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Abstract—Human settlement expansion is one of the most The traditional band differencing algorithn2][ the auto-
pervasive forms of land cover change in South Africa. The use correlation technique5, the predictive modeling approach
of Page’s Cumulative Sum Test is proposed as a method to [6], [7], the recursive merging algorithné]and the FFT (Fast

detect new settlement developments in areas that were previously . - . .
covered by natural vegetation using 500 m MODIS time series Fourier Transform) sliding windowg] are some of the high

satellite data. The method is a sequential per pixel change alarm temporal time-series change detection algorithms thae hay
algorithm that can take into account positive detection delay, been successfully used in a remote sensing context. Most
probability of detection and false alarm probability to construct  the remote sensing time-series change detection algaithm

a threshold. Simulated change data was generated to determine athe literature use some form of windowing, in other words

threshold during a preliminary off-line optimization phase. After .
optimization the method was evaluated on examples of known only recent data is used to detect changg [n contrast

land cover change in the Gauteng and Limpopo provinces of the algorithm proposed in this paper is windowless, ant
South Africa. The experimental results indicated that CUSUM as such there is no step required to determine the windo

performs better than band differencing in the before mentioned |ength. The problem of using only recent data, which wa:
study areas. extracted using a window, is that the average pixel behavic
might not be captured if the window is not long enough.
For example, a windowed algorithm will be more prone to
classify a vegetation pixel experiencing a drought as a ghan
Remotely sensed satellite data provide researchers withp'meL when in fact the pixel did not change from vegetatior
efficient way to monitor and detect land cover changes {§ settlement.
a way that has not been possible in the pdjt ODne way  |n this paper we argue that there are several metrics &
of accomplishing this is to compare high resolution imageghich a change detection algorithm should be evaluated. A
acquired at different times. Based on a Change metric aagvious one igetection delay1 by which we mean the time
threshold selection method, each pixel is classified a®rithgken for the change detection algorithm to declare that
being a change or no-change pixel. However, using ondhange has occurred, given that a change in the data actua
two images can lead to suboptimal results, as similar laggdcurred. Then there is the question of how likely it is foe th
cover types can vary significantly during various stagedef taigorithm to declare that a change has occurred given teat tt
natural growth seasonal cycl@][ To address this problem change in the data did in fact occur, a metric we refer to a
it was proposed that the sample rate of medium resolutigfther probability of detection or the true positive rate (TP).
remote sensing data acquisitions should be high enoughTigere are more metrics that need to be consider. For examp
ascertain change events from natural phenological cyclpgre is the possibility that the algorithm will declare oba,
[3], [4]. The Moderate-resolution Imaging Spectroradiometgfiven that change has not occurred in the data, which we cz
(MODIS) data product MCD43A4 (used in this study) usegefer to as either therobability of false detection (alarm)
daily Terra and Aqua satellite overpasses to produc®® or the false positive rate (FP). As this paper is presented i
meter resolution conglomerated image evergays, and as a statistical framework we prefer not to adopt the detectiol
such offers a high temporal frequency, which makes it p@ssiheory terms TP and FP. Then there is the question of how 1
to effectively detect changes by using time-series arglysi gliminate the need for a windowing mechanism, in the sens

o _ , that our algorithm ison-line or sequential, i.e. it uses all the
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form [9] in order to process samples sequentially. Windowezhn detect a change in the underlying distributiory;,o{when
versions of the CUSUM algorithm have been used with, gets sampled frond); instead ofQy), if it occurs (i.e. if
MODIS in the past, typically in a bootstrappin@(] or in an 7 < o), as quickly as possible after it occurs. As a set o
in-control process mean conteX][[11]. We can implement detection strategies, it is natural to consider theBetf all
CUSUM without using a window, because in Page’s origingextended) stopping times with respect to the filtrat{of, },
form the CUSUM statistic is derived from log-likelihood i@ where F;, denotes the smallest-field with respect to which
which can be obtained from densities estimated at every-timg, zy, - - - , z;, are measurable. Thus, when the stopping tim¢
step of the year. The densities at each time-step thus circuftakes on the valug, the interpretation is thaf has detected
vents intra-annual variation. The densities are consubly the existence of a change pointat or prior to timek. It is
using the Colored Simple Harmonic Oscillator (CSHO) whicbf interest to penalize expected delay via its worst caseeval
can replicate average pixel behavior which implies that the

