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Abstract—Human settlement expansion is one of the most
pervasive forms of land cover change in South Africa. The use
of Page’s Cumulative Sum Test is proposed as a method to
detect new settlement developments in areas that were previously
covered by natural vegetation using 500 m MODIS time series
satellite data. The method is a sequential per pixel change alarm
algorithm that can take into account positive detection delay,
probability of detection and false alarm probability to construct
a threshold. Simulated change data was generated to determine a
threshold during a preliminary off-line optimization phase. After
optimization the method was evaluated on examples of known
land cover change in the Gauteng and Limpopo provinces of
South Africa. The experimental results indicated that CUSUM
performs better than band differencing in the before mentioned
study areas.

I. I NTRODUCTION

Remotely sensed satellite data provide researchers with an
efficient way to monitor and detect land cover changes in
a way that has not been possible in the past [1]. One way
of accomplishing this is to compare high resolution images
acquired at different times. Based on a change metric and
threshold selection method, each pixel is classified as either
being a change or no-change pixel. However, using only
two images can lead to suboptimal results, as similar land
cover types can vary significantly during various stages of the
natural growth seasonal cycle [2]. To address this problem
it was proposed that the sample rate of medium resolution
remote sensing data acquisitions should be high enough to
ascertain change events from natural phenological cycles
[3], [4]. The Moderate-resolution Imaging Spectroradiometer
(MODIS) data product MCD43A4 (used in this study) uses
daily Terra and Aqua satellite overpasses to produce a500
meter resolution conglomerated image every8 days, and as
such offers a high temporal frequency, which makes it possible
to effectively detect changes by using time-series analysis.
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The traditional band differencing algorithm [2], the auto-
correlation technique [5], the predictive modeling approach
[6], [7], the recursive merging algorithm [6] and the FFT (Fast
Fourier Transform) sliding window [8] are some of the high
temporal time-series change detection algorithms that have
been successfully used in a remote sensing context. Most of
the remote sensing time-series change detection algorithms in
the literature use some form of windowing, in other words
only recent data is used to detect change [6]. In contrast
the algorithm proposed in this paper is windowless, and
as such there is no step required to determine the window
length. The problem of using only recent data, which was
extracted using a window, is that the average pixel behavior
might not be captured if the window is not long enough.
For example, a windowed algorithm will be more prone to
classify a vegetation pixel experiencing a drought as a change
pixel, when in fact the pixel did not change from vegetation
to settlement.

In this paper we argue that there are several metrics by
which a change detection algorithm should be evaluated. An
obvious one isdetection delay, by which we mean the time
taken for the change detection algorithm to declare that a
change has occurred, given that a change in the data actually
occurred. Then there is the question of how likely it is for the
algorithm to declare that a change has occurred given that the
change in the data did in fact occur, a metric we refer to as
either probability of detection or the true positive rate (TP).
There are more metrics that need to be consider. For example,
there is the possibility that the algorithm will declare change,
given that change has not occurred in the data, which we can
refer to as either theprobability of false detection (alarm)
or the false positive rate (FP). As this paper is presented in
a statistical framework we prefer not to adopt the detection
theory terms TP and FP. Then there is the question of how to
eliminate the need for a windowing mechanism, in the sense
that our algorithm ison-line or sequential, i.e. it uses all the
past data. This is possible when the algorithm has the property
that it only starts behaving differently when an actual change
occurred. However, it is not common for the above four change
detection criteria to be considered simultaneously in a remote
sensing change detection context, and in that respect this paper
will present novel results since the paper will show how to
sequentially detect change (vegetation pixels that are changed
into settlement pixels) as accurately and quickly as possible,
while staying below a certain probability of false alarm.

