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Abstract

The Quasi-Newton Inverse Least Squares method has become a popular method to
solve partitioned interaction problems. Its performance can be enhanced by using
information from previous time-steps if care is taken of the possible ill-conditioning
that results. To enhance the stability, filtering has been used. In this paper we show
that a relatively minor modification to the filtering technique can substantially
reduce the required number of iterations.

1 Introduction

Often in nature different systems interact, like fluids and structures, heat and
electricity, populations of species, etc. From the growing number of confer-
ences, publications and software releases it is clear that in silico simulations
of these kinds of coupled systems are becoming increasingly important in the
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engineering community. Examples can be found in aeronautics (e.g. [38,40—
43,62,78,84]), bio-medical science (e.g. [3,7,16,31,32,48,58,79,87,89]), civil en-
gineering (e.g. [13,33,46,60,61,77,81,82,92,93]), plasma physics (e.g. [55,56]),
to name but a few. In this paper we will focus solely on fluid-structure inter-
actions.

For these types of problems powerful solvers often already exist for each phys-
ical domain (e.g. structural or fluid). Even so, development of similar tools for
multi-physics problems is still ongoing and the paths followed to obtain such
a solver can be broadly put in one of the following categories:

e Monolithic or simultaneous solution: the whole problem is treated as a
monolithic entity and solved simultaneously with a specialized ad hoc solver.

e Partitioned solution: the physical components are treated as isolated entities
that are solved separately. Interaction is modeled as forcing terms and/or
boundary conditions.

The relative merits of these methods are very problem dependent. The advan-
tage of the monolithic approach is the enhanced stability [72]. This however
comes at the cost of having to develop specialized software for each type of
interaction problem, where the resulting solution systems are often very large.
Furthermore, it can be inappropriate to use the same basic formulation for
both types of problems, which further forces the user to treat non-linearities
in the same way for all components. Despite this the monolithic approach has
proven to be a very popular method, e.g. [4,7,14,59,80,85].

The partitioned approach allows for the use of available specialized solvers for
each physical component, on the condition that the coupling effects can be
treated efficiently. The latter is often feasible for problems where the systems
only weakly interact. Strongly coupled problems, on the other hand, still pose
a real challenge. Many articles can be found on partitioned methods in the
literature, e.g. [13,23,44,69-71,76,78,88].

In this paper we will solely focus on the partitioned approach, as the main aim
of this work is to improve the performance of the Quasi-Newton Least Squares
family of methods, in particular QN-ILS [21], which has found widespread
acceptance as a means to accelerate the convergence of partitioned solvers.
We are not concerned with the solution process of the constituent physical
problems as these are assumed to be handled by specialized solvers which we
assume to be black box operations of which no specific details can be mod-
ified or even assessed (e.g. the Jacobian). Furthermore we will assume that
the computing time of these black boxes is sufficiently high that the actual
computing time of the quasi-Newton step can be neglected.



To accelerate the convergence of a time-dependent problem it can be beneficial
to use “histories” from previous time-steps to construct an approximation of
the (inverse) Jacobian at the current time-step. This might however lead to
numerical breakdown, as the risk of constituent vectors becoming (nearly)
linearly dependent increases. To avoid this, QR-filtering has been applied in
the past [22]. In this paper we try to improve the convergence performance of
QN-ILS by introducing a better form of filtering.

This paper is organized as follows: in §2 we give a short overview of QN-
ILS; in §3 we explain the idea of recovery of data from previous time-steps,
while in §4 we address the topic of filtering. The currently used method of
QR-filtering is explained, together with two new approaches, one based on
the ideas of the orthogonalization performed in QR-~decomposition, the other
on that of Proper Orthogonal Decomposition. In §5 the performance of the
different filtering techniques is tested and compared using different numerical
applications, after which we end with a short conclusion.