= +
effect of inter-annual variation is also minimizet?. d(T) = sup ess sUpE{(T' =7+ 1)"|Fr—1}, (1)

T7>1
Il. DATA DESCRIPTION whereE {-} denotes expectation under the distributidnand

_ + _ _
The input time series data is extracted from the 8 da{T T+1) max{T'~7+1,0}. Note that ess su, {(T

4 ;
composite MODIS MCD43A4 Bidirectional Reflectance Dis- )|} |s'the worst case average _delay unﬂ’erwhe_re
the worst case is taken over all realizationzof". The desire

tribution Function (BRDF) corrected 500 m land surfaCF0 maked(T) small must be balanced with a constraint on

reflectance product corresponding to a total area of approx. .
. . L e false alarm rate. We accept the fact that false alarms w
imately 230 knd in Gauteng and 800 kfrin Limpopo, South occur, however we want to fix the rate at which they occur

Africal. The temporal acquisition rate of MODIS MCD43A4 : o .
. The false alarm rate is quantified by the mean time betwee

roughly translates tol5 observations per year. The mos% |

4 . o se alarms

pervasive form of land cover change in South Africa is that 0? TV E (T 5

settlement expansion. Two land cover classes are condidere HT) = Eoof{T}- (2)

settlements andnatural vegetation, denoted by andv respec- A useful design criterion is then given by

tively. In this study the settlements class contains pixiedt _ _

contain more than 50% buildings, whereas the vegetati@scla Jnf d(T) subject tof(T) = A, 3)

contains pixels with more than 90% vegetation. The Gauteng?1 ) o S )

data set consists of 1106 MODIS pixels, while the Limpop¥ ere%\ is a positive finite constant. A stopping tlme is desired

data set contains 3349 MODIS pixels and was selected wif}tt minimizes the worst case expected delay within a lowel

visual (human) interpretation of two high resolution @yse boun_d constraint on the mean time betvyeen fa[se alarms. A

Probatoire d’Observation de la Terre (SPOT) images from tROrithm that meets the requirements 8fig Page's CUSUM

year 2001 and 2009. We selected MODIS pixels that, accotgSt [L3]- In particular, forh > 0 the CUSUM stopping time

ing to the SPOT images, either did not change or changSgdefined as

frpm v_egetati(_)n to settlement. Each MODIS pixel contai_ns TEYSIM _ inflk > 0lgy, > A}, (4)

eight time series (seven MODIS land bands, and NDVI) with

I = 368 observations (extracted between January 2001 awtiere

March 2009). The NDVI time series was computed using ~ Jgp—r+sk)T i E>0 (5)

the first two spectral land bands. The Gauteng and Limpopo |y eRT if k=0,

datasets are respectively divided into the three classdsral

vegetation (592 Gauteng pixels and 1497 Limpopo pixel§nd

settlements (333 Gauteng pixels and 1735 Limpopo pixels) sk = In ql(zk). (6)

and real land cover change from vegetation to settlemerit (18 )

Gauteng pixels and 117 Limpopo pixeld)2]. Under normal CUSUM operating conditiopsis set to0.
I1l. PAGE’S CUMULATIVE SUM TEST IV. APPLYING CUSUM TO MODIS

Consider a measurable spd€g F), consisting of a sample  aAssyme that an observed MODIS pixeEe© =
spacef) and aoc-field F of events 13]. Further consider a {75} h—(1.2...1 belongs to class, € C. With z{° defined

family {P|7 € [1,2,---,00]} of probability measures on as {27 }yeq1..7.novi}, Whereb represents the MODIS band

(@, 7) and a randonlfequenee: {zrik = 1,2,--- 00}, (seven land bands or NDVI). Each band can also be denote
such that, unde¥,, »~7 = {21722.’.' - ’fol} are indepen- separately withZco:b = {z;‘)’b}k:{127.__}. It is assumed that
dent and identically distributed (i.i.d.) with a fixed margi at some point in timer the observed MODIS pixel changes
distribution Qp and z*" = {z,, 2,41, ,00} are i.i.d. with

inal distributi q ind d o7 Th into another classg; € C.
marginal distribution@; and are independent - 1he Under the assumption of spatial independence, each o

probability densities associated withy and @y are go and o0 signal in MODIS band belonging to the same
q1 respectively. We would like to consider a procedure th%‘ass«: € C is a sample path of a stochastic process

cb H c,b . .
iThe MODIS MCD43A4 product can be downloaded fromiZk }_’k={.172,~-}' S'nce_{Zk }k={1723~~_} is a stochastic pro-
http://modis.gsfc.nasa.gov/data/. cess its first order statistical description can be detezthin