The objective of this paper is to use the Cumulative Sum
(CUSUM) as a change detection algorithm in Page’s original
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form [9] in order to process samples sequentially. Windowed
versions of the CUSUM algorithm have been used with
MODIS in the past, typically in a bootstrapping [10] or in an
in-control process mean context [6], [11]. We can implement
CUSUM without using a window, because in Page’s original
form the CUSUM statistic is derived from log-likelihood ratios
which can be obtained from densities estimated at every time-
step of the year. The densities at each time-step thus circum-
vents intra-annual variation. The densities are constructed by
using the Colored Simple Harmonic Oscillator (CSHO) which
can replicate average pixel behavior which implies that the
effect of inter-annual variation is also minimized [12].

II. DATA DESCRIPTION

The input time series data is extracted from the 8 day
composite MODIS MCD43A4 Bidirectional Reflectance Dis-
tribution Function (BRDF) corrected 500 m land surface
reflectance product corresponding to a total area of approx-
imately 230 km2 in Gauteng and 800 km2 in Limpopo, South
Africa1. The temporal acquisition rate of MODIS MCD43A4
roughly translates to45 observations per year. The most
pervasive form of land cover change in South Africa is that of
settlement expansion. Two land cover classes are considered:
settlements andnatural vegetation, denoted bys andv respec-
tively. In this study the settlements class contains pixelsthat
contain more than 50% buildings, whereas the vegetation class
contains pixels with more than 90% vegetation. The Gauteng
data set consists of 1106 MODIS pixels, while the Limpopo
data set contains 3349 MODIS pixels and was selected with
visual (human) interpretation of two high resolution Système
Probatoire d’Observation de la Terre (SPOT) images from the
year 2001 and 2009. We selected MODIS pixels that, accord-
ing to the SPOT images, either did not change or changed
from vegetation to settlement. Each MODIS pixel contains
eight time series (seven MODIS land bands, and NDVI) with
I = 368 observations (extracted between January 2001 and
March 2009). The NDVI time series was computed using
the first two spectral land bands. The Gauteng and Limpopo
datasets are respectively divided into the three classes: natural
vegetation (592 Gauteng pixels and 1497 Limpopo pixels),
settlements (333 Gauteng pixels and 1735 Limpopo pixels)
and real land cover change from vegetation to settlement (181
Gauteng pixels and 117 Limpopo pixels) [12].

III. PAGE’ S CUMULATIVE SUM TEST

Consider a measurable space(Ω,F), consisting of a sample
spaceΩ and aσ-field F of events [13]. Further consider a
family {Pτ |τ ∈ [1, 2, · · · ,∞]} of probability measures on
(Ω,F) and a random sequencez = {zk; k = 1, 2, · · · ∞},
such that, underPτ , z−τ = {z1, z2, · · · , zτ−1} are indepen-
dent and identically distributed (i.i.d.) with a fixed marginal
distributionQ0 and z+τ = {zτ , zτ+1, · · · ,∞} are i.i.d. with
marginal distributionQ1 and are independent ofz−τ . The
probability densities associated withQ0 and Q1 are q0 and
q1 respectively. We would like to consider a procedure that

1The MODIS MCD43A4 product can be downloaded from
http://modis.gsfc.nasa.gov/data/.

can detect a change in the underlying distribution ofzk (when
zk gets sampled fromQ1 instead ofQ0), if it occurs (i.e. if
τ < ∞), as quickly as possible after it occurs. As a set of
detection strategies, it is natural to consider the setT of all
(extended) stopping times with respect to the filtration{Fk},
whereFk denotes the smallestσ-field with respect to which
z0, z1, · · · , zk are measurable. Thus, when the stopping time
T takes on the valuek, the interpretation is thatT has detected
the existence of a change pointτ at or prior to timek. It is
of interest to penalize expected delay via its worst case value

d(T ) = sup
τ≥1

ess supEτ{(T − τ + 1)+|Fτ−1}, (1)

whereEτ{·} denotes expectation under the distributionPτ and
(T−τ+1)+ = max{T−τ+1, 0}. Note that ess supEτ{(T−
τ+1)+|Fτ−1} is the worst case average delay underPτ , where
the worst case is taken over all realization ofz−τ . The desire
to maked(T ) small must be balanced with a constraint on
the false alarm rate. We accept the fact that false alarms will
occur, however we want to fix the rate at which they occur.
The false alarm rate is quantified by the mean time between
false alarms

f(T ) = E∞{T}. (2)

