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ABSTRACT

The aim of this paper is to outline a preliminary investigation into an energy optimisation model with the aim of
eventually being incorporated into a real-time driver assist program. A significant portion of the South African
economy is sustained by a large and extensive mining industry. Integral to sustaining the mining economy is
the transport of mined raw material via freight rail over large distances, typically from the mines to central
distribution or processing centres. Due to the heavy tonnage and long distances an enormous amount of energy
is required. Using classical mechanics, an energy usage model for typical freight trains based on available
tractive power and typical rolling stock resistances (curvature, friction, gravity etc) is considered. The aim is
to find the optimal velocity profile over the full distance of the intended track for which the total locomotive
energy usage is reduced. We will illustrate the robustness of the proposed model to predict optimal operational
velocity profiles for a number of interesting scenarios, many supported by similarly related analytical studies.
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INTRODUCTION

The large amount of energy used in the operation of heavy haul freight trains have led to much research into
energy efficient operation [1, 2, 3, 4, 5, 6]. Some of the earliest literature on optimal train control dates back
to the 1960’s when Ishikawa [3] determined the optimal control for a train traveling along a flat straight track.
It was found that by maximising the Hamiltonian of the control problem (assuming that the control variables
follow linear relationships with simple bounds) it can analytically be shown that the optimal energy control for
a train on a flat track starts with a period of maximum power (maximum acceleration) followed by a period of
partial power (cruising), a period of no power or braking (coasting) and finally a period of maximum braking,
as illustrated in Figure 1(a). As the trip time is reduced, the cruising phase will decrease until it disappears,
leaving only the full power phase, the coasting phase followed by maximum braking, as illustrated in Figure
1(b).
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(a) (b)

Figure 1. (a) An illustration of the various phases, or switching points between the different driving phases for
optimal control on a flat track. (b) The analytical profile for various control phases on a flat track at different
times for optimal train control, images taken from Su et. al. [7] and Howlett et. al. [2] respectively.

In general, minimising the total energy for a trip within a given time frame can be fairly complex. The
terrain typically consists of a number of inclines, descents and curves. Furthermore, for safety reasons, either
in regions of sharp corners, or steep track gradients, speed limits are imposed. To further complicate matters,
locomotive technology does not produce constant tractive power or braking force; both traction and braking
efficiencies are typically functions of velocity, illustrated in Figure 2 for an E14 locomotive.

(a) (b)

Figure 2. Maximum available (a) tractive and (b) braking effort for an E14 locomotive as a function of velocity,
images produced from Lombard [8].

To enable application of optimal train control in practice, the analytical studies have been extended to include
speed limits, variable traction efficiencies and variable gradients [2]. These analytical studies are limited to
lumped mass models. While evidence tends to suggest that by minimising energy one naturally improves the
overall train coupling forces, to date there has been no formal attempt to optimise both in train coupling forces
and energy usage. In an attempt to improve the cost effectiveness and meet increasing scheduling constraints
heavy haul operators are continuously increasing the length of trains. This leads to higher inter-train coupling
forces, increased wear and an increased risk of derailment. Longer trains further pose the possibility of a single
train simultaneously experiencing a multitude of different track conditions. For example, the lead portion of a
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train may be traveling downhill while the trailing end of the train is still traveling uphill, see figure 3.
Minimising energy usage, while simultaneously including coupling forces, implies that analytical methods

are no longer strictly suitable. To adopt such a multi-parameter optimisation problem would require the use
of non-linear optimisation methods. Some early attempts have focused on using evolutionary optimisation
methods. Consider for example the work presented by McClanachan et al. [9] who used genetic algorithms
(GA) to optimise for the optimal speed profile. The study focused on a preliminary investigation illustrating
that GA can provide speed profiles closely matching those predicted by analytical methods. The results appear
sufficiently promising to warrant further investigation by including coupling forces.

