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Abstract—A feature selection algorithm that is novel in
the context of anomaly-based network intrusion detection is
proposed in this paper. The distinguishing factor of the proposed
feature selection algorithm is its complete lack of dependency on
labelled data, which is rarely available in operational networks.
It uses normalized cluster validity indices as an objective func-
tion that is optimized over the search space of candidate feature
subsets via a genetic algorithm. Feature sets produced by the
algorithm are shown to improve the classification performance
of an anomaly-based network intrusion detection system over
the NSL-KDD dataset. The system approaches the performance
attained by using feature sets derived from labelled training
data via existing wrapper and filter—based feature selection
algorithms.

Index Terms—Network intrusion detection, anomaly detec-
tion, feature selection, unsupervised, KDD dataset.

I. INTRODUCTION

In recent years, there has been a rapid increase in Internet
usage, which has in turn led to a rise in malicious network
activity. Network Intrusion Detection Systems (NIDS) are
tools that monitor network traffic with the purpose of rapidly
and accurately detecting malicious activity [1]]. These systems
provide a time window for responding to emerging threats
and attacks aimed at exploiting vulnerabilities that arise from
issues such as misconfigured firewalls and outdated software.

NIDS are typically classified as misuse—based or anomaly—
based systems [2], [3]]. Misuse—based systems monitor net-
work traffic for predefined patterns that characterise particular
threats [4], [5]. These patterns are generally defined by a
security expert only after the threat has been observed; hence,
misuse—based systems are unable to reliably detect novel
threats. Despite this drawback, misuse—based systems are
widely used in practice, due in part to their effectiveness
in detecting known threats (as defined with respect to true
positive and false positive rates).

Anomaly-based systems construct a profile of legitimate
or normal traffic patterns, and monitor network traffic for
deviations from the profile, which are subsequently classi-
fied as threats or intrusions [2], [[6]. While these systems
typically exhibit higher false positive rates than misuse—based
systems, they are under certain conditions able to detect novel
or emerging threats to a network. Due to this advantage,
anomaly—based systems have received considerable attention
in the research literature.

Several anomaly-based detection methods proposed in the
literature use machine learning techniques to construct pro-
files of legitimate network traffic [6], [7]. In unsupervised
anomaly detection methods, feature vectors are constructed
from information contained in individual network packets,
and an unsupervised learning algorithm is typically applied
to identify clusters of samples in the observed data [3], [8]].
Under the assumption that the majority of observed network
packets are legitimate, the larger clusters are typically labelled
as containing legitimate traffic, and outlying data samples are
labelled as intrusions.

Feature selection is, in general, an important step in the
preprocessing of data for machine learning applications. Due
to the richness of information contained in network traffic,
it is often possible to construct large feature vectors from
network packets, and as such the question of feature selection
requires particular attention in the context of network intrusion
detection [9]]. Previous approaches have performed feature
selection via optimization techniques, using the classification
accuracy of the NIDS on a subset of the data as an objective
function that is to be maximized [10], [11]]. While this
approach has been shown to improve the performance of the
system, it is unrealistic to assume that labelled training data is
available in operational networks, which precludes the use of
classification accuracy as an objective function in a practical
system.

In this paper, a feature selection algorithm that is novel in
the context of anomaly—based network intrusion detection is
proposed. It uses normalized cluster validity indices as an
objective function that is optimized over the search space
of candidate feature subsets via a genetic algorithm. The
distinguishing factor of this approach to feature selection is
its complete lack of dependency on labelled data. Feature sets
produced by the algorithm are shown to improve the classi-
fication performance of an anomaly—based network intrusion
detection system over the NSL-KDD dataset [12]. Despite
not requiring access to labelled data, the classification perfor-
mance of the proposed system approaches the performance
attained with effective feature sets that were derived using
labelled training data.

