

Characterization of respirable mine dust and diesel particulate matter

By

VJ MAHLANGU*
PP NDIBEWU
CJ PRETORIUS

PRESENTATION OUTLINE

- Introduction
- Objectives
- Experimental
- Results and Discussion
- Conclusion
- Acknowledgements

INTRODUCTION

Underground mining is often associated with the

release of:

Mine Dust

Respirable dust

{ Diameter ≤10 (µm) }

SiO2 (α-quartz)

Focus of this presentation

Affects mine employees

Diesel Exhaust Gas Phase & Particulate Phase

MAIN OBJECTIVES

The ultimate goal of the entire project is to:

- To determine eco-toxicity and radioactivity markers in DPM and respirable dust.
- Develop advanced analytical methods.
- Contribute to better engineering and occupational health monitoring system.

Develop/optimize methods to characterize DPM and respirable dust samples for the following:

- Crystalline compounds
- Common mineral analytes
- Particle size distribution
- Elemental Carbon (EC) and Organic Carbon (OC)
- Alpha-quartz concentration

DPM SAMPLES:

12 gold mine

12 chrome mine

DPM ANALYSIS(EC & OC)
(NIOSH 5040)
Destructive analysis on 1.5 cm2 specimen

PSD ANALYSIS

(Laser scattering)

Non-destructive on remainder of sample

QUALITATIVE ANALYSIS USING X-RAY POWDER DIFFRACTION

DUST SAMPLES:12 chrome mine only

ANALYSIS USING X-RAY POWDER DIFFRACTION (XRD)

QUALITATIVE

 Direct-on-filter (nondestructive)

PSD ANALYSIS

(Laser scattering)

Non-destructive on remainder of sample

Techniques used for analysis:

Fig 1: An LA950V2 Laser Light Scattering Particle Size Analyzer used for PSD analysis

Fig 2: D8-Bruker X-ray Powder Diffraction instrument fitted with a Lynxeye detector (used for XRD analysis)

Fig 3: A Thermo-Optical Analyzer (DPM) instrument with an FID detector used for DPM analysis

Fig. 4: Average of the distribution graphs for 12-gold mine DPM samples

Fig. 5: Average of the distribution graphs for 5-chrome mine DPM samples

RESULTS AND DISCUSSION:PSA

SUMMARY OF THE PSD RESULTS

2-PSD graphs were summarized as follows:

Table 1:

File Name	Samples	Mine	Ave. %PM10	Ave. D90 (μm)
Fig 4	DPM	Gold	67	21.70
Fig 5	Dust	Chrome	83	13.09

67% VOLUME RESPIRABLE

HIGHLY % OF RESPIRABLE DUST

☐ Gold mine DPM samples analysed on XRD

Fig. 6: XRD Scans of the 12 DPM samples (0-70)° 2θ

Chrome mine DPM samples analysed on XRD

Fig. 7: XRD scans of the 11DPM samples (0-70)° 2θ

Chrome mine dust samples analysed on the XRD

Fig. 8: XRD scans of 10 dust samples (0-70)° 2θ

Table 2: SUMMARY OF THE QUALITATIVE XRD RESULTS

	GOLD		CHROME		CHROME	
/	DPM SAMPLES		DPM SAMPLES		DUST SAMPLES	
	SAMPLE	PEAKS	SAMPLE	PEAKS	SAMPLE	MOST PEAKS
		OBSERVED		OBSERVED		OBSERVED
	DGM8	SiO ₂	DCM6	Lithium &	XCM1,7,3 &4	$O_{1.985}Y_{0.03}Zr_{0.97}$
١			\	Diopside		$H_{12}Mn_3N_2O_{16}P_4$
						MgO ₉ S ₂
7						LiMnO ₄
						Fe ₂ MgO ₄
1	DGM1-7	No Peaks	DCM1-5	No Peaks	XCM (most	Li _{0.87} Mn _{1.98} O _{4,} AlAsO _{4,}
1					samples)	Cr ₂ NiO _{4,} MgO ₉ S _{2,}
						$O_{1.985}Y_{0.03}Zr_{0.97,}$
						$H_{12}Mn_3N_2O_{16}P_4$
1				_		
L	DGM9-12	No Peaks	DCM7-10	No Peaks		

Table 3: SUMMARY OF ALL THE OBTAINED RESULTS

Analysis	Result Item	Gold	Chrome
	Average EC (mg)	0.140	0.463
DPM	Average OC (mg)	0.186	0.278
	Average %PM10	<mark>67</mark>	<mark>√83</mark>
	Average D10 (μm)	3.5	0.4
PSA	Average D90 (μm)	21.7	13.1
	DPM samples (Samples		
	with XRD line profiles)	1	1
Chrome Dust	DPM samples with		
samples highly	Crystalline structures	<mark>0</mark>	0
respirable	Average Quantitative α-		
XRD	quartz analysis (mg)	N/A	0.007

CONCLUSION

- EC and OC were found in both DPM groups.
- Observed respirable particles (%PM10) for the gold mine DPM samples were lower than that of the chrome mine dust samples.
- A number of mineral compounds were detected from the respirable dust samples.
- Only three non-crystalline compounds were detected in both DPM groups.
- Sample pre-treatment prior to XRD & PSD analyses proved to be sensitive for the study.

ACKNOWLEDGEMENTS

- PP Ndibewu (TUT)
- CJ Pretorius (CSIR)
- CSIR & Air and Dust Laboratory
- Tshwane University of Technology

Thank You For Your Attention!