A useful design criterion is then given by

inf
T∈T

d(T ) subject tof(T ) ≥ λ, (3)

whereλ is a positive finite constant. A stopping time is desired
that minimizes the worst case expected delay within a lower-
bound constraint on the mean time between false alarms. An
algorithm that meets the requirements of (3) is Page’s CUSUM
test [13]. In particular, forh ≥ 0 the CUSUM stopping time
is defined as

TCUSUM
h = inf{k ≥ 0|gk ≥ h}, (4)

where

gk =

{

(gk−1 + sk)
+ if k > 0

y ∈ R
+ if k = 0,

(5)

and

sk = ln
q1(zk)

q0(zk)
. (6)

Under normal CUSUM operating conditionsy is set to0.

IV. A PPLYING CUSUM TO MODIS

Assume that an observed MODIS pixelZc0 =
{zc0k }k={1,2,··· } belongs to classc0 ∈ C. With z

c0
k defined

as {zc0,bk }b∈{1···7,NDVI}, whereb represents the MODIS band
(seven land bands or NDVI). Each band can also be denoted
separately withZc0,b = {zc0,bk }k={1,2,··· }. It is assumed that
at some point in timeτ the observed MODIS pixel changes
into another classc1 ∈ C.

Under the assumption of spatial independence, each ob-
served signal in MODIS bandb belonging to the same
class c ∈ C is a sample path of a stochastic process
{Zc,b

k }k={1,2,··· }. Since{Zc,b
k }k={1,2,··· } is a stochastic pro-

cess its first order statistical description can be determined.
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The first order statistical description (also known as the
time varying model [14]) is equivalent to the set of probability
density functions at each time stepk, {qc,bk }k={1,2··· }. If we
assume that the MODIS data contain no inter annual variation,
in other words we assume that MODIS time series is periodic
(45 observations in a year), then we have thatq

c,b
k = q

c,b
k+45

.
To estimateqc,bi at time of the yeari we first group all the
observations of a particular time of the year together with

Gc,b
i = pr

i+45n

Zc,b, n = 0, 1, · · · , N, 1 ≤ i ≤ 45, (7)

where pr is the projection operator andN is the number of
years. We can determineGc,b

i for each observed pixel in class
c. After unifying all the computedGc,b

i we can estimateqc,bi

using kernel density estimation. We used a Gaussian kernel
with Silverman’s rule of thumb as bandwidth selection rule,
since the densities appear to be almost Gaussian2.

We argue that for the classes used in this study we can
ignore the effect of spatial correlation as the classes are homo-
geneous and are restricted to reasonably small study areas.The
densities are constructed from either true or simulated data. As
our ground truth data (input MODIS time series) is limited we
employ simulated data to construct the densities. We employ
a trained CSHO to generate independent sample paths of each
class. The ground truth data contain high spatial correlation
and spatial dependence, since the pixels are all taken from
the same study area. The CSHO only mimics limited spatial
correlation by replicating the parameters of each class (for
instance the sample paths of the CSHO are reasonably in
phase, have slight differences in long term mean and seasonal
amplitude). Since the CSHO mimics correlation through the
features of a class it provides a spread of mean and amplitude
for a specific class. The CSHO is less correlated than the
ground truth data, which removes some of the bias that would
be contained in the densities created directly from the ground
truth data. For non-homogeneous classes we would have to
employ smaller neighborhoods in each class to obtain better
approximations for the individual time-step densities.

The classes (data sets) under consideration are almost cyclo-
stationary and as such an assumption of zero inter-annual
variation is acceptable [12]. The CSHO also minimizes the
error incurred due to inter-annual variation as it generates the
average behavior of a class in an average year [12].