The remainder of this paper is set out as follows. In section
Il a review of existing anomaly detection methods based on
clustering, as used in the context of network intrusion de-



tection, is provided. This review also includes an overview of
previous work on feature selection and cluster validity indices.
The proposed feature selection algorithm and classifier are
presented in section The experimental setup is presented
in section and the results are presented and compared
to the performance attained by using previous feature sets in
section [Vl Conclusions are drawn in section [VIl

II. RELATED WORK

This section provides an overview of clustering algorithms
relevant to the domain of anomaly-based NIDS, feature
selection algorithms for NIDS in general, as well as cluster
validity indices.

A. Clustering algorithms for anomaly-based NIDS

Various clustering algorithms have been successfully de-
ployed in the context of anomaly—based network intrusion
detection in the literature. These include distance—based clus-
tering algorithms such as single-linkage clustering [8]], k-
means and k—medoids [13]], density—based clustering involv-
ing Gaussian mixture models (GMMs) and the expectation—
maximization (EM) algorithm [13]], [14], and algorithms that
combine clustering with some form of outlier detection [[15],
[16]. Syarif et. al. [[13] implemented several of these clus-
tering algorithms for anomaly detection in the NSL-KDD
dataset [12]], and compared the classification accuracy of these
algorithms to that of a misuse-based detection system that
makes use of supervised machine learning techniques.

Portnoy et al. [§] performed unsupervised network anomaly
detection on the KDD cup 1999 dataset [|17] using a variant
of single—link clustering. Under the assumption that legitimate
network traffic is more prevalent in the dataset than anomalous
traffic, a specified fraction of the largest clusters were labelled
as legitimate traffic, while the remaining clusters were labelled
as intrusions.

An anomaly-based network intrusion detection algorithm
that uses outlier detection and k—means clustering was intro-
duced in [15]. The dataset is first clustered using k—means,
and outlier scores are computed for each data sample based on
its nearest neighbour density and its proximity to each cluster.
Data samples with outlier scores exceeding a threshold value
are labelled as intrusions.

B. Feature selection algorithms for NIDS

Network traffic is rich in contextual information and as
such it is possible to construct high—dimensional feature
spaces for machine learning in anomaly-based network in-
trusion detection [9)]. While large feature sets often contain
useful information, there may exist a degree of redundancy in
certain features, while some features may prove unnecessary
for the purpose of detecting certain threats. Feature selection is
used to remove unnecessary or redundant features in a feature
space, which has the potential to improve the performance
of clustering algorithms and as a result the classification
accuracy.

Feature selection techniques in general can be divided
into two categories, namely filter techniques and wrapper
techniques [2[]. With filter techniques, features are selected
based on their relevance, which is quantified using some form
of statistical measure, such as information gain and degree
of correlation between the feature and the class label. While
filter techniques are independent from the learning algorithm,
these algorithms typically require access to labelled data to
compute the measure.

Wrapper techniques [ 18] use the performance of a machine
learning algorithm, when applied to samples over a candidate
feature subset, as a measure of the relevance of the feature
subset. Feature selection is carried out based on this measure;
typically, predictive accuracy is used as the measure. In this
case, the feature selection algorithm is dependent on the
availability of labelled data.

Unless stated otherwise, all of the feature selection algo-
rithms described in the remainder of this section were applied
to identify feature subsets in the KDD Cup 1999 dataset [|17].

1) Filter-based feature selection: Amiri et al. [19] pro-
posed three feature selection algorithms that are based on
maximizing the mutual information and correlation coeffi-
cients between features and class labels as measures. The
proposed iterative algorithms perform greedy selection of
features, in which the best remaining feature with respect to
the measures is selected during each iteration. The authors
used the feature selection algorithm in the context of misuse
detection via a support vector machine (SVM).

