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Abstract

The design of coupling algorithms for partitioned �uid-structure interaction (FSI) simulations are typ-
ically validated on FSI problems involving large deformations of thin elastic structures with large added
mass ratios. A large number of FSI problems may however feature additional internal non-linearities,
examples of which include problems with free surface �ow or FSI problems involving contact between
two or more solid bodies. In this paper we aim to demonstrate the applicability of quasi-Newton meth-
ods when applied to these classes of problems. The analyses will focus on a comparison between two
promising families of quasi-Newton methods, namely the 'quasi-Newton least squares' (QN-LS) family
of methods and the 'multi-vector iteratively updated quasi-Newton' (MVQN) method. Both of these
families of quasi-Newton methods construct approximations of the FSI system Jacobians using only
iteratively obtained interface information, and can therefore be applied to black-box subdomain solv-
ers. We will further attempt to quantify the ability of these QN methods to adequately approximate
these additional non-linearities based on the form of the chosen interface equations.

1 Introduction

Fluid-structure interactions (FSI) is of importance in a number of engineering and life science applic-
ations, ranging from �utter prediction in aeroelasticity [23, 37], wind excited vibration of buildings
and bridges [48] and biomedical applications of blood �ow through the vascular system [39, 47, 50].
In general, there are two main approaches for the design of FSI modelling software, namely the mono-
lithic approach [8, 30, 29] or the partitioned approach [17, 32, 35, 43]. The monolithic approach is to
solve the �uid, solid and interface equations simultaneously in a uni�ed solver, where the partitioned
approach uses separate �eld solvers, which are solved in an iterative or successive fashion.

There are a wide array of arguments in favour of each of the two primary approaches. It is however
commonly accepted that monolithic schemes are generally more robust and often more e�cient than
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partitioned schemes [16, 32]. In fact, the types of problems analysed in this paper, and many far more
complex, are readily solvable by most state of the art commercial multi-physics packages, including for
example Adina [3] (based on many of the FSI procedures outlined in [4, 5, 6, 7]). In general however,
monolithic solution schemes preclude the coupling of two or more existing �eld solvers. Research
pertaining to partitioned solution schemes therefore remains an important avenue of study, critical in
cases where the user either has a direct need or particular preference in using a speci�c �eld solver.
The remainder of this paper will be limited to the discussion of partitioned FSI schemes.

Strongly coupled FSI, for example problems involving high added mass ratios [12], require (semi-)
implicit coupling of the two sub-domains (i.e. multiple iterations within a given time step). In the
presence of strong non-linearities, simple backward and forward transfer of information is often insuf-
�cient to guarantee convergence. To improve the stability of partitioned FSI, several methodologies
have been proposed ranging from �xed point iteration with dynamic relaxation [45], Robin interface
conditions [24] and computing or approximating the system interface Jacobians [16, 20, 21, 25, 32, 35].

In this regard, Quasi-Newton (QN) methods have been demonstrated to be particularly useful in
accelerating partitioned coupling schemes. Currently, two promising family of QN schemes are the
'quasi-Newton least squares method' (QN-LS) [43] and the 'multi-vector iteratively updated quasi-
Newton' (MVQN) method [9]. Both of these QN methods allow for black-box sub-domain solvers,
and construct approximations of the system Jacobians using iteratively obtained information from
the sub-domain �eld solvers. While these two families of methods are closely related, they di�er in
how they incorporate information from multiple time steps. The QN-LS family of methods are well
established and have been investigated in numerous publications [16, 17]. The QN-LS methods have
been demonstrated to be capable of providing favourable performance properties, but are sensitive to
a problem speci�c parameter of how many time steps to retain, with no a priori means to determine
the optimal choice for this parameter. The MVQN method, by using a least change iterative updating
scheme, removes the need to choose any parameters, and has furthermore been demonstrated to be
capable of providing superior convergence behaviour [9, 38, 34].

In general, there are two alternative sets of interface equations to which the QN methods can be
applied. The �rst relates to approximating the Jacobian of a residual equation relating the successive
di�erences between one of the primary interface variables, (i.e. the di�erences between interface
displacements or interface pressures). An alternative form would be to construct two block-Newton
(BN) equations relating to the iterative changes in both interface pressures and displacements, and in
turn construct approximations of the sensitivities of interface pressures with respect to displacements
and vice versa. Both sets of interface equations o�er their own merits. In general, the BN form of
the interface Jacobians provide slightly improved coupling performance, on average requiring fewer
coupling iterations (see for example [17]). The BN Jacobians further provide an approximation of
the sensitivities between interface forces and displacements, which can be reused. See for example
[10], where BN approximations were used to accelerate and stabilise an arti�cial compressibility based
FSI solver to deal with the 'incompressibility dilemma'. The incompressibility dilemma refers to the
mathematically ill-posed nature of FSI problems involving fully enclosed, incompressible �uid domains,
when solved using partitioned Dirichlet-Neumann interface conditions. An example often provided in
literature is that of a balloon in�ation problem (see for example [33]). In such problems, the stationary
Dirichlet �uid boundary condition and the incompressible nature of the �uid means �ow cannot be
forced into the fully enclosed domain.

The limitation of the BN system is that it requires solving two linear systems within a given coupling
iteration. By using the interface residual equations, one can directly construct an approximation of the
inverse of the Jacobian, thereby negating the need to solve any additional linear systems. The size of
these linear systems are equal to the number of interface degrees of freedom (DOF) which are typically
much smaller than the total combined DOFs of both the �uid and solid domains. Unfortunately, these
interface Jacobians are often fully-populated (non-sparse), and the resulting linear systems can be
computationally expensive to solve. When treating very large interfaces the computational cost of
these linear systems may even exceed the combined computational time of both the �uid and solid
sub-domains.
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For a�ne problems, with exact arithmetic, Haelterman et al. [28] proved that the two forms (BN
and interface residual) are algebraically identical. Therefore, for typical applications there would be
little justi�cation in using the block-Newton approach, which would provide the same result but in-
creased computational e�ort. Unfortunately, because of computational limitations, numerical methods
are limited to �nite precision where FSI problems are furthermore highly non-linear. In this paper we
therefore aim to compare the approximations provided by the MVQN and QN-LS methods to the two
forms of interface equations. In order to better judge the comparative merits, the numerical experi-
ments are chosen to include additional internal non-linearities. These problems include a steady state
problem, a free-surface �ow problem with an advancing wave front and a solid-body contact problem.

