laguerre-
Gaussian amplitude with azimuthal phase; (c) amplitude modulation to produce
a superposition state of two azimuthal modes; (d) complex amplitude modula-
tion for radial mode control; (i) multiplexed holograms to produce four modes or
various radial and azimuthal indices; (j) azimuthal phase-only slits with a checker-
board to define the zero transmission regions; (k) hologram as a result of an iter-
ative approach; (l) complex amplitude modulation to produce an arbitrary desired
field. The experimental realization of each hologram is shown as the correspond-
ing image below.



3. Digital Beam Diagnostics

Since the early 1990s a plethora of tools have been standardized for the measure-
ment and characterization of laser beams based on statistical methods [5, 6, 54–58].
The core of the tools that are used in many laser laboratories on a daily basis involve
time averaged measurements of the laser beam width, divergence and beam quality
factor [59, 60]. Less common are measurements of the wavefront of the field [61].

A common tool for the measurement of a beam size is to scan a knife edge or aperture
across the beam [54]; the integrated signal can be used to infer the beam width. If this
is repeated as the beam propagates, at many points along the beam axis, then the diver-
gence and beam quality factor (M2) can be calculated by curve fitting routines. Today it
is possible to replicate and in many instances improve on these methods by implement-
ing them with digital holograms on spatial light modulators. One such demonstration
was to perform an in situ tomography of a femtosecond optical beam with a holo-
graphic knife-edge [62]. In this example (see Fig. 5) the SLM was programmed with
a time varying hologram that scanned a grating spatially across the field. The portion
of the transmitted and deflected beam mimicked that of a knife-edge passing across
the field. Because digital holograms are only gray-scale images, no moving parts were
required for the measurement. This concept can be extended to other geometries that
are not possible with mechanical devices, e.g., annular slits. Litvin et. al [63, 64] used
the tools of complex amplitude modulation to create a hologram that allowed no light
transmission except within a narrow annular ring-slit. Such slits have been used as static
elements to create non-diffracting Bessel beams [65], but in this example the annular
slit was scanned across the field in a radial direction, in an analogous manner to the
lateral scanning of a knife-slit. The result was a measurement of the spatial intensity of
the field with only a single point-like detector, i.e., without the need for a camera. Such
concepts can be extended, for example, to create a digital variable pin-hole aperture.

FIGURE 5. (a) A digital knife edge is scanned across the beam and the ratio of
power in the zeroth and first diffraction orders monitored and plotted in (b). This
is a digital equivalent to the ISO standard knife edge approach. Figure adapted
with permission from [62].

Beam quality factor (M2) measurements require that the beam size be measured as



a function of either a changing lens at a fixed distance, or a changing propagation dis-
tance with a fixed lens. Traditionally the latter is used as scanning the beam using a
rail system is more convenient than cycling through a range of lenses. But with dig-
ital holograms, both are possible without any changes to the set-up other than a time
varying digital hologram. Digital lenses can easily be programmed onto SLMs, and
using this approach it has been shown that the beam quality factor of a laser beam
can be measured with very high accuracy [66, 67]. To date this has been applied to the
measurement of pure and superpositions of Laguerre-Gaussian modes with very good
results, as shown in Fig. 6.

FIGURE 6. (a) Experimental approach to digitally propagate light, with all el-
ements static. (b-d) Examples of holograms for mode creation and propagation.
(e) and (f) show measured and calculated propagation data for Laguerre-Gaussian
beams using the digital lens and digital propagation approaches, respectively. Fig-
ure adapted with permission from [67].