Zargari et al. [20] proposed two feature selection algo-
rithms. In the first algorithm, feature subsets are selected
based on correlation coefficients, where “’better” subsets have
features exhibiting higher degrees of correlation with class
labels and lower degrees of correlation with each other,
using a greedy algorithm to traverse the search space. The
second algorithm uses information gain as a measure of
feature relevance, and identifies feature subsets based on the
ranking of individual features. Feature sets obtained from
these algorithms were used to perform anomaly detection via
a random forest algorithm; the proposed system was reported
to outperform a feature set constructed through a majority
vote of the feature sets from related works [19]], [21[]-[24].

2) Wrapper—based feature selection: Li et al. [10] pro-
posed a gradual feature removal (GFR) method that was
applied to network intrusion detection. The method performs
feature selection using the averaged Matthews correlation
coefficient (MCC) as a measure of the relevance of a candidate
feature subset, as calculated after classification of a subset of
data over the candidate feature space using an SVM. Starting
with the full feature set, the proposed algorithm iteratively
removes the least relevant features from the set, until only
one feature remains.

The GFR method proposed by Li et al. [[10] was compared
against three related feature selection methods, namely the
feature removal method (FRM), the sole feature method
(SFM), and a hybrid of these methods. The FRM is related
to the GFR method in that the ranking of the candidate



features for removal in only the first iteration of the GFR
method is used. The SFM ranks features based on the average
MCC obtained from performing classification on only a single
feature at a time. The authors showed that the classification
accuracy attained by using the feature set from the GFR
method is an improvement over using the FRM and SFM
methods.

Dastanpour et. al. [11]] proposed an algorithm for wrapper—
based feature selection that uses a genetic algorithm (GA) to
perform a search over the space of candidate feature subsets.
The classification performance of an SVM, as applied to a
subset of the data over each candidate feature space, is used
as the objective function.

C. Cluster validity indices

Cluster Validity Indices (CVIs) are measures of how well
a clustering algorithm manages to identify and assign clusters
in a dataset. That is, CVIs are measures of the quality of a
clustering result. CVIs are typically defined on the criteria
of the compactness and separation of clusters in the feature
space [25]. Relative CVIs are often applied in the context
of parameter optimization for clustering algorithms (which
includes the selection of the number of clusters), in which
suitable parameter values are associated with higher cluster
validity scores [26].

A number of relative CVIs have been proposed in the liter-
ature [26]. The Davies—Bouldin (DB) index [27] is defined as
the average ratio of compactness and separation between pairs
of clusters. Compactness is defined as the average distance
between samples in a cluster and the centroid of cluster,
whereas separation is defined as the distance between two
cluster centroids.

The Calinski—-Harabasz (CH) index [28]] is defined as the
ratio of the average between—cluster distance (a measure of
separation), and the average sum of squared distances of
those samples belonging to each separate cluster (a measure
of compactness). A comparison of 30 indices performed by
Milligan and Cooper [26] showed the CH index as one of
the top performing indices in correctly identifying the true
number of clusters of synthetic datasets.

III. PROPOSED SYSTEM

In what follows, the proposed feature selection algorithm,
as well as the proposed classifier, are presented.

A. Feature selection algorithm

The concept behind the proposed feature selection algo-
rithm is that higher cluster validity indices, as individually
computed after clustering of a dataset over a population of
candidate feature subsets, are indicative of more relevant
candidate feature subsets. In turn, these candidate feature
subsets translate into improved classifier performance. Note
that the computation of the CVIs does not require labelled
samples (i.e. it allows for the construction of an unsupervised
feature selection algorithm).

A block diagram of the proposed feature selection algo-
rithm is presented in fig. [T}
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Fig. 1. The proposed feature selection algorithm.

The proposed feature selection algorithm uses a genetic al-
gorithm to search for candidate feature subsets as to minimize
the Davies-Bouldin (DB) CVI as the objective function. The
CVI is calculated after performing k—means clustering on the
dataset of interest, over each candidate feature subset. Each
block of the proposed algorithm is described in what follows.