2 The Quasi-Newton Inverse Least Squares (QN-ILS) method
2.1 Problem setting

In general we are interested in non-linear surface-coupled problems that can
be mathematically stated in the following form:

F(g)=p M

S(p) =

where F': Dp CR™ - R": g+ F(g) and S: Dg CR" — R : p— S(p).
Each equation describes (the discretized equations of) a physical problem that
is spatially decomposed. In fluid-structure interaction problems F(g) = p
could give the pressure p on the interface between fluid and structure for
a given geometry g, while S(p) = g could give the deformed geometry of that
same interface under influence of the pressure exerted on it by the fluid.

We limit p and g to values on the interface between the two physical problems.
In this way the physically decoupled nature of the problem is exploited. This
approach can be regarded as a special case of heterogeneous domain decom-
position methods [28] and limits the number of variables that the coupling
technique will be dealing with, even though the black box solvers that give
F(g) and S(p) might use a substantially higher number of internal variables;
for instance in the case of a fluid-structure interaction problem where the pres-



sure is passed from the fluid to the structure, the fluid velocity is an internal
variable for the flow solver as are all nodal values of the pressure that are not
on the interface.

Alternatively, (1) can be written as the fixed point problem

or the root-finding problem

H(p) —p= K(p)=0. (3)

Using (2) or (3) means that we have actually lumped both systems F' and S
together into one system (either H or K), which in general has a lower num-
ber of variables than the sum of the number of variables of both constituent
systems F' and S.

We assume that H and K satisfy the following hypotheses, which are typical
when working with Newton and quasi-Newton type methods [74]:

(1) H (and hence K) are continuously differentiable in an open set D.
(2) K(p) = 0 has one solution p* in Dg.
(3) (K'(p))~! exists and is continuous in an open set containing p*.

Remark 2.1 We assume the operations F'(g) and S(p) (and hence H(p) and
K(p)) are black box systems, representing the propriety solvers, with a high
computational cost and of which nothing is known about the Jacobian; neither
do we make assumptions about this Jacobian like sparseness, symmetry, etc.
For that reason we count the performance of a method by the number of times
F(g) or S(p) are executed. Requirements like actual CPU-time or storage are
not taken into consideration.

Remark 2.2 While we write the equations in (1) in explicit form, this is only
for convenience; any form is usable as long as for a given value of g (resp. p) a
corresponding value of p (resp. g) can be computed that satisfies the equations

in (1).

Remark 2.3 We could have used (and sometimes will use)

S(F(g)) —g=0 (4)



instead of (2). The choice between both can depend on

e practical tmplementation issues due to the solvers used;

o the relative sizes of n and m. If n < m, resp. n > m, the use of (3),
resp. (4), will result in a problem that is defined on a space with the lowest
dimension.

Remark 2.4 When (1) is derived from a physical problem, it often represents
the equations obtained after discretizing the continuous equations in time and
space, and thus only represents the evolution over one time-step (see §3). This
1s an example of how we could be presented with a series of related problems.
In this context we can write (1) as

Ft+1(9;pt79t> =D (5)
g,

St+1 (pa D1, gt) -

where the subscript t +1 (t = 0,1,...) denotes the time-level at which the
problem is solved. The solution of (5) will give the values of p and g at that
time-level (pyy1, resp. gir1); the extra arguments p, and g, are added to show
that the solution at the next time-level depends on the values at the previous
time-level ! .

In what follows we will almost always simply write F(g) and S(p) and assume
it 1s clear from the context that this either describes an isolated problem or a
problem solved over one time-step.

2.2 QN-ILS

The Quasi-Newton Least Squares family of algorithms was developed starting
from the Block Quasi-Newton Least Squares algorithm (BQN-LS) [19,20,89]
even though the name BQN-LS was not used until later [21]. From BQN-LS,
the quasi-Newton Least Squares algorithm (QN-LS) was developed, which was
first introduced in [51]. BQN-LS and QN-LS are very closely related to the
point that for affine problems both are algebraically identical [54].

The Quasi-Newton Inverse Least Squares algorithm (QN-ILS) was derived
from QN-LS in [21] and further generalized in [24]. It quickly overtook QN-LS
in popularity, probably as it directly gives the inverse of the Jacobian, which
is actually needed [2,6,10-12,17,25,27,29,34-36,49,50,52,64,65] % .