It is also possible to digitally propagate the field. It is well-known that numerical
propagation of laser beams may be done with the aid of the angular spectrum of the
light. It is intriguing to consider that if it can be done digitally on a computer, then it
must be possible to do it digitally on an SLM too. Schulze et al. [67] showed that it
is possible to simulate the propagation of any optical field using a time varying digital
hologram and a static camera (see Fig. 6). In this work, they programmed the Fourier
transform of the desired field and modulated it with the phase change of the plane waves
due to propagation, exp(ikzz), where kz is the wavevector in the direction of propaga-
tion and z the propagation distance. By changing z in the hologram, the field appeared
to propagate but with the observation at a single plane, i.e., the camera image showed
the beam as if the camera was scanning along the z direction. The key here was to place
the SLM in the back focal plane of the lens and observe the Fourier plane (front focal
plane) with a camera. This tool allowed for fast, real-time measurement of the propaga-
tion of light, and has subsequently been applied to the propagation of accelerating light
fields [68] and in novel imaging where the approach was used to digitally propagate to
two different planes to observe two distinct images [69]. These tools have been com-
bined with all-digital Stokes measurements on a spatial light modulator to demonstrate



wavefront and phase measurements of vector beams as they propagate [70].

4. Laser Beam Characterization by Modal Decomposition

The ISO standards for measuring laser beams also allow for a full modal decomposition
to be performed. This idea dates back many decades to pattern recognition [71], and
was later applied to optical modes with diffractive optical elements [7,72–74], in stud-
ies of Hermite-Gaussian modes [75], waveguides [76], solid-state laser systems [77],
and fibers [78]. More recently it has been demonstrated with digital holograms writ-
ten to spatial light modulators, circumventing the need for predetermined mode sets.
In this section we outline the basic concept and highlight recent advances in the field
using spatial light modulators.

The idea in modal decomposition is to take an unknown optical field and express
it as a linear combination of basis functions, where it is convenient to select the basis
functions from an orthogonal set of spatial modes:

u(r) =
∞

∑
l=1

clψl(r), (3)

with r = (x,y) the spatial coordinates, cl = ρleiϕl the complex expansion coefficient
with amplitude ρl and intermodal phase ∆φl = φl−φ0. Now ψl(r) represents one basis
function; depending on the geometry of the problem, this would typically be a Hermite-
Gaussian mode (rectangular symmetry), a Laguerre-Gaussian mode (circular symme-
try) or perhaps an LP mode if fiber systems were under study. In fact, any orthogonal
mode set will work and indeed have been used. It is clear that if the complex valued
coefficients can be found from measurement (RHS of Eq. 3) then all the physical pa-
rameters of the unknown field (LHS of Eq. 3) can be inferred. The measurement of
these coefficients is called modal decomposition: the unknown field is decomposed
into modes with a particular weighting and phase between them. This is achieved by
an inner product measurement of the field and each mode (individually) from the set:
ρ2

l = | < u|ψl > |2. Thus the inner product measurement yields an intensity in the
Fourier plane (on axis) that is proportional to the power content of each mode (nor-
malized so that ∑l ρ2

l = 1). In general this operation can be performed using spatially
multiplexed holograms so that many modes can be detected simultaneously. The holo-
gram to perform this operation is often called a “match filter”. An illustration of such
inner product measurements is shown in Fig. 8.

To measure the intermodal phases with respect to a reference mode (usually assumed
to be the zeroth mode), the inner product is performed twice to find

Icos
l = |< u(r)|(ψ0(r)+ψl(r))> |2, (4)

Isin
l = |< u(r)|(ψ0(r)+ iψl(r))> |2, (5)

from which we may find the intermodal phase ∆φl without any ambiguity:

∆φl =−arctan
[

2Isin
l −ρ2

l −ρ2
0

2Icos
l −ρ2

l −ρ2
0

]
. (6)



FIGURE 7. (a) When the incoming mode and the hologram do not “match”, a
central null is formed and no signal detected. (b) When the incoming mode and
the hologram “match”, i.e., they are complex conjugates of one another, then a
central peak is formed and a signal detected. This is true for any combination of
modes too, as illustrated in (c) and (d).

The main attraction of this approach over that of others is that with relatively few
measurements, all the physical properties of an optical field can be inferred. It requires
only point-like detectors and yet yields results with very high resolution (since the res-
olution is determined by the basis functions, which are not measured). This technique
was implemented with spatial light modulators using the azimuthal modes, exp(i`φ),
as a basis set to study vortex beam lasers [80], and soon after to study fibers using
the LP mode set [79] using a complete modal decomposition approach for full field
reconstruction.