The first order statistical description (also known as thie not the foremost assumption for MODI&4]. Due to the
time varying model 14]) is equivalent to the set of probability shortcomings introduced by) and the fact that the densities
density functions at each time stép {q;*b}k={1,2.,,}. If we are estimated, the optimality of our results can no longer b
assume that the MODIS data contain no inter annual variatigquaranteed by the CUSUM algorithm.
in other words we assume that MODIS time series is periodic
(45 observations in a year), then we have tfat — qlf:ﬁzls' V. JUSTIFICATION OF APPROACH ANDALTERNATIVES
To estimateqf’b at time of the yearn we first group all the

observations of a particular time of the year together with CUSUM can be implemented (in the remote sensing field

with or without a window. In cases where the data exhibi
gi“vb = pr 2%, n=0,1,--- ,N, 1 <i<45, (7) severeunderlying trends a windowed CUSUM approach bast
i+45n on an in-control process mean model is a better alternativ
where pr is the projection Operator amld is the number of since such an algorithm would be better suited to incorporal
years. We can determirg”" for each observed pixel in classunderlying trends €], [11]. The one approach is not supe-
c. After unifying all the computed;®® we can estimatg®® fior t0 the _o'_ther approach, e_spemally since both a_lpprczachf
using kernel density estimation. We used a Gaussian kerfluire training data. Choosing a windowed or windowles:
with Silverman’s rule of thumb as bandwidth selection ruléiPProach depends completely on the application. The45
since the densities appear to be almost Gau&sian non-parametric d.ensmes prqved sufficient in mplgmeytm
We argue that for the classes used in this study we cs/SUM sequentially, but it is not the only possibility. We
ignore the effect of spatial correlation as the classes ameoh SPecifically chose thex 45 non-parametric saturated densities
geneous and are restricted to reasonably small study dieas. 8 our underlying model to ensure maximum flexibility. The
densities are constructed from either true or simulated.det  densities were built up with a trained CSHO simulator. As
our ground truth data (input MODIS time series) is limited wé€ densities appear Gaussian for our case study a go
employ simulated data to construct the densities. We empieiiPlification (alternative) would be to usex 45 parametric
a trained CSHO to generate independent sample paths of eg@yssian densities instead. As the means in our case stu
class. The ground truth data contain high spatial corgeiati@PPear to be sinusoidaly], a further simplification would
and spatial dependence, since the pixels are all taken fr8ff 0 parameterize the mean and variance using harmor
the same study area. The CSHO only mimics limited spati@Cdels to avoid using 45 different values for the mean an
correlation by replicating the parameters of each class (f¢Ariance respectively. The log-likelihood deviation meas
instance the sample paths of the CSHO are reasonably"{@S used as an effective compact aggregate way of detecti
phase, have slight differences in long term mean and selasdRgan (level) changes, while incorporating seasonal vaniat
amplitude). Since the CSHO mimics correlation through tH8stead of using log-likelihood deviations, residuals quared
features of a class it provides a spread of mean and amplitjgéiduals (centered by the variance) could have been used
for a specific class. The CSHO is less correlated than tHgteCt mean and variance changes respectidly Another
ground truth data, which removes some of the bias that woidfernative change detection algorithm is to detect chainge
be contained in the densities created directly from the mouthe first few harmonic components of a MODIS time series
truth data. For non-homogeneous classes we would havel8b
employ smaller neighborhoods in each class to obtain better
approximations for the individual time-step densities. VI. BAND DIFFERENCING

The classes (data sets) under consideration are almost cycl The CUSUM method was compared to another threshol

stationary and as such an assumption of zero inter-annygh o ch that utilizes the high temporal resolution tiredes
variation is acceptablelp]. The CSHO also minimizes the ya¢s provided by MODIS. This computationally parsimonious
error incurred due to inter-annual variation as it genaréte change detection method was proposed by Lunetta egjal. [

average behavior of a class in an average y&a [ with thresholdz (we will use ¢ instead to avoid ambiguity).
To be able to use CUSUM on each MODIS band we have

to adapt 6) in the following wa
PLo) 9 y VIl. EXPERIMENTAL RESULTS: GAUTENG CASE STUDY

c1,b/ b
s = qk‘l (Zk). (8) In this section we apply CUSUM on MODIS data in
q;"’b(z,l;) order to detect when vegetation pixels in the study ares