2 Partitioned FSI

Fluid-structure interactions can be de�ned as a two-�eld coupled problem, involving a �uid domain
Ωf and a solid domain Ωs sharing a common interface ΓFSI. In a partitioned setting, the �uid and
solid subdomain solvers can be viewed as interface operators. The structural domain solver, S, can
be viewed as an interface operator which maps a given interface force (integrated pressure and shear
stress �elds), f , to provide an interface displacement, d, such that

d = S (f) , (1)

where the �uid �eld solver can be described as

f = F (d) . (2)

The �uid and solid interface mapping operators S and F represent the spatially discretised �uid and
solid equations which are typically solved via numerical methods such as the �nite element or �nite
volume methods. While the mapping operators represent the full �eld equations, the transfer quantities
f and d typically only involve the forces and displacements along the shared interface ΓFSI.

In order to satisfy the dynamic and kinematic conservation, the interface �elds are integrated and
transferred such that the interface stress states and displacement/velocity are conserved,

ts = tf ,
∂ds
∂t

= uf alongΓFSI, (3)

where uf denotes the �uid velocity along the interface and tf = pfnf − σf · nf and ts = σs · ns. pf
denotes the �uid pressure along the interface, σf the �uid viscous stress tensor and σs the solid stress
tensor. ns and nf denote the respective outward pointing normals along Γs and Γf if the solid and
�uid interfaces are non-matching, Γs 6= Γf .

In this paper, the �uid operator F is solved using OpenFOAM where Calculix is used for the
structural analysis. The interface load and motion transfer is performed using radial basis function
(RBF) interpolation, using a consistent formulation. RBF interpolation requires no grid connectivity
information and therefore is an elegant means to transfer information along non-matching interfaces,
between a linear �nite volume mesh to a higher-order �nite element mesh. Interface tractions are
transferred using a consistent formulation, thereby guaranteeing that a constant stress state (such as
encountered in a constant stress patch test) can be exactly transferred regardless of mesh mismatch
along the interface [11, 13, 14]. While a mismatched interface does imply that ts 6= tf , the errors
introduced by the consistent RBF interface transfer falls below the errors already present due to the
�nite volume based �uid �eld solver, and disappears in the limit of mesh re�nement [11].

For implicit-partitioned solvers, the interface operators in (1) and (2) are typically solved in an
iterative fashion, with the interface quantities transferred backwards and forwards until some or other
convergence tolerance is satis�ed. Depending on the strength of coupling or non-linearity of the problem
in question, simple backwards and forwards transfer of information is often insu�cient. While there
are several coupling acceleration schemes that have been proposed, in this paper the discussion is
limited to the MVQN and QN-LS family of quasi-Newton methods.

3



2.1 Block-Newton Equations

The block-Newton equations are obtained by rewriting the interface operators in (1) and (2) as a
root-�nding problem, such that

rF = F (d)− f = 0, (4)

rS = S (f)− d = 0. (5)

The coupled system de�ned by equations (4) and (5) can then be solved by computing the system
Jacobian and solving for an update in the Newton direction

∂F

∂d

∂d

∂f
− I ∂F

∂d
∂S

∂f

∂S

∂f

∂f

∂d
− I

{ ∆f
∆d

}
=

[
−F (d) + f
−S (f) + d

]
(6)

where the Newton update for coupling iteration k + 1 is then computed by

fk+1 = fk + ∆f (7)

dk+1 = dk + ∆d. (8)

Because the �uid and solid partitioned solvers are executed in a staggered fashion, the system of
linear equations are solved in a block-Newton fashion. Following a call to the �uid solver (that returns
an interface force f), the interface forces are updated:

(
∂F

∂d

∂d

∂f
− I

)
∆f = − (F (d)− f)− ∂F

∂d
∆d. (9)

Similarly, following a call to the solid solver (that returns a displacement d), the displacement is
updated (

∂S

∂f

∂f

∂d
− I

)
∆d = − (S (f)− d)− ∂S

∂f
∆f . (10)

The aim of the quasi-Newton methods are then to construct approximations to the system Jacobians
JS = ∂S

∂f = ∂d
∂f and JF = ∂F

∂d = ∂f
∂d .

2.2 Interface Residual Equations

The block-Newton equations to be solved using (9) and (10) require constructing approximations for
both JS and JF as well as solving two linear systems. The linear systems to be solved are of size
nΓ × nΓ, where nΓ is the number of DOFs along the FSI interface and typically form a small fraction
of the total DOFs of the complete system. These linear systems are however non-sparse and therefore
not well suited to iterative solution procedures. For very large systems, the additional costs of these
linear systems may in fact exceed the cost of the sub-domain �eld solvers. By constructing interface
equations based on successive di�erences in one of the primary variables requires that no such linear
systems need to be solved, and has been demonstrated to provide comparable coupling performance
[17].

A root-�nding equation using successive displacements (or equally interface forces) can be written
as

Rk = S (F (dk))− dk, (11)
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where S (F (dk)) is meant to indicate the sequential calling of F and S. A Newton system based on
the residual equation then becomes

∂r

∂d
∆d = −R. (12)

The bene�t of (12) is that the inverse of ∂r
∂d can be approximated directly such that no linear system

solution steps are necessary, i.e.