4.1. Unravelling Optical Modes

Modal decomposition with digital holograms has become a powerful tool to character-
ize laser beams because it offers high resolution results with only a few measurements.
Moreover, any physical property of the field can be inferred once all the weighting
coefficients are known, for example, amplitude, intensity, phase, wavefront, orbital an-
gular momentum density, Poynting vector and so on. Many studies have employed the
tool to do precisely this.

To illustrate the resolution issue as well as the power of the tool in determining both
the wavefront and phase of light, several groups have studied holographic wavefront
sensors as a means to reconstruct the wavefront and phase of scalar, vector, aberrated
and vortex beams [81–84]. This is illustrated in Fig. 9, where the standard approach
to wavefront and phase measurements using a Shack-Hartmann (SH) wavefront sensor
was compared to the modal decomposition approach. In this study [81], with only three
modal terms, the wavefront of the structured light beam was reconstructed with excel-
lent fidelity and resolution, whereas the resolution of the SH wavefront sensor was lim-
ited (by the number of lenslets in the sampling array). Moreover, both the phase and the
wavefront may be inferred from the modal decomposition, whereas the SHS can only
measure wavefront (the two are often equal, but not always). This tool has been applied
to vector and vortex beams [81], as well as to measure wavefront aberrations [82].

Modal decomposition has also been applied to the detection of modes carrying or-



FIGURE 8. (a) Initial field (LHS of Eq. 3), (b)-(g) Actual measurements of the
modal weights for each mode. The signal was detected at the position of the
crosshairs. (h) Modal powers constructured from the measurements and finally (i)
the reconstructed field using the modal approach (RHS of Eq. 3) . Figure reprinted
with permission from [79].

bital angular momentum (OAM). Measuring OAM is a topic of intense study due to
the myriad of opportunities it affords, e.g., in communications, optical traps and in
quantum information processing. Techniques to measure OAM have been based on
diffraction through apertures [85–87], interferometric sorting [88, 89], or optical trans-
formation through refractive elements [90–92]. These techniques allow for the OAM
mode to be detected but since no phase information is retrieved, the optical field cannot
be reconstructed and the OAM density cannot be determined. It has been demonstrated
that both the OAM and OAM density can be measured quantitatively [63,93,94] using
the modal decomposition technique (see Fig. 10).

Despite the many advantages, there are some challenges. One issue that has attracted
some attention is how to overcome the inherent yet unknown scale parameter of the
mode set. For example, the Laguerre-Gaussian and Hermite-Gaussian modes have as
an internal scale parameter the Gaussian beam size. The technique is known to work
regardless of what value is selected here, but a poor choice has been shown to result
in the requirement for many measurements, whereas the correct choice results in a
minimum of measurements [95] (see Fig. 11). In the latter work it has been pointed
out that while any basis and any scale will suffice, it possible to select an optimal value
from one measurement without a priori of the scale [95], or to use a set of basis modes
that have no scale, e.g., the azimuthal modes [64]. Doing so reduces the measurement
terms and affords some ”reality” to the modal expansion (it is tempting to wish that the
modes in the expansion are present in the beam and not mathematical constructs).



FIGURE 9. This example illustrates the power of the modal decomposition ap-
proach. Intensity and phase measurements using a Shack-Hartmann wavefront
Sensor (SHS) are compared to reconstructed intensity and phase plots from a
decomposition measurement of just three modes. The SHS results are pixelated
whereas the modal results are not. Figure adapted with permission from [81].

FIGURE 10. In this example the reconstructed intensity (a) and phase (b) are
shown, along with the theoretical OAM density (c) together with the reconstructed
plot using modal decomposition. Figure adapted with permission from [93].