GA algorithms are general purpose directed random optimisation algorithms which employ no special
knowledge of the problem, to determine optimal solutions. They typically require several tens of thousands
of function evaluations, similar to other evolutionary methods and related methods, such as ant colony optimi-
sation, particle swarm optimisation or cuckoo search; more information on these methods can be found in a
review by Wahab et. al. [10]. In turn these evolutionary methods can be extremely expensive (orders of several
hundreds to thousands of CPU hours depending on the computational complexity of the function evaluations,
and the profile of the design space). Due to these computational constraints it is currently infeasible to converge
to machine precision, often resulting in highly sporadic, unrealistic results.

In this paper we aim to pose an argument for gradient based optimisation methods. Gradient based methods
are classified as non-linear optimisation methods, and utilise information pertaining to the gradients and gradient
landscape of a cost function. They can therefore be considered as directed search algorithms and if the gradients
associated with a cost function are available, typically require significantly fewer iterations to reach convergence
than evolutionary methods.

Figure 3. Long train on a hill experiencing different forces.

PROBLEM FORMULATION

The general non-linear optimisation problem can be posed as [minimise f(x)], subject to a number of equalities
and inequality constraints, namely b(x) ≥ 0 and c(x) = 0.

The optimisation problem can be formulated as finding the sequence and magnitude of locomotive power
which completes a given trip, over a given terrain, within the specified time limit, while minimising the overall
energy used. We define energy as the integral of locomotive traction, f(x)

E(x) =

∫
f(x)dx, (1)

where x is the train location. The problem is subject to a number of constraints which can be summarised as

• Total travel time
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• Speed limits

• Maximum available power (traction and braking), which varies with velocity

• Maximum rail-wheel adhesion (prevent slipping)

• Coupling forces.

The locomotive traction forces can be defined by

FLoc + Fr + Fcv +mtotga = mtota, (2)

where FLoc is the force exerted by the locomotives, mtot represents the total mass of all the locomotives and
wagons within the train [11]. a represents the acceleration, Fr the lumping of all the rolling resistances, ga the
force due to gradient changes and Fcv represents the resistances due to curvature. The rolling resistance term
Fr includes the resistance due to airflow friction losses and wheel rail frictional losses. Typically Fr takes the
following form

Fr = m(c0 + c1v + c2v
2), (3)

where the constants c0,1,2 are typically empirically/experimentally determined based on the given locomotive
and wagon properties as well as the track configuration. Slope and curvature are illustratively shown in Figure
4 and the associated losses/forces due to inclines or curvature can be approximated as ga = sin(θ) where θ is
the angle of the slope and curve resistance as Fcv = 0.004mD where D = 0.5dwheelbase/R. R here represents
the radius of curvature of the track curve.

Figure 4. Simplistic illustration of losses due to gradients (slopes) and curvature [14].

Most gradient based methods require smooth, twice differentiable and continuous function definitions. Prob-
lem formulation is therefore of critical importance. Our design variables are therefore chosen to be velocity.
While counter intuitive, this results in a relatively well behaved problem formulation. The track is discretised
into a number of n segments. At each discrete location xi, we assume we have available the track height hi,
and for each segment between two respective positions we know the track radius of curvature Rj . At x0 and
xn the starting and final velocities v0 and vn are known. The unknown velocities {v1 : vn−1} are therefore
the velocities to be solved for, or the so called design variables, dV , which minimises the total energy usage.
Therefore, given a series of design variables dV = {dV1, dV2, ..., dVn−1} , our known velocities within a given
iteration are given by

v = {v0, dV1, dV2, ..., dVn, vn} . (4)

The cost function can be computed for each section of the discredited track (∆xj)
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∆xj = xi+1 − xi for i = 1, 2, ..., n vaverage,j = vi+1+vi

2 ,

∆tj =
xi+1 − xi
vaverage,j

aj =
vi+1 − vi

∆tj
,

∆hj =
hi+1 + hi

2
ga,j = sin(arctan(

∆hj
∆xj

))9.81,

Fr,j = m(c0 + c1vi+1 + c2v
2
i+1) Floc,j = mtotal(aj + Fr,j + ga,j + Fcv,j). (5)

Given a guess for velocities at each section of the track we can compute the locomotive traction and breaking
forces Floc needed to achieve the given velocities dV.