∆d = −
(
∂r

∂d

)−1

R. (13)

3 Quasi-Newton Methods

3.1 QN-LS

The Quasi-Newton Least Squares (QN-LS) method was �rst proposed in [43] and has subsequently
been widely adopted. There are several associated methods within the family of QN-LS methods, with
the primary di�erences meant to indicate which form of the interface Jacobian is approximated. The
BQN-LS (block quasi-Newton least squares) indicates approximations applied to the block-Newton
equations (9) and (10), the QN-LS refers to an approximation of the Jacobian in (12) and QN-ILS
(quasi-Newton inverse least squares) to the inverse Jacobian in (13) [17].

3.1.1 QN-ILS

The QN-ILS has been the most widely adopted of the three variations. Aside from being somewhat
simpler to implement, the QN-ILS form of the QN-LS method does o�er the advantage that no linear
system solutions are necessary, and only requires matrix-vector multiplications. To outline the QN-
ILS algorithm, consider that k FSI iterations in time step n + 1 have been performed. Therefore k
observations are available in the current time step, which can be used to construct two observation
matrices such that

V k =
[
∆Rk−1∆Rk−2 · · ·∆R1∆R0

]
, (14)

W k =
[
∆d̃

k−1
∆d̃

k−2
· · ·∆d̃

1
∆d̃

0
]
, (15)

where the observation vectors in V k and W k are constructed as

∆Rk = Rk −Rk−1, (16)

∆d̃
k

= d̃
k
− d̃

k−1
. (17)

The approximate Jacobian is then computed as(
∂r

∂d

)−1

= W
(
V TV

)−1

V T − I, (18)

with a quasi-Newton displacement update

dk+1 = dk −
(
∂r

∂d

)−1

Rk. (19)

Notationally it is important to note that d̃ in (17) refers to the results obtained from the solid solver,

d̃
k

= S
(
F
(
dk
))

, where dk refers to the displacement approximation from the QN update in (19).
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The QN-ILS approximation requires that at least two iterations have been performed. To avoid large
initial divergence, relaxation is performed in the �rst iteration of the �rst time step, in the form

d1 = (1− ω)d0 + ωd̃
0
, (20)

where ω indicates the chosen relaxation factor.
Because information from previous time steps are often relevant to the current estimate, the per-

formance of the QN-ILS can be signi�cantly improved by including information from previous time
steps [17]. To include information from multiple time steps, the QN-LS family of methods append
observation matrices V and W from q preceding time steps such that

V k =
[
V n V n−1 · · · V n−q

]
(21)

V k =
[
W n W n−1 · · · W n−q

]
. (22)

The optimal choice of q is unfortunately problem dependent, with no a priori way of determining an
appropriate choice at run time.

One of the limitations of solving for an approximation in the form of (18) is that if one or more

observation vectors are (nearly) linearly dependent then
(
V TV

)−1

would be ill-conditioned. Degroote

et al. [16] proposed that the least squares problem be solved using economy size QR decomposition of
V k such that

V k = QkUk (23)

where Qk represents the orthogonal and Uk the upper triangular matrices. The least squares coe�-
cients αk can then be obtained solving the triangular system

Ukαk = Qk∆R. (24)

The displacement update can now be solved in a matrix free fashion via the matrix-vector product

dk+1 = dk +W kαk +Rk. (25)

In addition to providing a matrix free-solution, QR decomposition provides a useful way to indicate
(near) linear dependence. If two vectors in V k are (nearly) linearly dependent, the corresponding
diagonal entry in Uk would be very small. This allows for the construction of a cuto� criterion where
the i-th column of matrices V k and W k are omitted if

|Uii| < ε, (26)

where ε is the threshold criteria and is typically chosen to be very small. An alternative cuto� criterion,
also used in this paper is

|Uii| ≤ ε
∣∣∣∣Uk

∣∣∣∣
2
, (27)

where ||·||2 represent the Frobenius norm of the matrix.

It is important that information be appended to W k and V k such that it corresponds to a QR
�ltering scheme where older information is omitted �rst, and thereby preferentially retaining newer
information.
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3.1.2 BQN-LS

The approximations for the BN set of equations (9) and (10) can be obtained by constructing obser-
vation matrices relating di�erences in interface forces and displacements

∆DF =
[

∆dkF ∆dk−1
F · · · ∆d0

F

]
(28)

∆F F =
[

∆fk
F ∆fk−1

F · · · ∆f0
F

]
, (29)

where the approximate Jacobians are then constructed as

JF = ∆F F

(
∆DT

F ∆DF

)−1

∆DT
F , (30)

where subscripts F indicate that the observation matrices are constructed using displacement informa-
tion provided to the �uid solver, and forces obtained from the �uid solver, i.e. fF = F (dF ). Similarly,
an approximation for JS can be constructed to enable solving force and displacement updates using
(9) and (10).

As with the QN-ILS, it is possible to introduce QR-�ltering when computing the displacement and
force updates using JF and JS .

3.2 MVQN

The multi-vector quasi-Newton method was �rst proposed in [9]. While there are many similarities
between the MVQN and QN-LS method, the MVQN method makes use of an iterative, least-change
updating procedure. It therefore enables retaining information from previous time steps without the
need to choose up front, how many time steps' information should be retained and has further been
demonstrated to be capable of providing superior convergence performance [9, 38, 34] .

To remain consistent with the naming convention of the QN-LS family of methods, we will refer
to the MVQN method applied to the block-Newton set of equations as MV-BQN and MV-IQN to
indicate an approximation of the inverse interface Jacobian.

3.2.1 MV-IQN

As with the QN-ILS method, the MV-IQN method approximates the inverse Jacobian based on a series
of observation vectors. Once again, assuming k FSI iterations have been performed two observation
matrices can be constructed in the form

V k =
[
∆Rk∆Rk−1 · · ·∆R1∆R0

]
, (31)

W k
MV

=
[
∆dk∆dk−1 · · ·∆d1∆d0

]
. (32)

It is important to note that there is a slight di�erence in the observation matrixW k
MV

when compared
to the QN-ILS method. For the MV-IQN method, WMV is constructed using ∆d, where QN-ILS
requires ∆d̃. To distinctly clarify the notational di�erence we highlight here again that the residual
for iteration k is given by

Rk = S
(
F
(
dk
))
− dk = d̃

k
− dk. (33)

The primary di�erence between the MV-IQN method and QN-ILS method stems from how in-
formation from previous time steps are reused. Rather than appending information from previous
time steps to V and W , the MV-IQN method relies on an iterative updating procedure. By simply
appending information to V andW the possibility of obtaining contradictory information and linearly
dependent vectors increases. Furthermore, information from far back may no longer be relevant to
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the current time step, but should such information be retained by appending it to V and W , it is
given equal importance as information closer to the current time step solution. While many of these
potential issues are somewhat mitigated by using a suitable �ltering scheme (such as QR-�ltering), the
performance of the QN-LS family of methods are subject to the choice in number of retained histories
q, and to a lesser extent the choice in cuto� criterion ε.