4.2. Application to Fibers

An emerging research field is that of modal decomposition to monitor fibers. In one of
the earliest works, computer generated match filters were used to measure the modal
content of a graded-index fiber in terms of Laguerre-Gaussian mode [96], and then ap-
plied to study micro bends in such fibers [97]. Modal powers have subsequently been
used to measure the output of fibers under ideal and non-ideal conditions, using the
change in modal content as a performance monitor [79,98,99]. For example, as shown
in Fig. 12, the bend loss of individual modes in a set-index fiber was successfully meas-
ured by modal decomposition - an important result for applications where fibers need
to be bent (e.g., telecommunications). Such modal decomposition tools have been em-
ployed in a variety of fiber applications. In earlier work digital wavefront sensing (dis-
cussed earlier) has been applied to control the amplitude and phase of modes in a mul-
timode fiber and to correct mode distortions [100,101], while Flamm et al. used modal
decomposition to optimize fiber-to-fiber coupling by monitoring the output modal spec-
trum [102]. Using the reconstruction properties of the modes, the beam quality factor



FIGURE 11. (a) When the scale in the Laguerre-Gaussian mode set is correctly
chosen (w = w0), then the decomposition requires only a single mode with all the
power. (b) When the scale is not correctly chosen, more radial modes are required
to describe this petal-like beam. As the assumed and actual scale difference in-
creases, so more modes are required to correctly reconstruct the unknown field.
Figure adapted with permission from [95].

and propagation characteristics of fiber output modes have been determined [103]. The
approach has been extended to vector analysis to measure spatial polarization patterns
of multimode beams from step-index fibers [104] and to measure the relative phases of
vector modes in fibers [105]. In some cases the injected mode is also created by spatial
light modulators offering a new tool for fiber analysis [99, 106–108].

Indeed, in mode division multiplexing applications, it is possible to both generate
and detect the mode using spatial light modulators, e.g., [99, 109, 110]. Mode division
multiplexing is a concept that dates back more than 30 years [111], but has gained at-
tention recently due to the required bandwidth of present day optical communication
systems [112], with seminal demonstrations in free space and fiber using spatial light
modulators [113–117] (see for example, Fig. 14). While the focus is on fiber communi-
cations and LP modes, there has been significant interest in orbital angular momentum
in both free space and fibers (see [13] and references therein), as well as customized
mode-group sets [109] and multiplexing classical and quantum channels [118]. Vector
modes in fibers are emerging as a new means by which to encode information where a
combination of digital holograms and geometric phase elements are used in the detec-
tion scheme. There has been recent advances in this field in both free space [119, 120]
and fibers [121]. Perturbations such as turbulence impact on performance of such links
in free space, and spatial light modulators offer a means to study, characterize, and
mitigate such effects [122, 123].

5. Modal Decomposition of Single Photons

The spatial modes of light hold promise for realizing high-dimensional quantum in-
formation processing and communication, going beyond the qubits (2 level systems) of
polarization. The detection and manipulation of quantum states mirrors that of classical
preparation and detection of structured light fields, and here we give a brief review of
the progress made, at the single photon and quantum regime, in using digital holograms



FIGURE 12. (a) Modal power changes as a function of the bending power (DB)
due to mode distortions in the bend versus straight fibre, as shown in (b). Figure
reprinted with permission from [98].

as an enabling technology.

5.1. Quantum State Tomography with Digital Holograms

The early thought experiment by Einstein, Podolsky and Rosen (more commonly re-
ferred to as the EPR paradox) came to the conclusion that quantum mechanics was
either an incomplete theory or involved non-local interactions [124]. Initial entangle-
ment experiments used the orthogonal polarization states of photons to demonstrate the
non-local nature of entangled particles [125–127]. In these early quantum experiments,
polarizers were placed in each arm and rotated with respect to each other, such that a
series of maxima and minima were recorded depending on the respective orientations
of each polarizer. With the onset of spatial mode entanglement, polarization optics have
been replaced with spatial light modulators to perform the equivalent measurements.