1) Normalization: Feature normalization is performed in
order to avoid bias towards features with a broader range
of values during the clustering step. Numeric features are
normalized using a statistical approach according to the

expression

i,Z(_J) — (951(-]) — 5/ (69, 6))
where :%Ej ) is the normalized value of feature j of data sample
i, afl(-] ) is its original value, and where (/) and oU) are the
mean and standard deviation, calculated over all data samples,
of feature j.

Categorical features are normalized using a form of fre-
quency normalization [29], in which the total number of
occurrences of each category is divided by the total number of
data samples; each occurrence of a category is subsequently
replaced by the normalized count corresponding to that cate-
gory.

2) Clustering: Clustering of the normalized data samples
is performed over a candidate subset of features, as selected
by the genetic algorithm. The k-means clustering algorithm
[30] is used due to its property of convergence, and its com-
putational feasibility over larger datasets [2]]. The clustering
algorithm is terminated once the iterative assignment of data
samples to clusters ceases to change.

The k—means algorithm selects random samples in the data
set as initial cluster centroids. As the k—means algorithm
is sensitive to the choice of these initial values, k—means
clustering is repeated Cr times for each candidate feature
subset, where the value of Cr is chosen sufficiently large as
to increase the likelihood of finding a high quality clustering
result. The k—means algorithm is also repeated over a range
of values for the number of clusters C'y to use in k—means
clustering, producing a total of Cr clustering results for each
choice of Cy.

3) Cluster validity index calculation: The cluster validity
index used in this research is a normalized version of the
Davies—Bouldin (DB) cluster validity index (refer to section



[M-C). The DB CVI incorporates the average Euclidean dis-
tance between samples in a cluster and the centroid of the
cluster (a measure of compactness), as well as the pairwise
Euclidean distance between cluster centroids (a measure of
separation).

The calculation of the DB index involves a similarity
measure R; ; between each pair of clusters ¢; and c¢;, which

is defined as
S; + 85
Rij=—, 2
dij
where s; and s; are the compactness measures of clusters c;
and ¢;, and d; ; = d(v;,v;) is the Euclidean distance between
the centroids v; and v; of clusters ¢; and c;. The compactness
measure s; for cluster ¢; is defined as

1
i > d(w,v), 3)

TEC,

S; =

where |c;| denotes the number of samples in cluster ¢;.

The DB index, as calculated for a single clustering result
p in which Cy clusters were used (p = 1,2,...CR) over a
feature set F, is defined as

Cn
1
=1

where R;, i = 1,...,C}, is defined as

R; =

max

R; ; 5
j=1,...Cniitj 7 )

Note that the DB index is defined in such a manner that
lower values of the index are associated with better clustering
results.

The original DB index, as defined in eq. ] is biased towards
smaller feature spaces if the index is to be considered as a
measure for comparing clustering performance over feature
spaces with different cardinality (this is due to the fewer
number of dimensions over which the Euclidean distance
is calculated). Handl et al. [31] considered two approaches
towards using the feature cardinality to counterbalance this
bias. The first approach is to minimize the DB index value
while maximizing the number of features, whereas the second
approach is to normalize the DB index value using the number
of features, thus reversing the bias of the DB index to favour
higher dimensions (the new bias can be addressed by multi-
objective optimization). The latter approach was followed in
this research.

The normalized DB index value, NDB, is defined as

1
NDB(p,Cn, F) = WDB(% Cn,F) (6)

where |F'| denotes the cardinality (or number of features) in
the candidate feature subset I’ that was used during clustering.

With reference to fig. [I} the normalized DB index value
NDB(p, Cn, F') is computed for each of the Cpr clustering
results in which C'y clusters were used. The average value

of the index values pertaining to the use of Cp clusters,
NDB(Cy, F'), is subsequently computed as
1 &
NDB(Cn, F) = — NDB(p,Cn, F).
(Cn, F) o > (p,Cn, F)

p=1

(N

4) Genetic Algorithm: Genetic Algorithms (GAs) are
heuristic search algorithms that are based on principles of
evolution and natural selection [2]. GAs were selected for
use in the feature selection algorithm due to their property of
exploring a relatively wide region of the solution space [32].