The MVQN family of methods make use of an iteratively updated Jacobian in an attempt to remove
the need to choose any problem speci�c parameters. Given an approximate inverse Jacobian from the

previous time step, Jn =
(
∂r
∂d

)−1
, the update for the current time step is computed using the following

update formula

Jn+1 = Jn + (WMV − JnV )
(
V TV

)−1

V T . (34)

The update formula (34) is equivalent to �nding the updated Jacobian which minimises
∣∣∣∣Jn+1 − Jn

∣∣∣∣
subject to the constraint of the interface secant equation. The Jacobian update is performed for each
iteration, where Jn remains unchanged for the current time step, and V andWMV contains observation
vectors from the current time step only. For a more detailed discussion on the MVQN method, and
how it relates to other quasi-Newton methods we refer the reader to the work presented in [9].

As with the QN-LS family of methods, at least two iterations need to have been performed to
construct the approximate inverse Jacobians. Therefore, for the �rst iteration in time step 1, relaxation
is advised to avoid initial divergence. Furthermore, an initial approximation for Jn is required. In
order to guarantee a non-singular starting matrix J0 = −I. By setting J0 = −I results in the MV-
IQN and QN-ILS to be identically equivalent for all iterations within the �rst time step, where the
di�erences between the two methods are only present from time step 2 onwards.

One of the limitations of the MV-IQN method when compared the QN-ILS method is that the full
Jacobian matrix Jn needs to be stored. This is in comparison to only having to store the currently
retained observation vectors when using the QN-ILS method. Therefore, while the MV-IQN method
also only requires matrix-vector products to solve for a displacement update, it may require a lot more
memory when solving for systems with very large interface DOFs.

3.2.2 MV-BQN

The MV-BQN method uses the same observation matrices as used for the BQN-LS method with the
primary di�erence being Jn+1

S and Jn+1
F are based on the update formula as described by (34). As

with the MV-IQN method, initial approximations for the solid and �uid Jacobians are needed. For the
initial Jacobian updates to be non-singular the Jacobians are initialised with zero matrices, J0

S = [0]
and J0

F = [0]. Doing so, again results in the MV-BQN and BQN-LS methods to be identically
equivalent for all iterations within the �rst time step. The two families di�er only on the basis of how
information from multiple time steps are retained.

4 Test Problems

The test problems in the sections to follow have been performed using OpenFOAM [1] for the �uid
domain and Calculix [22] for the structural domain. In the problems to follow we assume that the
largest cost per iteration is accounted for by the �uid and structural domain solvers. The performance
of the coupling schemes are therefore evaluated based on how many coupling iterations are required
to reach the speci�ed convergence. The convergence criteria across all problems are set as

r =

∣∣∣∣∣∣dkΓ − dk−1
Γ

∣∣∣∣∣∣
√
nΓ

≤ 10−7, (35)

where nΓ is the number of interface DOFs. It is perhaps important to note that the results cited in the
sections to follow are not in�uenced by the chosen coupling schemes (within convergence tolerance).
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Figure 1: Steady state domain description.

The coupling schemes only a�ect the number of coupling iterations required to reach convergence,
if convergence is obtained at all. The solution accuracy of the FSI problems are governed by the
numerical schemes used within each of the �eld solvers, the spatial and temporal discretisation and
interface information transfer.

4.1 Steady State Flow Past Vertical Beam

The �rst problem analysed here is a steady state problem of �ow past a vertical beam, with the problem
layout described in Figure 1. Steady state FSI problems are, generally speaking, far less prevalent than
transient problems. Researchers and designers are usually more interested in the dynamic interaction
of �ow induced structural deformations or vice versa. Steady state problems are however of potential
interest as a benchmarking tool (see for example [40]), and have found application in topology and
shape optimisation (see for example [49] and the citations therein). While most FSI publications
focus on the complexities of strongly coupled problems, speci�cally with high added mass instabilities,
steady state problems o�er their own set of challenges. While steady state problems are not density
driven, they lack time steps which typically impose physical limits on the extent of possible structural
deformations (from one time step to the next). It is of course possible to solve steady state problems
using several steps (or pseudo-iterations), perhaps while ramping up the inlet velocity to simplify the
numerical coupling. In this test problem we solve the steady state FSI problem using a steady state
�uid solver, coupled to a steady state solid solver. The steady state solution is therefore equivalent to
solving a transient problem with only 1 time step.

Because we solve the steady state problem without any time steps or pseudo-time steps, the MVQN
and QN-LS family of methods are identical (since the primary di�erence between the two QN families
is based on how information from multiple time steps are incorporated). The steady state problem
therefore a�ords an opportunity to compare the di�erence between the BN and interface residual
forms of the QN approximations. Based on the proof presented by Haelterman et al. [28], given
exact arithmetic, and small structural deformations, the two QN approximations should yield identical
convergence behaviour.

