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Abstract—The ability to predict the importance of an image
is highly desirable in computer vision. This work introduces
an image ranking scheme suitable for use in video or image
sequences. Pairwise image comparisons are used to determine
image ‘interest’ values within a standard Bayesian ranking
framework, and a Rauch-Tung-Striebel smoother is used to
improve these interest scores. Results show that the training
data requirements typically associated with pairwise ranking
systems are dramatically reduced by incorporating temporal
smoothness constraints. Experiments on a coastal image dataset
show that smoothed pairwise ranking can provide ranking results
equivalent to standard pairwise ranking with less than half the
training data.

I. BACKGROUND AND RELATED WORK

Video cameras are increasingly deployed in exploration,

monitoring and surveillance applications. These cameras pro-

duce vast amounts of information, which needs to be con-

densed into manageable quantities for both storage and human-

operator evaluation. While data compression can address the

former, this does not aid operators, who are often faced with

the daunting task of analysing lengthy video sequences. As

a result, a system that automatically flags interesting images

or information and presents this to an operator in a concise

manner is highly desirable.

In the case of video or image sequences, a mechanism by

which only interesting information is stored would not only

help to remedy data storage challenges, but be particularly

useful in reducing the workload of data end-users, if useful

summaries or storyboards of the information obtained could

be provided. This is particularly challenging though, in part

due to the subjective nature of the term ‘interesting’.

It can be hard to define ‘interesting’ images, as this is typ-

ically context dependent. A study investigating the feasibility

of classifying images by scientific value to address bandwidth

constraints on a Mars rover [1] has shown that domain experts

from different fields value and rank images differently. Infor-

mation theoretic approaches to novelty detection have been

proposed previously [2], but these are typically measure and

data dependent. For example, ranking images using entropy

is unlikely to flag images of interest to humans, as images

with high texture content will always have larger information

content than images with only a single centred object, yet it

is highly likely that the latter is more useful to an operator.

Fig. 1. A pairwise comparison website is used to source image comparisons
suitable for use in a Bayesian ranking system. For the sediment transfer studies
example used in this paper, the right image is preferable, because regions of
wet and dry sand are more easily distinguishable than those in the left image.

Despite this difficulty and the potentially subjective defi-

nition of interest, a great deal of work has been conducted

in an attempt to rank the value of information. A common

definition of interest relates to novelty, with the frequency of

occurrence of an event or observation determining its interest

value. Novelty detection is relatively well studied and detailed

survey papers can be found on the topic [2].

However, information of interest to an end-user not only

includes unique observations (novelty), but also observations

that are most representative of the process or environment

observed. For example, film makers would probably prefer a

storyboard summary of a film to a collection of unique frames

sampled from it. In the video domain case, end-users may

value images of objects, people or animals more than an image

of an unusually shaped cloud (unless of course, they were

meteorologists). In addition, users may prefer good quality

images over a blurry or overexposed image, but the detec-

tion of suspicious activity in a surveillance camera probably

outweighs a user’s desire for image quality.

The subjective nature of image ranking means that it is

unlikely that an image interest detection algorithm can be

designed from the bottom up, potentially incorporating image

metrics for novelty, representativeness, aesthetic aspects and

so on. Instead, a far more sensible approach would be to let

operators in a specific domain label a selection of images that

they find interesting and have a system that uses this to learn

about the task at hand.



This is equally challenging though, as the subjective nature

of interest makes it hard to design a labelling mechanism

suitable for capturing the intricacies of interest, short of

arranging focus and discussion groups, which are unlikely to

produce data in the volumes required for machine learning.

In an attempt to remedy this, crowd-sourcing systems that

use relative image comparisons to infer user preference have

been developed [3]. Here, pairwise image comparisons are

used to rank images according to user preference. Pairwise

ranking systems are often used for image ranking tasks be-

cause they can provide more stable and useful rankings than

individual image-based scoring systems [4].

Pairwise ranking systems use binary comparison test results

to infer an underlying rank and have been applied to a wide

range of applications, including recommender systems [5],

software simulation component evaluation [6], in sport [7],

online gaming [8] and advertising [9].