Floc would be positive if traction is applied and negative if braking is present. The convergence rates of
gradient based methods reduce when handling highly skewed landscapes. We therefore normalise the forcing
function to be between {0, 1} . The force function and braking function b is then defined as

fi =

{
Floc,j/P if Floc,j>0,

0 if Floc,j ≤ 0,
(6)

and

bi =

{
Floc,j/B if Floc,j ≤ 0,

0 if Floc,j <0,
(7)

where P is the maximum available traction force to the locomotive and B is the maximum available braking
force. It is perhaps important to note that in typical trains all wagons also apply braking forces. For long trains
when using pneumatic braking, the braking signal may take a long time to propagate along the length of the
train, which is currently being omitted. The cost function to be optimised then becomes

cost function =

n−1∑
j=1

fj∆xj . (8)

Speed limits are handled as upper and lower bounds on the set of design variables dV and therefore can be
handled by most optimisation algorithms.

Speed limits on tracks are typically imposed for safety reasons either in regions of sharp corners or other
environmental factors which requires due diligence. In the absence of speed limits, it is possible to obtain
estimates of maximum cornering speeds via simple summation of centrifugal forces and gravitational forces
acting on a wagon running on a superelevated track with cant angle θ, see figure 5 [12]. The critical, or
maximum velocity for a given wagon can be found when the torque due to centrifugal force equals the torque
due to the gravitational force, and is described as

vmax =

√
gRl sin2 θ

cos θ [h cos θ + l sin θ]
. (9)

g represents the gravitational acceleration, R the radius of curvature of the section of track, l is half the gauge
of the track and h the height of the center of gravity of the wagon/locomotive above the rail.
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(a) (b)

Figure 5. (a) Forces acting on a wagon on a super-elevated track used to compute the critical cornering speeds
and (b) the schematic representation [12].

The remaining constraints on the system, namely the maximum allowable time constraint, maximum force
and braking constraint would mathematically be posed as

ttotal ≤ tmax,

fj ≤ fmax(v), bj ≤ bmax(v), for j = 1, 2, ..., n− 1,

fj>0, bj>0. (10)

µ represents the adhesion required to apply the prescribed FLoc without slipping. The adhesion is typically
dependent on the track conditions where dry track conditions will have more adhesion available than wet tracks.

The traction and braking constraints are posed as functions of velocities (i.e. fmax(v)) since typical lo-
comotive traction efficiencies are dependent on velocity and is not constant (as often assumed in literature).
Alternative cost functions can be defined to optimise for minimum trip time, which becomes

minimise T (x) =
n−1∑
j=1

tj . (11)

For a multi-object optimisation to minimise for a combination of trip time and energy usage the cost function
will become

minimise ET (x) = ω

(∫
f(x)dx

)
+ (1− ω)

n−1∑
j=1

tj , (12)

where ω is a weighting factor to give preference to either energy or time. Typically, because energy used
and travel time length scales differ, it would be advisable to include an upfront scaling factor to provide some
equality between energy and time. Optimising for minimum trip time and the multi-parameter energy and time
optimisation are both potentially useful for trip scheduling.

Due to the large amount of constraints, we made use of sequential quadratic programming (SQP). SQP
is useful for solving nonlinear optimisation problems, where the problem is transformed into a succession
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of quadratic optimisation problems, with a quadratic objective and the linear constraint system consisting of
equalities and inequalities. A detailed description of SQP can be found in the work by Bonnans et. al. [13].

RESULTS

To highlight the ability of the proposed energy optimisation model on a number of scenarios are tested. It has
previously been shown [3] that the optimal energy profile can be summarised (following Figure 1) as a period
of acceleration at maximum power, followed by a period of partial power with no braking (cruising), a period
of no power and no braking (coasting) and finally maximum braking. As the trip time is decreased the period of
partial power disappears, thereby only having three phases of maximum power, coasting and finally maximum
braking. And lastly, for shortest trip time there is only a maximum power phase, followed by maximum braking.