To test this hypothesis, two inlet �ow velocities are used, namely Uin = 0.1m/s and Uin = 1.0m/s.
The �uid velocity pro�le along with the beam deformation is shown in Figure 2, with the beam
de�ections plotted in Figure 3. For an additional comparison, we include the tip de�ections for transient
simulations, with a solid beam density of ρs = 1000kg/m

3
and time step sizes of ∆t = 0.1s. As

expected, given su�cient time, the transient tip de�ection converges to the steady state results.
The steady state convergence rates for the two inlet velocities are shown in Figure 4. The results for

the small, linear beam deformation con�rms the �ndings of Haelterman et al, where the BQN and IQN
convergence rates are nearly identical. It equally however highlights the potential di�erences between
the two interface formulations when applied to non-linear problems with �nite precision. The source of
the di�erences is di�cult to ascribe, but in general, for this particular problem, the IQN formulation
appears to be marginally better behaved, where the residual decreases monotonically.

Finally in Table 1, for completeness, we include the mean number of coupling iterations required
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Figure 2: Steady state simulation results of a �exible membrane for inlet velocities of Uin = 0.1m/s
(left) and Uin = 1.0m/s (right).

Figure 3: Beam tip de�ections for inlet �ow velocities of Uin = 0.1m/s and Uin = 1m/s past the vertical
beam for both steady and transient simulations.

(a) (b)

Figure 4: Convergence rates for the steady state simulation for inlet velocities of (a) Uin = 0.1m/s and
(b) Uin = 1.0m/s.
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Table 1: Mean number of coupling iterations required for the transient vertical beam test problem
with Uin = 1m/s and time step size of ∆t = 0.1s. QN-LS(q) is meant to indicate that q time step
histories are retained, and the QR �ltering is performed using a cuto� criterion of |Uii| ≤ 10−8.

No �ltering QR �ltering
BN inv(J) BN inv(J)

MVQN 3.15 3.39 � �
QN-LS(0) 3.54 3.57 3.56 3.57
QN-LS(1) 3.12 3.42 3.12 3.34
QN-LS(2) 3.08 3.29 3.08 3.28
QN-LS(3) 3.11 3.28 3.10 3.23
QN-LS(5) 3.10 3.28 3.10 3.23
QN-LS(10) 3.22 4.08 3.19 3.28

for the transient simulation with an inlet velocity of Uin = 1m/s and ∆t = 0.1s. With a solid to
�uid density ratio of 1000, this problem would typically be classi�ed as weakly coupled, and therefore
relatively simple to solve. The performance of QN-LS(q), with QR �ltering, improves as q is increased
until some threshold value of q, after which the mean number of coupling iterations tend to remain
fairly constant. This observation of the QN-LS family of methods hold true for many FSI problems,
including strongly coupled problems (see for example [19], where BQN-LS is applied to blood �ow
problems for multiple choices of q). This problem further highlights that should q be appropriately
chosen, the QN-LS family of methods can outperform the MVQN family of methods.

4.2 Dam Break with Elastic Obstruction

FSI with free surfaces, involving totally or partially submerged bodies, are of interest in a number
of �elds, including civil and o�shore engineering. Multiphase �ow requires accurately capturing the
interface between two or more �uids, and can be relatively unsteady due to large density di�erences
within the �ow domain. Due to these, potentially large, density di�erences the FSI interface can now
be subjected to abruptly changing interface loading conditions. FSI with free surfaces have been the
focus of several studies, and have been solved both using partitioned methods and monolithic schemes
[18, 31, 36, 44, 46].

To investigate the performance of the QN methods, we analyse a collapsing column of water,
striking an elastic wall, previously analysed in [31, 44]. The problem setup is shown in Figure 5, and
consists of a 29.2cm column of water which collapses under gravity, striking an 8cm tall, 1.2cm wide,
elastic obstacle. The tank is open at the top, and surface tension e�ects are ignored due to the large
length scales.

The dam break problem (and other similar free surface �ow problems) conceptually poses di�culties
for the QN methods. Prior to the striking of the advancing front, the coupling algorithms spend several
time steps training the interface Jacobians given a very low loading condition, followed by a very sharp
and abrupt increase in interface forces. This additional source of non-linearities is especially interesting
considering the di�erence between the BN and inverse Jacobian approximations. The inverse Jacobian,
based only on sequential displacements, has no formal way of accounting for large changes in �uid forces.
The BN approximation on the other hand constructs an approximation accounting for the relationship
between interface forces and displacements, and therefore conceptually, should be better equipped to
deal with these additional non-linearities.

In Figure 6, the advancing front along with the elastic deformation is shown for various time steps.
The problem is solved here using both a coarse and �ne mesh, with the tip de�ection shown in Figure 7.
The coarse mesh consists of 3672 linear FVM elements and 14 quadratic, full integration solid elements,
with time step sizes of ∆t = 0.001s, where the �ne mesh consists of 30340 linear �uid elements and
112 quadratic, full integration solid elements, using a time step size of ∆t = 0.0005s. The smaller
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Figure 5: Dam break with elastic structure problem description.

(a) t=0.14s (b) t=0.16s (c) t=0.18s

(d) t=0.24s (e) t=0.34s (f) t=0.42s

Figure 6: Wave interaction with elastic obstruction at various time steps.

time step size used for the �ner discretisation is not to facilitate the FSI coupling, but rather for the
stability of the free-surface �ow �uid computations, which fails to solve for larger time step sizes.

In Table 2 the mean number of iterations required for a convergence tolerance of ε ≤ 10−7 is
outlined and the typical convergence behaviours, for time step 130 (directly following the initial wave
strike on the elastic structure), is shown in Figure 8, along with the number of iterations for each
of the time steps. As expected, the BN form of the Jacobian approximation provides an overall
improved performance over the IQN Jacobians. The improvement is however slight, and considering
that the IQN formulations have no linear systems to solve, remains an attractive option. The dam
break results further highlight the sensitivity of the QN-LS family of methods to the choice of q.
Should they be chosen appropriately, the QN-LS methods compare well to the MVQN approximations.
However choosing them too large or too small, results in either divergence or a signi�cantly deteriorated
performance. The use of QR-�ltering does however improve the stability and performance of the QN-
LS(q) family of methods. In Table 3 the mean number of coupling iterations, for a full sweep of QR
�ltering parameters is shown. The overall performance of the QN-LS family of methods remain fairly
constant amongst the various cuto� criteria.