An obvious approach to ranking using pairwise comparisons

is to simply count the number of victories obtained by each

compared item. Unfortunately, this ignores information about

which items were compared with one another (a number

of wins against an exceptionally poor opponent does not

necessarily mean a player is skilled) and may fail to account

for performance variability. Ranking systems that account for

these factors include the Elo chess rating system [10] and

TrueSkillTM [8], a Bayesian ranking scheme extension to Elo.

Pairwise comparisons are frequently used for image ranking

tasks. For example, CollaboRank [11] uses pairwise com-

parisons to rank images according to a number of case-

based queries (positiveness, perceived threat level, celebrity or

film popularity), the Matchin approach [3] uses a two player

pairwise comparison game to extract a global image ‘beauty’

rank and Streetscore [12] predicts the perceived safety of street

scenes using binary answers to the question “Which place

looks safer?”

Pairwise comparisons have also been used to rank abstract

paintings according to the emotional responses they elicit [13],

to evaluate the representativeness of images extracted from

twitter timelines [14], and to determine appropriate facial ex-

pressions for portraits using images extracted from short video

sequences [15]. Hipster wars [4] uses a pairwise comparison

game to source style judgements to train an image-based style

classifier in a fashion application. Unfortunately, the crowd-

sourcing process used to obtain pairwise comparison results

can be time consuming and expensive [16].

This work shows how the training data requirements for

ranking can be reduced in ranking tasks where images to be

compared are sampled from video or image sequences. This

is often the case in exploration, monitoring and surveillance

applications. This paper shows how the sequential nature of

video sequences allows the addition of a temporal smoothing

step to the traditional ranking process. Once ranked, additional

rank prediction algorithms can be developed to identify task

specific image features that are of importance to end users,

and predict the interest value of previously unseen images.

The proposed approach is illustrated using a coastal moni-

toring application, where pairwise image comparisons (Figure

1) are used within a Bayesian ranking scheme to infer interest

values for images in the corpus, and these interest values

smoothed temporally using a Kalman smoother. Results show

that this dramatically reduces the training data requirements

to predict image rank.

The remainder of this paper is organised as follows. Section

II describes TrueSkillTM and Kalman smoothing, showing how

these techniques can be applied to image ranking in video

sequences. Section III introduces an image ranking task in

the coastal science domain, and presents experimental results

obtained when applying the proposed ranking system to this

dataset. Finally, conclusions and recommendations for future

work are provided in Section IV.

II. METHOD

The proposed approach to image ranking combines a stan-

dard pairwise ranking scheme and Kalman smoothing. These

subcomponents are briefly described below.

A. Pairwise ranking using TrueSkillTM

As a baseline, this work uses the TrueSkillTM Bayesian

ranking scheme [8] to compute image interest scores.

TrueSkillTM is a probabilistic skill rating system developed

for online gaming that assumes players in a game have

respective skills, w1 and w2, and that game outcomes can be

predicted by the performance difference between skills, subject

to Gaussian noise effects.

Let

t ∼ N (s, 1) (1)

denote the performance difference between two players, with

s = w1 −w2 the skill difference and the standard normal dis-

tribution accounting for potential player inconsistency. Using

this model, game outcomes are given by y = sign(t), with

a positive y indicating a win for player 1, and a negative y

indicating a loss.

Treating skill estimation under this model as a Bayesian

inference problem provides a posterior over skills,

p(w1, w2|y) =
p(w1)p(w2)p(y|w1, w2)∫ ∫

p(w1)p(w2)p(y|w1, w2)dw1dw2

, (2)

where p(wi) = N (µi, σ
2
i
) is a Gaussian prior over player

skills and

p(y|w1, w2) =

∫ ∫
p(y|t)p(t|s)p(s|w1, w2)dsdt (3)

the likelihood of a game outcome given skills. The model

above is easily extended to multiple players by chaining games

together in a large graph. This is illustrated graphically in the

factor graph of Figure 2.

Equation (2) is an intractable posterior, but can be estimated

numerically. Expectation propagation [17] is used for inference

in the original formulation.
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Fig. 2. The TrueSkillTM factor graph is extended each time a game is played,
adding a connection between players.