Two configurations of the GA were considered in this
paper. In the first configuration, a GA is used to search
for feature subsets F' to minimize the objective function
NDB(Cn, F) of eq. [/} with a specified number of clusters
Cy that remains fixed during optimization. In the second
configuration, a multiobjective GA is used to optimize two
objective functions. The first objective function is the nor-
malized DB index NDB(Cy, F') of eq.[7} as was the case in
the first configuration. The second objective function is the
normalized cardinality of the candidate feature set F', given
by |F|/Tr, where Tr is the total number of features in the
original, full feature set. The specified number of clusters C'y
remains fixed during optimization.

The motivation behind the second configuration is from
an observation by Handl et al. [31]], in that the normalized
DB index of eq. []] is biased towards larger feature spaces.
To counterbalance this bias, multiobjective optimization is
performed in the second configuration to minimize both the
normalized DB index and the number of features in the
candidate feature set.

B. Classification

Classification is performed on the NSL-KDD dataset using
the optimized feature set returned by the GA. The nor-
malization and clustering steps of the classifier remains the
same as in the feature selection algorithm (refer to fig. []
and sections [[II-AT| and [II-A2). In particular, clustering is
again performed over a range of values for the number of
clusters Cy. Clusters are labelled based on the assumption
that legitimate traffic is more prevalent than traffic pertaining
to intrusions. Under this assumption, the proposed classifier
labels the M largest clusters of the dataset as containing
legitimate traffic samples, while the remaining clusters are
labelled as containing intrusions, similar to what was done
in [8]]. The value of M is varied from 1 to Cny — 1 for
each selected value of C), thereby obtaining a set of Cy —1
possible label assignments for each choice of the number of
clusters C' that are used during the k—means algorithm.

IV. EXPERIMENTAL SETUP
A. Dataset

The NSL-KDD dataset [[12] was used to evaluate the
performance of the proposed feature selection algorithm. This
dataset was derived from data packets contained in the KDD
Cup 1999 dataset [17], which were captured in a simulated



network environment; this network served as a test bed
for initiating and evaluating the impact of various types of
network intrusions. Several variants of the NSL-KDD datasets
are provided; in this research, the 20% training data subset
was used. The contents of the dataset are given in table [I] —
due to space limitations, the interested reader is referred to
[12] for details on the intrusion classes present in the dataset.
A standard set of features constructed for this dataset is listed
in table [[] (refer to [9] for further details on the features).

TABLE I
CONTENTS OF THE 20% NSL-KDD TRAINING DATA SUBSET

Class # Records % Records

Denial of service (intrusion) 9234 36.65%

Probe (intrusion) 2 289 9.09%

Remote to local (intrusion) 209 0.83%

User to root (intrusion) 11 0.04%

Legitimate 13 449 53.39%

Total 25192 100%

TABLE II
FEATURES OF THE NSL-KDD DATASET

1: duration 2: prot_type 3: service
4: flag 5: src_bytes 6: dst_bytes
7: land 8: wrong_frag 9: urgent
10: hot 11: num_fail logins 12: logged_in
13: num_comprom. 14: root_shell 15: su_attempted
16: num_root 17: num_file_cr. 18: num_shells
19: num_acc_files 20: num_outb_cmds 21: is_host_login
22: is_guest_login 23: count 24: srv_count
25: serror_rt 26: srv_serror_rt 27: rerror_rt
28: srv_rerror_rt 29: same_srv_rt 30: diff_srv_rt
31: srv_diff_host_rt 32: dst_host_count 33: dst_host_srv_count
34: dst_hst_smsrv_rt 35: dst_hst_diffsrv_rt | 36: dst_hst_smsrc_prtrt
37: dst_hst_srv_dhstrt | 38: dst_hst_serror_rt 39: dst_hst_srv_serr_rt
40: dst_hst_rerr_rt 41: dst_hst_srv_rerrrt

B. Parameter selection and alternative feature sets

Table [} lists the various parameters of the feature selection
algorithm and the classifier, as used during the experimental
work.