To be able to use CUSUM on each MODIS band we have
to adapt (6) in the following way

sbk = ln
q
c1,b
k (zbk)

q
c0,b
k (zbk)

. (8)

Using (8) we can detect when an observed MODIS pixel in
band b changes from classc0 to c1 sequentially. The class
superscript is dropped from the observationzbk if we do not
know whether a pixel changed or not.

Note that (8) violates the identically distributed assumption
of CUSUM, sinceqbk 6= qbj ∀ (k − j) mod 45 6= 0. To apply
(8) we also need to assume independent observations, which

2The densities were estimated via the KDE Matlab toolbox whichcan be
obtained fromhttp://www.ics.uci.edu/∼ihler/code/kde.html.

is not the foremost assumption for MODIS [14]. Due to the
shortcomings introduced by (8) and the fact that the densities
are estimated, the optimality of our results can no longer be
guaranteed by the CUSUM algorithm.

V. JUSTIFICATION OF APPROACH ANDALTERNATIVES

CUSUM can be implemented (in the remote sensing field)
with or without a window. In cases where the data exhibit
severe underlying trends a windowed CUSUM approach based
on an in-control process mean model is a better alternative,
since such an algorithm would be better suited to incorporate
underlying trends [6], [11]. The one approach is not supe-
rior to the other approach, especially since both approaches
require training data. Choosing a windowed or windowless
approach depends completely on the application. The2 × 45
non-parametric densities proved sufficient in implementing
CUSUM sequentially, but it is not the only possibility. We
specifically chose the2×45 non-parametric saturated densities
as our underlying model to ensure maximum flexibility. The
densities were built up with a trained CSHO simulator. As
the densities appear Gaussian for our case study a good
simplification (alternative) would be to use2× 45 parametric
Gaussian densities instead. As the means in our case study
appear to be sinusoidal [12], a further simplification would
be to parameterize the mean and variance using harmonic
models to avoid using 45 different values for the mean and
variance respectively. The log-likelihood deviation measure
was used as an effective compact aggregate way of detecting
mean (level) changes, while incorporating seasonal variation.
Instead of using log-likelihood deviations, residuals or squared
residuals (centered by the variance) could have been used to
detect mean and variance changes respectively [11]. Another
alternative change detection algorithm is to detect changes in
the first few harmonic components of a MODIS time series
[8].

VI. BAND DIFFERENCING

The CUSUM method was compared to another threshold
approach that utilizes the high temporal resolution time-series
data provided by MODIS. This computationally parsimonious
change detection method was proposed by Lunetta et al. [2]
with thresholdz (we will useδ instead to avoid ambiguity).

VII. E XPERIMENTAL RESULTS: GAUTENG CASE STUDY

In this section we apply CUSUM on MODIS data in
order to detect when vegetation pixels in the study areas
change into settlement pixels. The result section is divided
into two subsections. In the first subsection we present an off-
line optimization algorithm to determine the best threshold
h by performing a sweep ofh from 1 to 100 on simulated
data to establish an intuitive base of the performance of
CUSUM on MODIS data in the study areas. The simulated
data that we used were generated by the CSHO [12]. In the
second subsection we analyze the performance of the off-line
determinedh on real world MODIS change data and compare
it to the band differencing method (on the same data).

http://www.ics.uci.edu/~ihler/code/kde.html
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A. The off-line training of CUSUM change detection using
simulated MODIS data

We usePD, PFA andE{(T − τ)+368} as metrics instead of
d(T ) andf(T ), since we need to use metrics that can be fairly
compared to non sequential change detection algorithms. Here
PD is the probability of correctly detecting a change within the
8 year observation period,PFA is the probability of detecting
a change when there was no change in the 8 year period and
E{(T − τ)+368} = E{min{max{T − τ, 0}, 368 − τ}} is the
positive expected delay truncated to368 observations.