L' Tt is possible that it depends on more than one of the previous time-levels.

2 The method is also known as Anderson acceleration going back to 1965 [1] and was
mainly applied in electronic structure computation (e.g. [73]). Under this name is
method recently re-attracted new attention [90,37] and showed potential in further



QN-ILS is applied to equation (3) and can be described as follows.

1. Startup:
a. Take an initial value p,.
b. Compute p; = (1 —w)p, + wH (p,).
c. Set s = 1.
2. Loop until sufficiently converged:
a. Compute K (p;).
b. Construct the approximate inverse Jacobian M ! as given below®.
c. Quasi-Newton step: psi1 = ps — ]\}[S’K(ps).
d. Set s =5+ 1.

2 Te. M/ is an approximation of (K’(ps))~!, where K’(p,) is the
Jacobian of K evaluated for ps.

In this algorithm w represents a relaxation parameter, which we apply to avoid
excessive initial divergence.

The construction of the approximate inverse Jacobian is obtained as follows.

Let G(y) = H(K'(y)), then

)
=H(K '(y)) - K(K '(y))
=H(K '(y)) — Z(y)
=G(y) — Z(y)

It follows that (K1) (y) = G'(y) — I.

Thus, we approximate (K1)’ using an approximation G; of G’ that is com-
puted based on recorded input and output values:

0y; =ys —yi (i=0,...,5—1),
VIS = [0y, 0ys o .. Oyf) € R,
0G;=G(ys) —G(y:) (i=0,...,5—-1),
WG = [§G5_, 6G5_, ... 0G3] € R™™.

applications like e.g. groundwater flow [67].



GL= W (Vo) Tvee) ™ (v,
(KT, = Glo= T= W28 (V) TVee) ™ ()T — 1.

Setting K ~1(y;) = pifori =0,1,... (ie.,y; = K(p;) and G(y;) = H(K'(y;)) =
H(p;)) and modifying the notation accordingly, we get

(1), = A=W, ((V)"V) (V)" — 1, (7)
where

(SKZSZKQ)S)—K(pZ) (Z:O,,S—l), (8&)

Vo=[0K> | 6K? , ... 6KJ] € R™, (8b)

SH; =H(ps) —H(p:) (i=0,...,5—1), (8¢)

W,=[0H: |, 6H® , ... 6HS] € R™. (8d)

Remark 2.5 This method is sometimes called Interface Quasi-Newton In-
verse Least Squares to emphasize the use of interface variables, even though
this does not change the method itself [15,26,66,86].

Remark 2.6 If needed, filtering will be applied to Vi and W (cf. §4).

3 Recovery of data from previous time-levels

When the problem to be solved is time-dependent, and if we assume that the
input-output pairs of previous time-levels are representative enough for the
current time-level, we might think of enhancing the Jacobian by taking these
into account as follows:

Vs,t - [‘/s,t ’ Vvﬁnal,t—l | o ’ Vvﬁnal,t—C] (9&)
Ws,t - [Ws,t | Wﬁnal,t—l | cee | Wﬁnal,t—(]a <9b>

where V;; and Wy, are constructed at the current time-level ¢ and current
iteration s as in §2.2, Vipar—; and Wapars—; (i = 1,...,() are the input and
output matrices constructed as in §2.2 at the end of the iteration process at



time-level ¢ — ¢ and ( is a parameter that determines how many time-levels
are kept.

The Jacobian at iteration s of time-level ¢ is then constructed as:

-1

M, =W (V)" Vai) (Vo))" = 1. (10)

We start the first iteration of a new time-level (£ > 1) by computing
P1t = Dot — M{/inal,t—th(th)?

where Mﬁnal,t—1 is the approximate Jacobian at the last iteration of the previ-
ous time-level; this means that we set M ot = Moy~ (For the first time-level

we implicitly used M o1 = —I, possibly combined with under-relaxation.) A
first input-output pair for the new time-level can then be computed based on
D1t — Doyt and Ht<p1,t> - Ht(po,t)-

The value p,; is obtained by linear extrapolation based on panai+—1 and panal ¢—2
(if available), which are the last iterates at time step ¢t — 1 and ¢ — 2 respec-
tively? .