B. Temporal Smoothing

Temporal smoothing refers to the process whereby knowl-

edge of the temporal behaviour of a state is used in conjunction

with a set of noisy measurements to produce an improved

estimate of the underlying state.

Let z1:K denote a set of noisy measurements obtained at

time steps 1 . . .K, and assume that our goal is to estimate

an underlying state, xk. If the state change is Markovian,

we can use knowledge of the transition density, p(xk|xk−1),
together with an observation model, p(zk|xk), within a se-

quential Bayesian smoothing framework to provide a posterior

distribution over the state, p(xk|z1:K), conditioned on the

sequence of measurements.

Smoothing problems of this form can be solved by combin-

ing a sequential filtering operation with a backward smoothing

stage [18]. Filtering estimates the density over the state, xk,

conditioned on measurements, z1:k, by combining a prediction

step,

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1, (4)

with an update stage,

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)∫
p(zk|xk)p(xk|z1:k−1)dxk

. (5)

The Kalman filter [19] provides an analytical solution to

problems of this form when prior, transition and observation

densities are Gaussian. Kalman filtering only considers histori-

cal measurements (up to time step k). Information about future

observations is incorporated using backward pass to provide a

density over the smoothed state,

p(xk|z1:K) =

∫
p(xk+1|xk)p(xk|z1:k)

p(xk+1|z1:k)
p(xk+1|z1:K)dxk+1.

(6)

The Rauch-Tung-Striebel (RTS) smoothing recursions [20]

provide an analytical solution to smoothing problems when

prior, transition and observation densities are Gaussian.

C. Image ranking in video sequences

This section shows how TrueSkillTM and RTS smoothing

can be used for image ranking. Although developed for online

gaming, TrueSkillTM is directly applicable to image ranking

using pairwise comparisons.

Here, games are image comparisons presented to a human

labeller, and game winners are the images selected as prefer-

able in each comparison. The inferred skills can be considered

to be image ‘interest’ scores, with images of greater interest

to a user more likely to be preferred in pairwise comparisons.

TrueSkillTM makes no assumptions about the underlying

process producing images, treating images independently for

the purposes of scoring. However, in many applications, the

images to be ranked are captured in sequences or video.

As a result, temporal interest consistency is to be expected

in a sequence, as interest scores for subsequent images are

unlikely to change significantly. The posterior interest scores

inferred using the TrueSkillTM algorithm are normally dis-

tributed, parametrised by a mean interest, zk and correspond-

ing uncertainty, Rk, and consequently perfectly suited for fixed

interval smoothing.

Modelling the change in image interest over subsequent

images in a sequence as a Gaussian random walk,

p(wk|wk−1) = N (wk|wk−1, Q), (7)

where Q is a tunable transition uncertainty (Q = 5e−5
gave good results in experiments), allows for fixed interval

smoothing using a Rauch-Tung-Striebel (RTS) smoother [20].

Here, the goal is to find the posterior density over image

interest, conditioned on all image interest measurements in a

sequence, p(wk|z1:K). Initially, RTS smoothing uses a Kalman

filter [19] forward pass step to calculate

p(wk|z1:k) = N (mk, Pk). (8)

For the Gaussian random walk used here, the simplified

recursive Kalman filter update equations

m̂k = mk−1, (9)

P̂k = Pk−1 +Q, (10)

mk = m̂k + P̂k(P̂k +Rk)
−1(yk − m̂k), (11)

Pk = P̂k − P̂k(P̂k +Rk)
−1P̂k, (12)

are used to find filtered means and variances, while the RTS

backward pass recursions are

m̃k = mk + PkP̂
−1

k
(m̃k+1 − m̂k+1), (13)

P̃k = Pk + PkP̂
−1

k
(P̃k+1 − P̂k+1)PkP̂

−1

k
, (14)

resulting in the posterior over image interest values in the

sequence,

p(wk|z1:K) = N (m̃k, P̃k), (15)
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Fig. 3. Interest score correlation with the baseline image interest predictions
grows as the training set increases in size. Shaded traces indicate 1-sigma
curves.

conditioned on the TrueSkillTM estimates. This smoothed

density incorporates the temporal interest consistency likely to

be present in video, thereby providing an improved interest es-

timate. The filter is initialised with large uncertainty, P0 = 109

and m0 = z1.