We propose the following algorithm, with input vector
(j, k, l,m, n), to determine the best thresholdh:

1) Usej pixels of the no change vegetation data (real world
no-change data) to learn the parameters needed by the
simulator (training set).

2) Usek no change settlement pixels (real world no-change
data) to estimate the parameters needed by the simulator
(training set).

3) Now using the trained simulator, simulatel pixels of
each class, and use them to create the45 probability
density functions that span a year.

4) Simulatem pixels of each class, and use those to create
simulated change data, where the change pointτ has
density U[1, 300]. The change is simulated by using
linear blending over a 6 month period [5] 3.

5) Simulaten pixels of no change vegetation pixels.
6) For each thresholdh perform the CUSUM algorithm on

each band and determinePD, PFA andE{(T − τ)+368}
using the simulated change and no change data.

7) To determine the besth for each band calculate theκ
coefficient (based on the number of correctly detected
changes and the number of incorrectly detected changes)
at eachh in the sweeping interval and then select theh

value that produces the largestκ coefficient.
There is no need to perform multiple experiments as [12]

showed that the differences between simulated batches of
pixels are statistically insignificant. The resultingPD, PFA and
E{(T − τ)+368} metrics, determined for the Gauteng data set
with input vector(592, 333, 2000, 3000, 3000), are shown in
Figure1.

Figures1a to 1c indicates that the best possible CUSUM
thresholdh, is different for each band. The value ofh is
dependent on two factors, the amount of dependence in the
data and the separability of the two classes. The higher the
dependence the higher the noise floor ofgbk (quantity (5)
for band b), which forcesh to be large in order to keep
the false alarm probability low. A largeh value increases
the detection delay. The higher the separability the larger
h can be as the growth rate ofgbk will be steeper after
the change point. Effectively we would like to choose the
bands which are the most separable while also exhibiting low
dependence. The bands{1, 2, 3, 4,NDVI} are either highly
separable or are less dependent on previous observations (some
even have both properties) and as it turns out also perform
better than the other MODIS bands (see Figure1d). The

3The way that the blending is done is actually quite arbitraryand doesn’t
influence the results of this paper.
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Fig. 1: MeasuredPD, PFA andE{(T − τ)+368} values for the
simulated data in Gauteng.

dependence can be estimated via theλ parameter of the CSHO,
while the separability can be estimated by determining the
Hellinger distance between the time varying models. It is
worth mentioning that the Hellinger distance in each band
is not constant and various during the year, which means
that gbk will grow at different rates during different times of
the year. From a physical perspective it makes sense that
bands{1, 2, 3, 4,NDVI} would perform well as vegetation
display unique identifiable characteristics in the visibleand
near-infrared regions of the electromagnetic spectrum.

The most important graph in Figure1 is the Receiver
Operating Characteristics (ROC) curve (Figure1d), since it
displays the probability of correctly detecting a change inthe
8 year observation period against declaring a change during
the observation period if none occurred. Furthermore we can
see from Figure1c that the best threshold induces an upper
positive expected delay of about3 years before a change is
detected. We also see that the detection performance for a2
year delay is sufficient, however a1 year delay causes too
many false alarms.

B. The performance of CUSUM on real world MODIS data

To evaluate the performance of CUSUM on the real world
data we used the metricsPD andPFA. We could not measure
any form of delay, as the true change point for the real world
change data was unknown.

To summarize, we propose the following methodology to
determine the effectiveness of CUSUM on the real world
change data set:

1) Use the off-line optimization algorithm of the previous
section with input vectors(296, 333, 1000, 1000, 1000)
and (749, 1735, 1000, 1000, 1000) for the Gauteng and
Limpopo data sets respectively, to determine the thresh-
old h for each study region. Note that only50% (random
50%) of the no change vegetation data was used to learn
the parameters needed by the simulator and50% of the
real data was left for validation.
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2) Apply the besth value on the no change real vegetation
data (validation data set) and the real change data to
determinePD andPFA (for each study region).