Quantum correlations measured in the orbital angular momentum (OAM) basis were
first reported by Mair et al. [128] in 2001. Unlike the polarization states, OAM spans
an infinite-dimensional Hilbert space and as such, an infinite amount of information
can (theoretically) be encoded onto a photon. Using computer-generated holograms
recorded onto holographic film, Mair et al. were able to show that, as with polarization
or spin angular momentum, OAM is a property of single photons. In this experiment,
static holograms were placed in the paths of both photons, collapsing the entangled
quantum state into a single OAM state. When coupled to a single-mode fiber (SMF),
this becomes an efficient method in which to measure the OAM of classical beams or
single photons [129–131]. Only the fundamental mode (a Gaussian beam) can propa-
gate through a SMF, such that the hologram together with the SMF, act as a ”match-
filter”. The OAM spectrum or spiral bandwidth of the quantum state could then be
elicited. This is comparable to the classical modal decomposition technique discussed
earlier.

Of course, alternative methods to extract the OAM content have been demonstrated
(see earlier discussion), however, it was in 2006 that the use of digital holograms were



FIGURE 13. A toolbox for studying modal crosstalk in multimode fibers: a spatial
light modulator is used to create the desired modes of the fiber, either individually
or as superpositions. Modal decomposition is performed with a computer gener-
ated hologram (CGH), which can also be written to a spatial light modulator or
encoded as a diffractive optical element. Modal analysis can be performed at both
the input and output of the fiber. Figure reprinted with permission from [99].

first utilized to observe the entanglement of the spatial modes single photons [132].
Using phase-only spatial light modulators (SLMs), holograms were encoded with a he-
lical phase term exp(i`φ) together with a diffraction grating to produce the distinctive
‘fork’ holograms. There is a distinct advantage in using digital holograms as they can
be varied without affecting the alignment of the entanglement setup [132–134]. Ex-
periments requiring many different coincidence measurements can now be performed
quickly and more accurately with sensitive digital alignment of holograms.

Quantum state tomography in particular requires a specific set of measurements us-
ing a variety of different holograms. The degree to which a quantum state is entangled
can be determined by performing a full quantum state tomography to extract the density
matrix [135]. This requires a set of measurements to be performed on identical copies
of the quantum state, as any one measurement will affect the state. First proposed in
1957 [136], quantum tomography has become a well-established field [137–139]. Jack
et al. first demonstrated this tomographic technique using digital holograms encoded
onto SLMs, where the density matrix of a two-dimensional entangled state measured
in the OAM basis was reconstructed [131]. The measurements required to reconstruct
a density matrix consist of a set of both pure OAM modes as well as their superposition
states, which can be represented by a Bloch sphere [140] (equivalent to the Poincaré
sphere for polarization). In this experiment, Jack et al. chose a single two-dimensional
OAM subspace and encoded both the two pure OAM states (|ψ〉=±|`〉) and four su-
perposition states (|ψ〉 = |`〉+ exp(iφ) |`〉) onto each SLM. Projection measurements
onto these six non-orthogonal states yielded a total of 36 coincidence measurements,
from which the density matrix of the quantum state could be calculated. Technically,



FIGURE 14. The first demonstration of multiplexing and demultiplexing OAM
modes for free space communication. In this setup two SLMs are used: one for the
mode creation and one for the mode detection, as shown in (a). Typical detector
results and modal purity are shown in (b)-(e). Figure adapted with permission
from [113].

a minimum of 16 measurements are required to reconstruct a two-dimensional density
matrix, however with the versatility of digital holograms, the over-complete set of 36
measurements allows for a maximum-likelihood estimation to be made [137]. Addi-
tionally, the use of digital holograms in tomography is implemented in an automated
system, where a set of measurements can be recorded without the need of continuous
supervision.