ﬁhange into settlement pixels. The result section is di/ide
Into two subsections. In the first subsection we present fan of
line optimization algorithm to determine the best thredhol
h by performing a sweep ok from 1 to 100 on simulated
ata to establish an intuitive base of the performance c
USUM on MODIS data in the study areas. The simulatec
hciiaga that we used were generated by the CSHZ). [n the
second subsection we analyze the performance of the eff-lir
2The densities were estimated via the KDE Matlab toolbox whigh be qetermmedl on _real WO_Hd MODIS change data and compare
obtained fromhttp://ww.ics.uci.edutihler/code/kde.html it to the band differencing method (on the same data).

Using @) we can detect when an observed MODIS pixel i
band b changes from class, to ¢; sequentially. The class
superscript is dropped from the observatighif we do not
know whether a pixel changed or not.

Note that 8) violates the identically distributed assumptio
of CUSUM, sinceqy # ¢? V (k —j) mod 45 # 0. To apply
(8) we also need to assume independent observations, w


http://www.ics.uci.edu/~ihler/code/kde.html

A. The off-line training of CUSUM change detection using
simulated MODIS data

We usePp, Pra andE{(T — 7)T268} as metrics instead of
d(T) and f(T), since we need to use metrics that can be fairly
compared to non sequential change detection algorithm® He
Pp is the probability of correctly detecting a change withie th ' il Bl
8 year observation perioda is the probability of detecting (a) Pp versush. (b) Pra versush.
a change when there was no change in the 8 year period and
E{(T — 7)*ses} = E{min{max{T — 7,0},368 — 7}} is the
positive expected delay truncated 368 observations.

We propose the following algorithm, with input vector
(j, k,1,m,n), to determine the best threshdid

1) Usej pixels of the no change vegetation data (real world et T R S
no-change data) to learn the parameters needed by the ©F {(TfT)f;%}\lersus () Po versusPea.
simulator (training set).

2) Usek no change settlement pixels (real world no-chang]._eI
data) to estimate the parameters needed by the simulegt
(training set).

3) Now using the trained simulator, simulatepixels of
each class, and use them to create 4heprobability
density functions that span a year.

4) Simulatem pixels of each class, and use those to cre
simulated change data, where the change poitias
density U1,300]. The change is simulated by usin
linear blending over a 6 month perio8][°.

5) Simulaten pixels of no change vegetation pixels.

6) For each threshold perform the CUSUM algorithm on
each band and determir,, Pea andE{(T — 7)*ts0s}
using the simulated change and no change data.

7) To determine the best for each band calculate the

10|

. 1: Measured?, Pra andE{(T — 7)*s¢s} values for the
imulated data in Gauteng.

dependence can be estimated viattparameter of the CSHO,
\{vhile the separability can be estimated by determining thi
al—'f}ellinger distance between the time varying models. It i
worth mentioning that the Hellinger distance in each ban
Ys not constant and various during the year, which mean
that g will grow at different rates during different times of
the year. From a physical perspective it makes sense th
bands {1,2,3,4,NDVI} would perform well as vegetation
display unique identifiable characteristics in the visiald
near-infrared regions of the electromagnetic spectrum.

coefficient (based on the number of correctly detecte The most important graph in Figurg is the Receiver

changes and the number of incorrectly detected chang Sgelratm?hCharzcts?tstm? (ROC)tl CI(ervte iF'gM’hs'nC;.'t
at eachh in the sweeping interval and then select the ISpiays the probability of correctly detecting a changene

value that produces the largestcoefficient. 8 year obse(vatlon .perl.od against declaring a change durir
. . . the observation period if none occurred. Furthermore we ca
There is no need to perform multiple experiments B3 |

) . see from Figurelc that the best threshold induces an uppel
showed that the differences between simulated batCheSpSEitive expected delay of abo@tyears before a change is
pixels are statistically insignificant. The resultify, Pra and
E{(T — )"} metrics, determined for the Gauteng data s
with input vector (592, 333, 2000, 3000, 3000), are shown in
Figure 1.