In general, the QN methods analysed in this paper appear to be well suited to dealing with problems
where there are abrupt changes in the magnitude of �uid forces.
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Figure 7: Plot of beam tip de�ection for the dam break benchmark problem.

Table 2: Comparison of the mean number of iterations required for convergence for the dam break
with elastic obstruction problem. QN-LS(q) indicates q time histories are retained and if a scheme is
non-convergent the time step at which divergence occurred is indicated in brackets. QR �ltering is
applied here using a cuto� of criterion of |Uii| ≤ 10−8. A comprehensive comparison of QN-LS family
for di�erent QR �ltering parameters is given in Table 3.

Coarse Mesh, ∆t = 0.001s Fine Mesh, ∆t = 0.0005s

No �ltering QR �ltering No �ltering QR �ltering

BN inv(J) BN inv(J) BN inv(J) BN inv(J)

MVQN 3.60 3.83 � � 3.40 3.83 � �

QN-LS(0) 5.07 5.33 5.02 5.32 5.77 (343/1700) (343/1700) 5.94

QN-LS(1) 4.28 4.24 4.23 4.20 4.93 (343/1700) 4.91 (311/1700)

QN-LS(2) 3.94 (132/850) 3.93 (581/850) 4.42 (343/1700) 4.47 4.08

QN-LS(3) (130/850) (129/850) 3.77 (581/850) (1543/1700) (343/1700) (1530/1700) 3.89

QN-LS(4) (130/850) (129/850) (584/850) 3.872 (250/1700) (343/1700) 3.98 3.89

QN-LS(5) (129/850) (129/850) 3.65 3.905 (249/1700) (343/1700) (343/1700) 3.83

(a) (b)

Figure 8: Performance plots for the dam break benchmark problem for the coarse mesh, illustrating (a)
the typical convergence behaviour, shown here for time step 130, directly following the initial contact
of the wave with the elastic structure and (b) a summary of the number of iterations per time step.
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Table 3: Comparison of mean number of iterations required by BQN-LS and QN-ILS for di�erent
number of histories with di�erent QR �ltering parameters for the dam break with elastic obstruction
benchmark problem using the coarse mesh. If a scheme is non-convergent, the time step at which
divergence occurs is shown in brackets.

No QR �ltering: |Uii| < ε QR �ltering: |Uii| ≤ ε
∣∣∣∣Uk

∣∣∣∣
2

# Hist �ltering ε = 10−4 ε = 10−6 ε = 10−8 ε = 10−6 ε = 10−8 ε = 10−10

BQN-LS

0 5.07 15.42 5.06 5.02 5.00 5.04 5.04

1 4.28 7.67 4.25 4.23 4.27 4.28 4.26

2 3.94 7.21 3.95 3.93 3.96 3.72 (583/850)

3 (130/850) (560/850) 3.82 3.77 3.85 3.77 3.76

4 (130/850) 5.69 3.72 (584/850) 3.77 3.71 3.79

5 (129/850) 5.64 3.69 3.65 3.74 3.71 (136/850)

QN-ILS

0 5.33 7.44 5.51 5.32 5.35 5.34 5.34

1 4.24 7.91 4.30 4.20 4.23 4.18 4.19

2 (132/850) 5.14 4.00 (581/850) 3.95 (584/850) 3.92

3 (129/850) 4.99 3.93 (581/850) 3.88 3.86 (148/850)

4 (129/850) (284/850) (583/850) 3.872 (558/850) 4.41 (134/850)

5 (129/850) 4.94 (582/850) 3.905 (581/850) (581/850) (136/850)

4.3 Flexible Beam with Solid Body Contact

This section aims to provide a preliminary analysis of the QN methods applied to FSI problems with
solid body contact. Examples of FSI with solid body contact include opening and closing heart valves
[2, 41], interaction between blood cells, or blood cells �owing through an occlusion or capillary. Most
mature structural analysis packages, including for example Abaqus, and in our case Calculix, support
solid body contact. Solid body contact is commonly done through the inclusion of springs, to impose
forces to resist movement or penetration between two surfaces [22, 42]. The contact force magnitude
is then based on the penetration distance and a chosen spring sti�ness function.

Solid body contact via the insertion of spring forces pose a serious challenge to FSI solvers. Pre-
venting large inter-body penetration may involve arbitrarily large contact forces, and these occur
sporadically only when contact is active. As opposed to free surface �ow, these additional, potentially
non-linear, forces come from the structural solver rather than the �uid solver. As such, approximation
methods using the BN-QN formulation, do not have access to these additional forces when constructing
an approximation of the �uid force-solid displacement relationship.

While Calculix natively supports contact, we implement a simple contact algorithm externally to
the solid solver. This is done in order to have access to the contact forces, which in turn can be made
available when constructing the BN-QN approximations. While implementing contact externally to the
solid solver is no longer strictly speaking a 'black-box' operation, the next section will attempt to show
the e�ect on the BN-QN performance, when including and excluding the contact forces. Implementing
contact externally to the solid solver is not strictly necessary if the user's speci�c choice of solid solver
allows for contact stresses (or forces) to be extracted from the results.