This tomographic technique was then extended to measuring high-dimensional en-
tangled states [142], where states were characterized up to dimension d = 8 by in-
cluding additional OAM subspaces. With an increase in dimensionality, the number
of required measurements also increases, where a total of 2025 coincidence measure-
ments are required to reconstruct a 5-dimensional density matrix. By simply chang-
ing the projective measurement basis (by changing the encoded hologram) from the
Laguerre-Gaussian (LG) to the Bessel-Gaussian (BG) basis, a widening of the meas-
ured OAM spectrum was observed. The BG modes include a continuous radial param-
eter (neglected in the LG case) and as such resulted in a relative increase in dimen-
sionality [143]. When encoding both the azimuthal and radial components of the LG
modes, amplitude modulation is required, which is significantly less efficient than the
phase-only holograms, but also raises a number of difficulties. The accurate generation
of LG modes with a non-zero radial index is a particular challenge [52, 144]. Various
amplitude modulation techniques have been studied and achieved very high mode puri-
ties (see previous sections), however, in this modal decomposition technique, the beam
coupled into the SMF must be a Gaussian and as such this term must be included when
describing the overlap integral of the two-photon probability amplitude [52, 145]. This
poses an issue as the phase function used to describe the full LG modes on the SLMs
also contains a Gaussian term, which, if left untouched, results in a measurement of
something other than the LG modes. It follows that the hologram must also include a



FIGURE 15. (a) Experimental setup showing the down-converted light from the
crystal imaged onto the SLMs, and then reimaged at the plane of the single-mode
fibers, where the detection and coincidence measurement takes place. (b) Typi-
cal phase masks - with appropriate intensity blazing - as would be displayed on
an SLM. The two OAM eigenstates, Laguerre-Gauss, and four equally weighted
superposition states, Hermite-Gauss, are shown). Bell curves for three different
trajectories around (c) the equator, (d) poles, and (e) an arbitrarily chosen trajec-
tory. Figure adapted with permission from [141].

term that acts to cancel the Gaussian term from the SMF. Despite the complications
present with complex amplitude modulation, it has been shown that the inclusion of
the radial components of the LG modes is crucial in correctly describing the amount of
entanglement present in the spatial photon pairs [146].

Quantum state tomography has also been demonstrated using mutually unbiased
bases (MUBs) [51, 147–149], where the simplest example of two-dimensional MUBs
are the polarization states. Giovannini et al. were able to demonstrate high-dimensional
entanglement up to dimension d = 5 and showed that the number of tomographic
measurements required can be minimized using MUBs [149]. In this work, the OAM
degree of freedom of single photons was used to define complete sets of MUBs, where
one set of MUBs is represented by the pure OAM states and the other MUBs are the
superposition states of the pure states [150]. The number of MUBs required to demon-
strate d - dimensional entanglement is (d + 1), such that a three-dimensional state
would consist of four MUBs each with three different states. Each of the 12 states
were encoded using complex amplitude modulation using the third technique found by
Arrizón et al. [32].

5.2. Applications

The ability to digitally extract information from entangled photon pairs has been ex-
ploited not only in quantum tomography measurements, but extends into a variety of
applications. Essential experimental measurements to test for quantum entanglement
in the OAM basis have been successfully verified using the technique of digital modal



FIGURE 16. (a) The complete set of measured probabilities for dimension 5. (b)
The pure OAM states. (c) A sample of the superposition states. Here, αi denotes
the phase difference in the idler arm, and αs denotes the same in the signal arm.
The OAM states separated by a comma denote `1, `2, while the single states denote
`. (d) Linear entropy and (e) fidelity as a function of dimension. The error for both
of these measurements is ±0.01, which is too small to be seen clearly on the
graphs. In each case, the squares represent the measured data, while the circles
represent the threshold states. The shaded area represents the set of states that will
not violate the appropriate high-dimensional Bell inequality. Figure adapted with
permission from [142].

decomposition. A violation of Bell’s inequality, which distinguishes quantum correla-
tions from classical ones, was demonstrated by Leach et al. in 2002 [88]. Similar to
the experimental procedures undertaken using polarization, holograms encoded with a
superposition state of a single OAM subspace, were rotated in each arm of the setup.
The typical sinusoidal graph, predicted by theory [152], is also seen in the OAM ba-
sis, where the period of the maxima depends on the value of the OAM subspace. The
same group then projected the entangled photons into the conjugate variable of OAM,
angular position [153], and performed an EPR-type experiment highlighting the inter-
esting entanglement between discrete (OAM) and continuous (angular position) vari-
ables [154]. Again, digital holograms were used to project the photons into a particular
angular position. An aperture was encoded onto the existing fork-holograms to pro-
duce only a “slice ” of the original hologram. The orientation of the holograms were
varied with respect to each other, such that a maximum coincidence measurement was
recorded when the orientations were identical. The width of the recorded spectrum
depends directly on the width of the encoded slice-hologram.