Some caution is needed when using this method. First of all, the choice of the
parameter ( is difficult, as it is not always clear a priori how many time-levels
can be kept, i.e. how long old data will be representative for the problem at
the current time-level. Secondly, as explained in §4, filtering becomes even
more important when previous histories are retained.

4 Avoiding (near-)singularity through filtering
4.1 The need for filtering

For reasons of stability the following formula for QN-ILS, (cf. §2.2) is not used
in the actual computation*

1

psi1=ps — (W, (V)V2) (VJ) = DE(p,) (11)

3 We assume that at the last iteration convergence has been reached.
4 We will use the notation for the case where no histories are kept to enhance
readability. When histories are kept, the notation should be modified accordingly.



but replaced by

Pst1=DPs — (WS<RS)71(QS>T - I)K(ps)a
(12)

where V; = Qs R, is the economy size QR-decomposition, i.e. Q5 € R"** and
Ry € R®*5.

Although we have shown in [51] and [53] that singularities in the construction
of the approximate (inverse) Jacobian of QN-LS and QN-ILS cannot occur
when the mappings are affine and when working in exact arithmetic, it is quite
possible that the columns of V, become linearly dependent of one another when
the mappings are non-linear, when rounding errors are present or when the
total number of (column-)vectors in V; exceeds n, e.g. when many previous
histories are retained.

For that reason filtering is sometimes necessary to allow the construction of
the Jacobian (when s > n) and/or to avoid singularity of the approximate
Jacobian (when the columns of V; do not form a linearly independent set).

4.2 QR-filtering

QR-decomposition of V; is an effective way to indicate which columns of V; are
(nearly) linearly dependent®. Currently most applications that use QN-ILS
use QR-filtering based on the method first applied in [22]. This method can
be described as follows® .

(1) Make an economy size QR-decomposition of V' starting from the newest
vector and choose a threshold e.

(2) if |Ri;| < €-]|R]|2, then eliminate the i-th column of V' and W and re-start
the procedure.

We will call this method old QR(-filtering) in the remainder of the paper.

5 In this context, it is important that the QR-decomposition is started with the
vector that is added last, as this one is probably a better representation of the
current iterate than earlier vectors. This, however, incurs an extra cost as the QR-
decomposition needs to be recomputed every time, while starting with the oldest
vector would allow the re-use of previous QR-decompositions.

6 We will drop the subscripts in this part to enhance readability.



4.8 An alternative approach to QR-filtering

We will compare the approach in §4.2 with the following, new QR filtering,
which is also based on the (economy size) QR-decomposition.

(1) Let n be the number of columns of V = [V;|Va]...|V,] (numbered so
that the lowest index corresponds to the newest vector), and € a certain
threshold value.

(2) Set i =1. Ryy = ||[Vi]]2 and Q1 =

R11
(3) for:=2,...,n do:
(a) v =V;
(b) forj—1,2,.. i — 1 do:
(i) Rji=QF -0

(i) v =0v— R]Z Qj
(c) if [|#]|2 < €||Vi|2 then remove the i-th column of V and W and restart

the procedure,

otherwise Ry = ||v]]> and Q; = Vot
In the previous approach (§4.2) € depends on how accurately the flow and
structural equations are solved. An appropriate value for € can be determined
by analyzing the change of the output of K due to a small perturbation of
the input of K. If the perturbation is too small, the resulting change will be
numerical noise [22]. The approach is thus numerical in nature.

In the newly proposed method we compare the norm of a column of a ma-
trix with that of other columns to indicate possible linear dependencies; the
approach is thus purely algebraic.

Note also that the criterion of the method in §4.2 can be written as

n

| Rii| <e-[|R[l2 = ZZRJ12 (13)

Jj=1li=1

while the criterion in the newly proposed filtering algorithm is

|Ri| <e-||Rill2 =, ZR]ZQ (14)

An inconvenience of the method in §4.2 is that it would filter out a com-
pletely linearly independent column just because it is small compared to other

10



columns, e.g. when values change little between iterations.