It should be mentioned that �ow solvers based on an arbitrary Lagrangian-Eularian (ALE) de-
scription of the �uid domain (as used in this study) are not ideally suited to contact problems. The
event of contact implies that the �uid region between two bodies in contact should disappear, which
cannot be done naturally using solvers such as OpenFOAM. In order to fully close o� a domain requires
topological changes in terms of both localised re-meshing (when the mesh quality deteriorates) as well
as rede�ning boundary de�nitions. This is both time consuming, problem speci�c, and may introduce
errors when mapping solutions between di�erent domain or topological de�nitions. For these classes of
problems, methods such as the immersed boundary method [27], �xed grid methods [26] or �ctitious
domain methods [15, 41] are better suited. Since the primary interest in our analysis is the behaviour
of the QN methods, we avoid this issue by forcing a small gap to remain present at all times.
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While we retain the gap to avoid topological changes, the gap is symbolically closed via the �uid
equations. The �uid velocity in the cells between the two surfaces in contact is forced to be equal
to the adjoining interface velocities. This allows for the small gap to remain, while the e�ect on
the �ow pro�le will be resemblant of �ow when the �uid cells are removed, barring the geometrical
error introduced by the small gap. This geometrical error is directly proportional to the size of the
enforced gap, and is a function of the solver Courant number requirements, the smaller the enforced
gap, the smaller the maximum time step size. Interestingly, closing the gap via the equations does not
induce the �incompressibility dilemma� observed for fully enclosed problems [33], which is likely due
to the iterative (SIMPLE-like) velocity-pressure solution algorithm used in OpenFOAM. One solution
to the incompressibility dilemma is to use arti�cial compressibility. Since the problem analysed in this
section is intrinsically one which would ordinarily require such methods, we include in our analysis the
performance results of using interface arti�cial compressibility (IAC) in conjunction with the MVQN
method. The IAC+MVQN method is beyond the scope of this paper, but for more information, we
refer the reader to [10].

4.3.1 Contact Formulation via Springs

In this paper a simple spring analogy contact formulation is implemented based on the penetration
distance of slave surface coordinates into a master surface. For the purposes of this analysis, frictional
forces are ignored and only normal contact forces are considered; this is illustrated in Figure 9. The
contact algorithm implemented here can be summarised as follows:

1. Pair up slave nodes to master surface elements.

2. Compute the distance between slave nodes and master surface elements.

3. If slave node penetrates the master surface, connect a contact spring, with direction normal to
master surface.

The spring force, when active, is given by

fcontact = (Kdp)nm, (36)

where K is the spring sti�ness coe�cient, dp the penetration distance and nm the master surface
normal vector. Choosing K as a large constant will result in hard contact, or conversely a small K
will result in soft contact which leads to larger penetrations. It is important to note, the numerical
example to follow is a 2D model. OpenFOAM however only supports 3-dimensional systems, where
the 3-axis is ignored in the simulation. To remain fully consistent, the solid domain is also modelled in
3D, with a single element through the thickness and appropriate boundary conditions to model plane
stress. Therefore, whenever contact is present, two springs are included as opposed to the single spring
as suggested by Figure 9. As a result, whenever spring sti�ness characteristics are provided, should
replication of the results be attempted in true 2-dimensions, the spring sti�nesses should be doubled.
This in no way alters the behaviour of the contact system, but is mentioned for completeness.

4.3.2 2D Valve Contact Problem

The contact problem analysed here is a simple valve like problem �rst analysed in [41]. The problem
is representative of a mitral valve where the papillary muscle has been omitted, allowing for the valve
to fully snap through, given the inlet velocity. The domain geometry is shown in Figure 10, where
the contact plane is chosen in such a way that the valve is in contact from the start of the simulation,
releasing from contact following the snap-through instance. The �uid and valve properties are chosen
to be representative of biomechanic systems, with a density of ρf = 1.0g/cm3, and viscosity of 0.03P.
The valve is described by a geometrically non-linear FEM formulation with E = 3 × 106dynes/cm2,
ρs = 1.2g/cm3 and ν = 0.3. The problem presents two complexities. Firstly, in the form of high added
mass with large deformations, and secondly, solid to rigid body contact.
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Figure 9: Simple depiction of slave nodes to master surface contact.

Figure 10: Valve-contact problem layout.

The �uid domain is discretised using 1861 linear �uid elements, and 40 linear FEM elements are
employed for the structural domain. Linear elements are used for the solid domain due to the choice of
using a slave node-master surface contact formulation. For higher order elements, a more sophisticated
surface to surface contact scheme would be required. While linear solid elements are not ideal, they
are su�cient for the purposes of illustrating the behaviour of the QN methods with solid body contact.

The inlet �ow velocity is given by

Uin = 20.0sin (2πt) cm/s. (37)

The pressure contours along with the valve displacement at various time steps are shown in Figure 11.
Despite the small gap, a large pressure drop across the valve remains evident.

4.3.3 E�ect on MV-BQN when contact forces are included or excluded

Prior to comparing the performance of the QN methods, applied to the di�erent interface equations, we
investigate the ability of the MV-BQN to cope with contact when the forces are included or excluded
when constructing the approximate Jacobians. This is done by comparing the performance for both
'hard' and 'soft' contact. Soft contact is achieved by lowering the contact sti�ness, which reduces the
contact force gradients and thereby simplifying the FSI coupling, but in turn also increases the contact
inter-body penetration. To illustrate the di�erence in penetration distance, the valve displacement is
shown in Figure 12 for a spring sti�ness of K = 1× 104g/cm2 and K = 2× 103g/cm2, with a plot of
the valve tip displacement shown in Figure 13.

To include the contact forces, the �uid forces f , used in the construction of the observation matrices
∆F S and ∆F F in (29) should be modi�ed to {f} = {f�uid + f contact}. The included contact forces
are therefore treated as an additional �uid force. In the current implementation these contact forces
are available because contact is implemented externally to the solid solver. An equivalent black-box
implementation would be possible if the choice of solid solver allows the user to extract contact stresses
or forces from the set of results.

The mean number of coupling iterations are outlined in Table 4. Using soft contact, the MV-BQN
approximation is capable of producing convergent results. However for hard contact, the MV-BQN

16



(a) 0.03s (b) 0.05s (c) 0.08s

(d) 0.1s (e) 0.12s (f) 0.18s

Figure 11: Pressure and valve displacement plots at di�erent time steps, for ∆t = 0.0001s.

Figure 12: Penetration distance for choice of spring contact sti�ness of K = 1 × 104g/cm2 (left) and
K = 2× 103g/cm2 (right).

method is unable to converge unless the contact forces are made visible. Despite the choice of using a
linear force-displacement relationship for the contact forces (which could equally be formulated to be
a non-linear relationship) the e�ective contact forces have the potential of being highly non-linear. To
illustrate this, the contact forces for both hard and soft contact are shown in Figure 14. The MV-BQN
approximation, using hard contact, diverges at 0.0047s, which corresponds to the initial activation of
the contact force, as seen in Figure 14(b).