This work led to the investigation into increasing the number of accessible OAM



FIGURE 17. (a) The states for each of the four MUBs for d = 3. The theoreti-
cally calculated intensity profiles of the LG` are shown together with their cor-
responding measurement filters or holograms. (b-e)The normalized joint proba-
bilities when SLM A (Alice) and SLM B (Bob) select one of the d states from
one of the d + 1 bases for the entanglement-based scheme. Figure adapted with
permission from [151].



states experimentally. A number of different groups explored various ways in which to
increase the measured OAM spectrum [155–158]. One technique looks at the effect of
the phase-matching of the non-linear crystal used to generate entangled photons and
showed, by using particular “slit” holograms, that the spectrum can be increased by
setting the crystal at a particular orientation [158].

Alternative methods to achieve high-dimensional entanglement have also been con-
sidered including a demonstration of entanglement up to dimension d = 12 through
violations of Bell-type inequalities, where specific holograms were designed to project
into measurement bases that maximize the violations of high-dimensional inequali-
ties [159]. Exploiting other OAM-carrying modes, the Ince-Gaussian modes have also
been shown to achieve high-dimensional entanglement for d = 3 by defining an entan-
glement witness for three dimensions [160]. And very recently, the same group exper-
imentally verified 100-dimensional entanglement, projecting into both the azimuthal
and radial components of the LG basis [161]. In each of these different techniques, the
same modal transformation or decomposition was used to extract information from the
entangled pairs.

Photons entangled in high dimensions present opportunities in applications such as
quantum communication and cryptography, as each photon can be encoded with more
information than those encoded in polarization. In quantum communication, high-
dimensional entanglement offers increased information capacity per photon and the
security is also improved, for example in quantum key distribution (QKD) in a noisy
environment [162–165]. QKD allows two parties to share a secret key, which can then
be used to encode and decode subsequent messages. The transmission of a quantum
key has been securely performed using polarization states through fibers [166] as well
as free space [167]. However, with digital holograms higher key generation rates have
been achieved by increasing the dimensionality of the state using SLMs to project into
high-dimensional MUBs [151]. In this case, digital holograms were used to encode
both the phase and amplitude of the incident light to produce MUBs in the Laguerre-
Gaussian basis.

In line with quantum communication, investigations into the effects of turbulence
on entangled states have also made use of digital holography as an experimental tech-
nique [168–171]. Various theoretical works have examined the effects of atmospheric
turbulence on OAM modes by considering the detection probability [172–174], at-
tenuation and cross-talk among multiple OAM channels [175, 176]. Typically, the
single phase screen approximation, which represents the turbulence according to the
Kolmogorov theory [177], is used in theoretical simulations as well as experimental
demonstrations. Experimentally, the turbulence is simulated by adding random phase
fluctuations to the phase function (such as a fork-hologram) encoded onto the SLM.
Using this technique, it was shown that higher OAM values are more robust through
turbulence for both a single photon propagating through turbulence as well as both
entangled photons experiencing turbulence [178].



6. Summary and Outlook

Laser beam shaping and characterization are venerable topics that experienced a resur-
gence at the birth of diffractive optics and computer generated holograms. Today, with
the emergence of liquid crystal technology, structured light on-demand is achievable,
and has found applications from the classical to the quantum. Despite the versatility of
the technology, efficiency and power handling remain limitations which restrict indus-
trial applications, whereas speed often prohibits real-time applications in the laboratory.
As the technology matures, so one might expect more exciting advances to follow.
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