4.4 POD-filtering

A completely different approach to filtering out (nearly) linearly dependent
vectors is based on Proper Orthogonal Decomposition (POD) [9,83]. It can be
written as follows.

(1) Let n be the number of columns of V; and € a certain threshold value.
(2) Create the autocorrelation matrix > = %(VS)TVS.

(3) Compute the eigenvalues \; and eigenvectors X; (i=1,...,n) of ¥, such
that XX = XA, with X = [Xi]|Xo|...|X,], A = diag{\,...,\,;} and

)\1 2)\2 27"'72 )\77'
(4) Determine ¢ such that i—j <e< ’\/\—;1 If such a value of ¢ does not exist,
take c = .

(5) Create V=[W|Vo|...[V,] = VX and W = PV W,|... [W,| = WX

(6) Truncate: Vs pop = V1| Vel ... |V.] and Wy pop = Wi |Ws| ... [W,]

(7) Create the (I)LS Jacobian Wy pop (Vs pop)* Vi.rop) ™ (Vs.rop)” — I and
use in QN-LS or QN-ILS.

5 Test-cases

We now present the key results for two test-cases. More data for these test-
cases and two extra test-cases can be found in [57].

Note that in all test-cases the results obtained with any of the methods were
identical (within convergence tolerance) when they converged. The only dif-
ference lies with the convergence speed of the methods.

5.1 Wave Propagation in a Three-Dimensional Elastic Tube

The flexible tube example [5,19,45] simulates a wave propagating in a straight
elastic tube with a length of 0.05m, a wall thickness of 0.001 m and an inner
diameter of 0.01 m. Both ends of the tube are fixed. A pressure driven flow is
generated by setting the boundary condition for the pressure inlet to a peak
value of 1333.2Pa for a initial duration of 0.003s. After this time, the inlet
pressure is set to zero. At the right boundary, the pressure is set to zero at
all times. The fluid has a density p; of 10°kg/m® and a dynamic viscosity v
of 3.0-107% or 3.0 - 1072 Pa-s (as indicated in Tables 1-3). The structure is

11



assumed to be elastic and compressible with a density p, of 1.2-10% or 1.2-10?
kg/m? (as indicated in Tables 1-3), a Young’s modulus of 3.0 - 10° N/m? and
a Poisson’s ratio of 0.3.

The solver that is used is OpenFOAMT , an open source numerical simulation
toolbox for problems in continuum mechanics with emphasis on flow simula-
tion. It was used for the fluid and the structure simulations based on a second
order finite volume discretization of the incompressible Navier-Stokes equation
for the fluid. Instead of the standard PISO (pressure implicit with splitting of
operator) algorithm it uses a coupled solution algorithm as described in [18].
L.e., it assembles and solves as a whole a large diagonally-dominant matrix
for both velocities and pressure. Hereby, the pressure equation is derived in a
similar manner as in the SIMPLE method [75]. The governing fluid equations
are formulated in the Arbitrary-Lagrangian-Eulerian point of view and mesh
movement is done via radial-basis function interpolation. Time integration
is done using a second order backward differencing scheme. The structural
solver uses a full Lagrangian formulation and a Saint-Venant-Kirchhoff mate-
rial model. For more information, refer to e.g. [8].

The flow solver uses a mesh with 20800 cells, whereas the structure mesh has
6400 cells; the time-frame consists of 100 time-steps of 10~%s.