III. AN EXPERIMENTAL CASE STUDY

The proposed approach to image interest ranking was tested

on a sequence of 1900 images captured in Fish Hoek, Cape

Town. These images were captured for a sediment transfer

study, where the goal was to segment and label image areas

as either wet or dry sand, so as to study the motion of sand

over time.

Unfortunately, this segmentation process is challenging, as

it can only occur when certain conditions are met: the image

is captured in daylight; the tide must low enough for sand

regions to be visible; wave swash needs to be in the backwash

stage and glare should not interfere with the regions to be

labelled. As a result, an automated input stage that ranks

images according to their suitability for sand segmentation is

desired.

As a baseline, 10000 image pairwise comparisons, G, were

performed by a domain expert1 using the web interface shown

in Figure 1. These comparisons were augmented by adding

all possible (774336) day/night image combinations, Gdn, in

the dataset to produce a baseline comparison set, Ga. Images

captured at night are easily detected, and guaranteed to be less

important than daylight images, so provide a useful mechanism

to introduce connections into the TrueSkillTM factor graph,

thereby reducing the uncertainty in image interest estimates.

Figure 3 shows the Pearson correlation coefficient, ρ, calcu-

lated between baseline image interest means estimated using

Ga and those estimated with an increasing training set size.

Image interest scores were calculated by selecting a subset

of comparisons, Gs, at random without replacement from the

1The unfortunate author of this paper, who had to label 10000 image pairs,
likes to consider himself a domain expert.
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Fig. 4. The prediction accuracy obtained for each method increases as the
training set size increases. Accuracy was tested on 2000 randomly selected
comparisons held out from the labelled corpus (G).

full set of 10000 pairwise comparisons (G) and applying

TrueSkillTM Bayesian ranking with and without smoothing.

Experiments were repeated 100 times for 100 increasing subset

sizes to produce the shaded error trace in Figure 3. It is

important to note that the correlation after 10000 training

comparisons is not unity, because the baseline skills were

calculated using the augmented comparison set (Ga), which

includes day/night comparisons.

It is clear that smoothing dramatically reduces the training

set size required, with smoothed ranking only requiring 3743

comparisons to achieve results equivalent to those obtained

using TrueSkillTM and 10000 comparisons. This can also be

observed in Figure 4, which shows the prediction accuracy,

α =
Number correct predictions

Total number comparisons
, (16)

obtained when 2000 previously unseen comparison results

(selected at random from G) are predicted using the posterior

interest means obtained for TrueSkillTM and smoothed ranking.

Here, only 4368 comparisons are required to obtain equivalent

results to standard Bayesian ranking on the full corpus.

As a sanity check on the proposed image ranking scheme,

Figure 5 shows images (10 evenly spaced samples) in rank

order as the training set increases in size. The rank becomes

more reliable as the training set increases in size, with night

images that were initially ranked above day images, sorted

correctly. This occurs quite rapidly when smoothing is applied.

After including a suitable amount of training data, higher

ranked images clearly exhibit properties of interest for the

sand segmentation task: images are captured in daylight; the

tide is quite low; and the best images show clear discrepancies

between wet and dry sand.

IV. CONCLUSIONS

This work has shown how the sequential nature of image

sequences allows the incorporation of a temporal smoothing

step into a standard Bayesian ranking framework, which re-

duces training data requirements significantly. As a result, the
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Fig. 5. The figure shows images drawn from the test corpus, and ranked using an increasing number of training samples. Images on the left are of low
interest, while images on the right are considered more important. The baseline images were ranked by applying TrueSkillTM using the augmented set of
comparisons (Ga).

proposed interest scoring process has the potential to produce

a substantial amount of training data for follow on interest

detection algorithms, from only a limited amount of hand-

labelled training data.

In future work, image interest scores will be used to train

a predictive model of image interest, and to identify domain-

specific image features that elicit human interest.
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