TABLE III
FEATURE SELECTION AND CLASSIFIER PARAMETERS
Clustering
Initialization Random
Distance metric Euclidean distance
Number of restarts (C'r) 100

Number of clusters (Cpn) 5-10
Genetic Algorithm

Individual 40-bit binary string
Population size 50

Number of generations 150

Minimum num. of features 15

Selected # of clusters (Cn) | 7

Selection method Stochastic uniform

Crossover type Scattered

Mutation rate Uniform at 1%

Stopping criteria Maximum generations reached
Avg change in obj. function le—*

The performance of the classifier, as used with the feature
sets obtained from the proposed feature selection algorithm,
was compared to the performance attained using several filter—
based and wrapper-based feature sets. These feature sets

are provided in initial four rows of table Note that the
wrapper—based feature sets were optimized for use with the
k-means algorithm, in order to permit a fair comparison.

V. RESULTS

The feature selection algorithm (fig.[T)) was used to produce
two feature sets. The first set, referred to as ‘GA-1" was
obtained by using the genetic algorithm to optimize the single
objective function, namely the normalized DB index (this
corresponds to configuration 1, as set out in section |l1I-A4).
The second set, referred to as ‘MOGA~-1’, was obtained by
optimizing both the normalized DB index as well as the
normalized candidate feature set cardinality (configuration 2).
The two feature sets obtained with the two configurations are
presented in the final rows of table

TABLE IV
LIST OF FEATURE SETS (FEATURE NUMBERS AS PROVIDED IN TABLE
Name Reference Features
Filter-1 (7) [120] 3-6,14,16,27,28,37,39
Filter-2 (11) 1201 3,5,23,24
Wrapper—1 (FRM) [10] 1,2,11,16,18,21,23,25-29,36,38,39
Wrapper-2 (SFM) [10] 3,23,25,29,35
GA-1 Novel 2-4,17, 8, 13-17, 21-29, 3841
MOGA-1 Novel 2-5,7-9,14,15,18,21-24,
27,28,38,39,41
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Fig. 2. Receiver operating curves for the proposed classifier, under various
feature subsets.

The proposed feature sets, as well as the alternative feature
sets of table were used as input to the classifier in order
to obtain receiver operating curves (refer to fig. [2). The figure
reveals that the proposed feature selection algorithm produces
feature sets that outperform the full feature set, when used
to perform anomaly detection. In addition, the performance
associated with the proposed feature sets approaches that
of the existing filter—based and wrapper—based techniques.
The proposed techniques are within 2% of the true positive
rate of the best performing filter technique, for false positive
rates exceeding 10%. Over the same range of the false
positive rate, the algorithm has similar performance to the



wrapper technique based on SFM, while the FRM-based
wrapper technique outperforms the proposed technique. The
proposed technique significantly outperforms the second filter
technique.

The results of figure [2| are significant, as the proposed
method does not rely on any knowledge of data labels,
whereas the competing filter—based and wrapper—based meth-
ods, as represented in the figure, do require knowledge of data
labels over a training subset of the data.

VI. CONCLUSION

In this paper, a feature selection algorithm was proposed
for use in the context of network anomaly detection via
clustering. The algorithm uses a genetic algorithm to optimize
a cluster validity index over a search space consisting of
feature subsets. The concept behind the proposed feature
selection algorithm is that higher cluster validity indices, as
individually computed after clustering of a dataset over a
population of candidate feature subsets, are indicative of more
relevant candidate feature subsets. The significant advantage
of the proposed algorithm is that it is does not require any
access to data labels or a training set in order to perform
feature selection (i.e. it is unsupervised), as compared to
existing feature selection techniques in the context of network
intrusion detection. Results indicate that feature sets produced
using the proposed technique correspond to classification
performance that approaches that of existing filter—based and
wrapper—based feature selection techniques.
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