The initial solution of the displacement is determined with a state extrapola-
tion from previous time steps for each numerical method under consideration.
The pressure pulse that propagates through the tube and the arising wave in
the tube wall are shown in Figure 1.

pressure
040 oso

000 12,

-0.22 1.5

Fig. 1. Wave propagation in a three-dimensional elastic tube. Geometry and pressure
contours on the fluid-structure interface at ¢t = 3.0 - 10~ s

For the coupling between the fluid and the solid solver, we use the coupling
library preCICE® | while the OpenFOAM coupling adapters are provided by
David Blom et al.?. preCICE is a library for flexible numerical coupling of
single-physics solvers. It is developed at the Technische Universitat Miinchen

" http://www.openfoam.org/
8 http://www.precice.org
9 https://github.com/davidsblom/FOAM-FSI

12



and the Universitiat Stuttgart [47]. preCICE uses a partitioned black-box cou-
pling approach that allows for a flexible and minimal invasive coupling with a
wide range of single-physics solvers. Its equation coupling module provides a
wide variety of runtime configurable aspects of numerical coupling, like serial
or parallel as well as explicit and implicit coupling schemes along with several
acceleration schemes, so called post-processing methods.

Two coupling schemes were used

(1) The serial implicit coupling scheme (S-System) is the standard approach
for the coupling of black box solvers in a partitioned FSI setting [8,22,39,44].
The field solvers are executed in staggered way, i.e., first the flow solver
(F) computes forces (p) from the interface displacements (g) and veloci-
ties for the current time step. The structural solver takes these forces as
input values and computes the new interface displacements and velocities
afterwards. The corresponding fixed-point equation reads

géSoF(g).

However, for massively parallel simulations, the inherent serial calling or-
der of the field solvers leads to performance issues due to bad load balanc-
ing. There is a significant mismatch of work load between the structural
and the fluid solver, which imposes limitations on the parallel efficiency.

(2) The parallel implicit coupling scheme (V-System) was developed to over-
come those limitations by evaluating the structural and fluid solver in
parallel. Hereby, the V-System uses the original input/output relation
for both solvers but the boundary values are exchanged after each simul-
taneous solving of structure and flow. The vectorial fixed-point equation
reads

Y2 0F p

g S0/ \yg

If solved by a pure fixed-point iteration, the vectorial system results in two
independent instances of the S-System. Quasi-Newton solvers turn out to
be powerful enough that one iteration of the V-System is comparable to
one iteration of the S-System [15,86].

A relative convergence criterion

(K K@)
frel-Crit. = {HH@)HQ’ HH(g)Hz} <10

or an absolute convergence criterion

13



Abs.Crit. := [|[K(g)]]s < 1077

is used.

The optimal results for each filtering technique are given in Tables 1-3. More
data can be found in [57]. It is seen that filtering can indeed enhance the
convergence speed and that in this respect the new QR filtering gives the best
results. The relative performance of the old QR and POD filtering depends
on the settings of the test-case, with POD, in general, being slightly better.

S-QN-ILS V-QN-ILS
old QR | 8.51 for e = 107! | 9.82 for e = 107°
new QR | 5.82 for e = 1072 | 8.67 for e = 1072

POD | 7.40 for e = 10716 | 9.74 for e = 10716
no filter 8.64 9.85

Table 1

Best results for the wave propagation in a 3D tube. Mean iteration numbers over
the first 100 time steps for the V- and S-QN-ILS coupling scheme and different
filtering techniques. Forces are scaled with fropce = 10719 for better conditioning.
The information from the past is retained for ® = 30 time steps. The relative
convergence criterion is used. p; = 1.2-10% and v = 3.0 - 1073.

S-QN-ILS V-QN-ILS
old QR | 7.65 for e =107 | 9.45 for e = 107°
new QR | 5.74 for e = 1072 | 7.43 for e = 107©

POD | 7.35 for e = 10714 | 9.23 for e = 10714
no filter 7.78 9.69

Table 2

Best results for the wave propagation in a 3D tube. Mean iteration numbers over
the first 100 time steps for the V- and S-QN-ILS coupling scheme and different
filtering techniques. Forces are scaled with frorce = 10719 for better conditioning.
The information from the past is retained for R = 30 time steps. The relative
convergence criterion is used. ps = 1.2-10% and v = 3.0 - 1072.