Figureslato 1c indicates that the best possible CUSUM
threshold h, is different for each band. The value éfis B. The performance of CUSUM on real world MODIS data
dependent on two factors, the amount of dependence in therg evaluate the performance of CUSUM on the real worlc
data and the separability of the two classes. The higher iigta we used the metrid®, and Pra. We could not measure
dependence the higher the noise floor @f (quantity &) any form of delay, as the true change point for the real worl
for band ), which forcesh to be large in order to keepchange data was unknown.
the false alarm probablllty low. A |argé value increases To Summarize, we propose the fo”owing methodo'ogy tC
the detection delay. The higher the separability the larggétermine the effectiveness of CUSUM on the real worlc
h can be as the growth rate gf will be steeper after change data set:

the change point. Effectively we WOUld. like to ch(_)qs_,e the 1) Use the off-line optimization algorithm of the previous
bands which are the most separable while alsc_) exhlb_ltlng low section with input vector$296, 333, 1000, 1000, 1000)
dependence. The banc{sl,2,3747NDVI}.are either hllghly and (749, 1735, 1000, 1000, 1000) for the Gauteng and
separable or are less dependent on previous observatans (s Limpopo data sets respectively, to determine the threst
even have both properties) and as it turns ogt also perform old 1, for each study region. Note that ori§% (random
better than the other MODIS bands (see Figdd). The 50%) of the no change vegetation data was used to lea

3The way that the blending is done is actually quite arbitrang doesn't the parameters needed t_)y the simulator a0 of the
influence the results of this paper. real data was left for validation.

detected. We also see that the detection performance 2or a
%ar delay is sufficient, however hayear delay causes too
many false alarms.



2) Apply the best: value on the no change real vegetation VIII. CONCLUSION

data (validation data set) and the real change data tOn this paper, a simple but effective land cover change

determine/’> and Pra (for each study region). detection algorithm was presented. Firstly in an off-lingi-o
Cross validation was performed by repeating the above expgiization phase the CUSUM threshdldhat shows the highest
iment multiple times. We also repeated the above experimeapy and lowestPr, is determined, for each band. Second, in the
under a 5% mislabeling assumption. We also used a trainipgerational phase, the time-series CUSUM statistic of bdad
dataset and a validation data set (equal in size) which wejeémputed per pixel and is compared to the threshdial yield
the least correlated with each other (from all possiblening a change or no-change decision. The method was effective
and validation data sets). Both additional scenarios medu used to determine the location of new settlement develofsnen
statistically insignificant deviations from the standardss- in the Gauteng and Limpopo provinces of South Africa. The
validation experiment, indicating that the algorithm idbust CUSUM algorithm outperformed band differencing in both
against mislabeling and that the classes are in fact homogase studies. For classes containing a definite long terrd,tre
nous. The results of the standard cross-validation praeedthe algorithm could be adapted to construct 45 densities fc

(50 experiments) is shown in Table each year.
TABLE I: CUSUM applied on MODIS data REFERENCES
MODIS band h on Pp TPy Pea O Pep [1] D. Lu, P. Mausel, and E. Brondizio, E. Moran, “Change dé&tn
Gauteng techniques,’International Journal of Remote Sensing, vol. 25, no. 12,
Hmpopo 38.18 6.65 0.9829 0.0051 0.1896 0.0430 pp. 2365-2407, Jun. 2004.
1 2914 953 07720 00215 02536 00320 [2] R. Lunetta, J. Knight, J. Ediriwickrema, J. Lyon, and L. iy, “Land-
2 53.73  5.01 0.8731 0.0039 0.1304  0.0234 cover change detection using multi-temporal MODIS NDVI data,
3 3g;25 E g;ggié 8:83%% 8:?922 8:8338 Remote Sensing of Environment, vol. 105, no. 2, pp. 142-154, Nov.
3206 643 06764  0.0321  0.2039  0.0267 2006.
4 gg:ég % 8:2333 g:gggf 8:%332 8:833? [3] R. Lunetta, J. Ediriwickrema, D. Johnson, J. Lyon, and Ackdrrow,
5 16.53  3.04  0.7874  0.0646  0.5406  0.0562 “Impacts of vegetation dynamics on the identification of lader
23.06 200 Q078 0.0282  0.0383  0.03%2 change in a biologically complex community in North Carolin&SAy
6 17.49  6.33  0.7079 0.0416 0.4821 0.0485 Remote Sensing of Environment, vol. 82, no. 2-2, pp. 258-270, Oct.
Toph BR MEE G i b 2
NDVI 2001  1.88  0.8354  0.0478  0.1724  0.0806 [4] R. Lunetta, R. Alvarez, C. Edmonds, J. Lyon, C. Elvidge,Bonifaz,
35635 500 0.7544 0.0471  0.4390  0.0501 and C. Garca, “NALC/Mexico land-cover mapping results: iroalions
for assessing landscape conditiomtiternational Journal of Remote
Again we see tha{1,2,3,4,NDVI} give the best results. _ Snsing, vol. 23, no. 16, pp. 3129-3148, Aug. 2002.