4.3.4 Comparison of the BN-QN and IQN formulations

For the remainder of the analysis, only hard contact (K = 1 × 104g/cm2) is used, where the contact
forces are made visible to the BN-QN approximations. The mean number of iterations required for
convergence is shown in Table 5 with the typical convergence behaviour shown in Figure 15. Since this
is a problem which would typically require a solution method that can deal with fully-enclosed �uid

Table 4: A comparison of the mean number of iterations required for both soft and hard contact using
the MVQN formulation. The comparison focuses on the performance of the BN approximation when
the external contact forces are included or excluded in the QN approximation.

contact force soft contact hard contact
included

(
K = 2× 103

) (
K = 1.0× 104

)
MV-BQN yes 4.41 5.02
MV-BQN no 4.65 non-convergence (47/2000)
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(a) (b)

Figure 13: The (a) x and (y) y-displacement of the bottom right tip of the valve with contact benchmark
problem.

(a) (b)

Figure 14: (a) A plot of the contact forces for both 'hard' and 'soft' contact with (b) a close up on the
�rst 0.03 seconds of the simulation.
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Table 5: Comparison of the mean number of iterations required for convergence the valve with solid-
body contact problem. QN-LS(q) indicates q time histories are retained and if a scheme is non-
convergent the time step at which divergence occurred is indicated in brackets. These results are for
contact forces included within the block-Newton QN approximations. QR �ltering performed here
using a cuto� criteria of |Uii| ≤ 10−8

∣∣∣∣Uk
∣∣∣∣

2
with a comparison for a sweep of QR �ltering parameters

provided in Table 6.

No Filtering QR Filtering
Method BN inv (J) BN inv(J)
MVQN 5.02 4.92 � �

IAC+MVQN 5.58 N/A � �
QN-LS(0) (932/2000) (1212/2000) (914/2000) (130/2000)
QN-LS(1) (830/2000) 7.49 (905/2000) 7.51
QN-LS(2) (623/2000) 6.36 (692/2000) 6.41
QN-LS(5) (395/2000) 5.29 (11/2000) 5.33
QN-LS(10) (404/2000) (1104/2000) (13/2000) (1111/2000)

Table 6: Comparison of the mean number of iterations required by BQN-LS and QN-ILS for di�erent
number of time histories and QR �ltering parameters for the valve with solid body contact. If a scheme
is non-convergent the time step at which divergence occurs is shown in brackets.

QR �ltering: |Uii| < ε QR �ltering: |Uii| ≤ ε
∣∣∣∣Uk

∣∣∣∣
2

# Histories ε = 10−6 ε = 10−8 ε = 10−10 ε = 10−8 ε = 10−10 ε = 10−12

B
Q
N
-L
S

0 (1) (670) (1478) (914) 10.40 10.40
1 (1) (877) (892) (905) (892) (892)
2 (1) (690) (686) (692) (680) (686)
3 (1) (603) (579) (578) (579) (579)
5 (1) (24) (504) (11) (505) (504)
10 (1) (14) (424) (13) (403) (429)

Q
N
-I
L
S

0 (1) (1236) (1253) (130) (1253) (1253)
1 (1) (1005) 7.50 7.51 7.50 7.50
2 (1) 6.40 6.40 6.41 6.40 6.40
3 (1) 5.86 5.84 5.86 5.84 5.84
5 (1) 5.32 (1104) 5.33 (1104) (1104)
10 (1) (1109) (1104) (1111) (1105) (1106)

domains, the results using interface arti�cial compressibility in conjunction with MVQN (IAC+MVQN)
is included as an additional reference. It is important to note that the IAC+MVQN method does not
have a residual equivalent, and therefore only the results for the block-Newton approximations are
shown.

Overall the MVQN approximations outperform the QN-LS family of methods. With the exception
of 0 retained histories with a QR �ltering criteria of |Uii| ≤ 10−10

∣∣∣∣Uk
∣∣∣∣

2
, the BQN-LS fails to converge

regardless of the number of retained histories, and while QN-ILS provides convergent results, the
method remains sensitive to the choice of q.

5 Conclusion

In this paper, a numerical comparison of the QN-LS and MVQN methods was performed for FSI
problems involving free surface �ow, solid body contact and a steady state analysis. The analyses
focused on a comparison of the convergence behaviour of the QN methods when used to approximate
the inverse interface Jacobian and the block-Newton interface Jacobians. Despite the additional non-
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Figure 15: Typical convergence behaviour shown here for t = 0.1s for the solid body contact valve
problem. The BQN-LS is not included as it failed to provide convergent results.

linearities present within the chosen problems, both sets of interface equations resulted in comparable
performance, with predominantly super-linear convergence rates.

Because the block-Newton Jacobian approximations attempt to construct a relationship between
interface displacements and forces, it is important that all the interface forces and displacements are
properly accounted for. This naturally occurs for free surface �ow, where the additional non-linear
interface forces, resulting from the large �uid density di�erences are included within the �uid interface
stresses. On the other hand, for solid body contact, these additional non-linear forces are a result of the
solid domain, and are therefore not natively included. Excluding these contact forces when constructing
the BN Jacobian approximations results in an unstable system. The inverse Jacobian approximation
deals with these non-linearities naturally, without any special treatment of the information. Therefore,
in many regards the inverse Jacobian can be considered an approximation of the total derivative
of the interface equations. They do in some sense include the partial derivatives of the additional
contact forces with respect to the change in displacement, where for the block-Newton systems these
approximations have to be constructed independently.

Unless there is a speci�c requirement that the sensitivities of interface forces with respect to interface
displacements (or vice versa) be made available, approximating the inverse interface Jacobian appears
to be the preferred method. It provides comparable coupling performance and does not require solving
any linear systems, which can result in signi�cant computational savings for large problems.
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