5.2 Flow induced oscillating flexible beam

We consider the popular flexible beam benchmark problem first introduced by
Wall [91]. The problem consists of analyzing flow around a flexible tail attached
to a rigid bluff body, with large deformations induced by oscillating vortices
formed by flow around the square bluff body. The geometry and discretization

14



S-QN-ILS

old QR | 8.31 for e < 10710

new QR | 7.20 for e = 1072
POD | 8.37 for e = 10718

no filter 8.31

Table 3

Best results for the wave propagation in a 3D tube. Mean iteration numbers over
the first 100 time steps for the S-QN-ILS coupling scheme and different filtering
techniques. The information from the past is retained for R = 30 time steps. The
absolute convergence criterion 1 is used. p; = 1.2-10? (for fostering insta-
bilities) and v = 3.0 - 1072. V-QN-ILS is not shown as it failed to converge.

used for the test is illustrated in Figure 2 along with the beam displacement
at t = 4.29s in Figure 3.

Fig. 2. Discretization used for flexible tail benchmark problem.

OpenFOAM was once again used, and analysed here using S-QN-ILS. While
not solved using preCICE, it does follow the same methodology.

The time step size is At = 0.01s with a total of 620 DOF's along the interface
where the QN approximation is constructed.

The convergence criterion is || K (g)|]» < 107.

Figure 4 shows the the tip displacement for 3 different time-steps including
the steady state mean amplitude from [30,63].

15



Fig. 3. Deformation and pressure contours shown here for ¢t = 4.29s.
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Fig. 4. Tip displacement for 3 different time-steps including the steady state mean
amplitude (horizontal lines):

thick -. line is from [30]: 4336 fluid elements, 20 nine-noded quadratic solid elements,
At = 0.005s;

thin -. line is from [63]: 5080 fluid elements, 20 nine-noded quadratic solid elements,
At = 0.004s

The optimal results for each filtering technique and different numbers of re-
tained histories are given in Table 4. The number of observation vectors filtered
out in the last time step is also indicated. More data can be found in [57]. It
is seen that filtering can indeed enhance the convergence speed. When a low
number of histories is kept, the filtering techniques all give roughly the same
performance. When more histories are kept (and thus the risk of linear depen-
dence becomes bigger), the performance gain of the new QR filtering technique
becomes more obvious. It is remarkable that the new QR filtering technique
obtains the best results with aggressive filtering, retaining only 4 or 5 vectors,
while the other filtering techniques score best with moderate filtering. This
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shows that the filtering procedure is more important than the actual amount
of filtering Y. POD filtering, while better than the old QR-based filtering, does
not match the performance of the new QR-based filtering.

No histories 5 Histories 10 Histories 20 Histories

old QR | 527 for e =1076 | 5.52 for e = 1071 | 6.33 for e = 10~ | 7.56 for e = 10710
(1/4) (6/34) (17/74) (101/178)

new QR | 5.26 for e = 10° 5.03 for € = 10° 5.11 for € = 10° 5.18 for € = 10°
(0/5) (25/29) (50/54) (96/100)

POD | 5.26 for e = 107 | 5.25 for e = 1072 | 5.57 for ¢ = 10722 | 6.72 for ¢ = 10720

(0/4) (9/32) (16/61) (98/157)

no filter 5.30 5.61 6.38 div

Table 4

Best results for the the flexible beam benchmark problem for varying numbers of
retained histories and different filtering techniques. Mean iteration numbers over
the first 500 time steps. The quantities in brackets indicate the number of vectors
filtered out in the final time step.

6 Conclusions

When QN-ILS is used as a tool to solve partitioned fluid-structure interaction
problems, it can be beneficial to use data from previous time-steps, while,
at the same time, creating the risk of destabilizing the method due to bad
conditioning. This can be solved by judicially filtering out data that is (nearly)
linearly dependent. However, this is a compromise, as discarding data might
impair the convergence speed. In this paper, we introduced two new ways of
filtering. While all filtering techniques that were shown are dependent on a
parameter that needs to be tuned depending on the application, we show that
better results can be obtained with a new way of QR-based filtering, without
incurring extra complexity.

10'While the best values of € are still obtained by trial-and-error for each filtering
technique, we only compare best results with best results. The reason why the
new QR filtering uses substantially higher values of € which can be deduced from
Equations (13) and (14).
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