5] W. Kleynhans, B. Salmon, J. Olivier, K. Wessels, and van Bergh F.,
The Gauteng dataset (band 4 was the best band) perfon[ng “An autocorrelation analysis approach to detecting landec@hange

better than the Limpopo dataset (band 1 performed the best), using hyper-temporal time-series data,” Bnoceedings of IEEE Geo-
since vegetation and settlement is more separable in Gguten, science and Remote Sensing Symposium, Vancouver, Canada, July 2011.

. . . . S. Boriah, “Time series change detection: Algorithms fand cover
(a lot of residual vegetation is found in the settlement<lafs change, Ph.D. dissertation, Graduate School of the Usityerof

Limpopo) [12]. Minnesota, Apr., 2010.
[7] W. Kleynhans, J. Olivier, K. Wessels, B. Salmon, van demgBeF.,
TABLE II: Band differencing applied on MODIS data and K. Steenkamp, “Detecting Land Cover Change Using an Hgtén

Kalman Filter on MODIS NDVI Time-Series DatalEEE Geoscience
and Remote Sensing Letters, vol. 8, no. 3, pp. 507-511, Apr. 2011.

Mogfer%and 4 o Pra [8] B.P.Salmon and et al., “The use of a multilayer perceptardetecting
Limpopo new human settlements from a time series of MODIS imagietf -
1 1.8874  0.6133 0.2247 national Journal of Applied Earth Observation and Geoinformation,
I vol. 13, no. 6, pp. 873-883, 2011
1.7553 0.4615 0.3634 [9] E. Page, “Continuous inspection schemé&sgmetrika, vol. 41, pp. 241—
3 L omw saw 257, 1954,
4 1.5681  0.7182  0.3311 [10] J. KuEera, P. Barbosa, and P. Strobl, “Cumulative Sum Charts - AeNov
g»gg?g g-ggég 8%%‘; Technique for Processing Daily Time Series of MODIS Data farr
5 21632 0.4188 01777 Area Mapping in Portugal,” irinternational Workshop on the Analysis
6 g»zg% 8?%(1) 848222; of Multi-temporal Remote Sensing Images, Leuven, August 2007.
7 17222 0.6796 0.2787 [11] J. Verbesselt, R. Hyndman, A. Zeileis, and D. Culven&hénological
1.6011 0.8120  0.4502 change detection while accounting for abrupt and gradwaids in
NDVI 15180 08122 D468 satellite image time seriesRemote Sensing of Environment, vol. 114,

no. 12, pp. 2970-2980, 2010.
i i i [12] T. L. Grobler, E. R. Ackermann, A. J. van Zyl, J. C. Oliyieand
The best possible results for the band differencing scheme . Kieynhans, “Land Cover Separability Analysis of MODISNE

is given in Tabldl from which it is evident that CUSUM out- Series Data uhsing a combined SimplgJ Hfalgglnon(iacd Ossilator anflez mez
: ; ; : reverting stochastic proces$EZEE Journal of Selected Topicsin Appli

performs band dlfferenc_mg. The band differencing apmoac Earth Observations And Remote Sensing, in press, DOI: 10.1109/JS-
does not perform well in the Gauteng case study (band 4 TARS.2012.2183118.
performed the best), probably because band differenciadsel13] H. F’OOlr2 888 O. HadijiliadisQuickest Detection. Cambridge University

; ; ; ; ; Press, .
hlgh spatlal correlation to be effective. In the_ lepO.pO G:6‘%14] E. R. Ackermann, “Sequential land cover classificatidaster’s thesis,
study (NDVI performed the best), the band differencing does ™ university of Pretoria, 2011.
not perform comparatively worse when compared to CUSUM,
since the Limpopo data set contains a larger amount of $patia

correlation.
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