To test whether our non-linear optimisation formulation can re-produce these optimal energy curves, we
analyse a train with 1 locomotive towing 20 wagons loaded with 100 tonnes each. The locomotive has a
constant power output of 400kN and constant braking tractive effort of 500 kN. The total trip is 10 km and is
discretised into 100 segments. The optimisation algorithm reproduced the expected analytical results, shown in
shown in Figure 6 for different trip times. These similar results verify that our model applied to train on a flat
track compares well to previous authors work. Some of the constants and values used are given in Table 1. [14]

Table 1: Values for constants.

Constant Assigned value

c0 7.6558x10−3

c1 1.08x10−4

c2 1.4915x10−5.

(a) (b)
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(c)

Figure 6. The optimised trip with a single locomotive pulling 2000 tonnes on a flat terrain for a time limit of
(a) 25 min, (b) 10 min and (c) minimum trip time (7.3 min).

In Figures 6-8 the top subplot shows the train speed versus distance (the position on the track) with the track
elevation versus distance in the second subplot. The third and fourth subplot shows the traction and braking
force respectively, versus distance.

An important distinction is that real locomotives do not have constant tractive and braking efficiencies.
For an E14 locomotive (using the maximum traction and braking curves as a function of velocity) we obtain
a velocity and tractive effort profile, as shown in Figure 7, for minimum trip time, using the same track and
number of wagons as used to generate the results in Figure 6. Following the expected profile of maximum
power followed by maximum breaking, the optimisation algorithm successfully limits the maximum available
tractive effort as a function of velocity. When comparing the results using the constant (Figure 6(c)) and velocity
dependent (Figure 7) efficiencies there is a clear difference between the application of power and braking to get
the same velocity profile.

Figure 7. The optimised trip with a single locomotive pulling 2000 tonnes on a flat terrain for a E14 locomotive
with variable maximum available traction and braking.
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Finally a test track with steep gradients is considered, since typical tracks have numerous hills and descents.
Following the work by Howlett et. al. [1, 2], it is expected that the optimal energy profile across a small
hill would be to maintain cruising velocity by applying partial power to get over the hill. The gradient based
optimisation can accurately predict this behavior as well. Consider here a 16km track with a 20m height change
between 8 to 10km. This relates to a 1:100 steep banking gradient. Here we analyse a train with a locomotive
with maximum constant power of 400kN, towing 2000 tonnes, where the optimal velocity profile for a 30 minute
trip is shown in Figure 8(a). Notice how the cruising velocity is maintained by the application of partial power.

A really interesting problem occurs the moment an incline is too steep given the available power. In order
to overcome the incline gradient requires application of power prior to the steep gradient, allowing momentum
to carry the mass of the train over the incline. To illustrate the capability of the gradient based optimisation
algorithm to cope with this complex situation we use the same track with the locomotive now towing 6000
tonnes. The results for this simulation is shown in Figure 8(b). The application of power prior to the hill is clear
in Figure 8(b) as well as the application of more tractive power when compared to the tractive power application
in Figure 8(a).

(a) (b)

Figure 8. (a) Inclined track with train pulling 2000 ton and (b) pulling 6000 ton.

CONCLUSION

In this paper we outline a preliminary investigation into a gradient based energy optimisation model with the
aim of eventually being incorporated into a real-time driver assist program.

It was established that for a flat terrain the optimal control strategy starts with maximum acceleration at
maximum power, followed by a period of cruising, a period of coasting and finally maximum braking. The
cruising period disappears with decreasing total trip time, so that there is only three phases: maximum power,
coasting and maximum braking. For the shortest trip time there is only a maximum power phase, followed
by maximum braking. When the terrain has steep gradients the application of additional power is necessary,
while for very steep gradients the application of additional power may be necessary before the gradient. The
numerical model mirrors the behaviour from literature for each scenario, which verify that our model applied to
a train on a flat track as well as steep gradients, correlate well with the work of previous authors.

In this study the train has been described mathematically as a lump mass. This lump mass model has laid the
groundwork for further investigation into integration of the coupling forces between the different locomotives
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and wagons by using a longitudinal dynamics model.
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