Cross validation was performed by repeating the above exper-
iment multiple times. We also repeated the above experiment
under a 5% mislabeling assumption. We also used a training
dataset and a validation data set (equal in size) which were
the least correlated with each other (from all possible training
and validation data sets). Both additional scenarios produced
statistically insignificant deviations from the standard cross-
validation experiment, indicating that the algorithm is robust
against mislabeling and that the classes are in fact homoge-
nous. The results of the standard cross-validation procedure
(50 experiments) is shown in TableI.

TABLE I: CUSUM applied on MODIS data

MODIS band h σh PD σPD PFA σPFA
Gauteng
Limpopo

1 38.18

49.14

6.65

9.53

0.9829

0.7720

0.0051

0.0215

0.1896

0.2536

0.0430

0.0320

2 53.73

40.61

5.01

7.54

0.8731

0.6641

0.0039

0.0210

0.1304

0.3008

0.0234

0.0340

3 28.39

34.06

4.61

6.43

0.9846

0.6764

0.0023

0.0321

0.1748

0.2039

0.0336

0.0267

4 39.13

36.59

7.56

9.27

0.9835

0.6932

0.0008

0.0241

0.1559

0.2028

0.0253

0.0267

5 16.53

23.56

3.04

5.01

0.7874

0.6713

0.0646

0.0252

0.5406

0.4383

0.0562

0.0352

6 17.17

17.49

4.44

6.33

0.2234

0.7079

0.0783

0.0416

0.3561

0.4821

0.0718

0.0485

7 19.42

39.10

3.38

7.73

0.7178

0.7239

0.0632

0.0307

0.2508

0.3210

0.0892

0.0456

NDVI 20.91

35.35

1.88

5.00

0.8354

0.7544

0.0478

0.0471

0.1724

0.4390

0.0806

0.0501

Again we see that{1, 2, 3, 4,NDVI} give the best results.
The Gauteng dataset (band 4 was the best band) performs
better than the Limpopo dataset (band 1 performed the best),
since vegetation and settlement is more separable in Gauteng
(a lot of residual vegetation is found in the settlement class of
Limpopo) [12].

TABLE II: Band differencing applied on MODIS data

MODIS band δ PD PFA
Gauteng
Limpopo

1 1.8874

2.4379

0.6133

0.4957

0.2247

0.0788

2 0.7477

1.7553

0.9613

0.4615

0.8986

0.3634

3 1.5350

2.2673

0.7790

0.5641

0.3919

0.0969

4 1.5681

2.0085

0.7182

0.6410

0.3311

0.1844

5 0.7918

2.1682

0.9392

0.4188

0.8733

0.1777

6 2.7407

2.4049

0.2210

0.3761

0.0591

0.0888

7 1.7222

1.6011

0.6796

0.8120

0.2787

0.4502

NDVI 1.5185

1.7828

0.8122

0.7778

0.4645

0.3180

The best possible results for the band differencing scheme
is given in TableII from which it is evident that CUSUM out-
performs band differencing. The band differencing approach
does not perform well in the Gauteng case study (band 4
performed the best), probably because band differencing needs
high spatial correlation to be effective. In the Limpopo case
study (NDVI performed the best), the band differencing does
not perform comparatively worse when compared to CUSUM,
since the Limpopo data set contains a larger amount of spatial
correlation.

VIII. C ONCLUSION

In this paper, a simple but effective land cover change
detection algorithm was presented. Firstly in an off-line opti-
mization phase the CUSUM thresholdh that shows the highest
PD and lowestPFA is determined, for each band. Second, in the
operational phase, the time-series CUSUM statistic of bandb is
computed per pixel and is compared to the thresholdh to yield
a change or no-change decision. The method was effectively
used to determine the location of new settlement developments
in the Gauteng and Limpopo provinces of South Africa. The
CUSUM algorithm outperformed band differencing in both
case studies. For classes containing a definite long term trend,
the algorithm could be adapted to construct 45 densities for
each year.
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