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Problem statement

• Aeroelasticity is often described as the study of the interaction 
of inertial, elastic and aerodynamic forces that occur when an 
elastic body is exposed to a fluid flow (Wikipedia).

• The aim of a flutter analysis is to determine the speed above 
which structural vibrations will grow exponentially and 
potentially cause structural failure.

• On the one hand it is necessary to model how the structure 
would respond to forces applied to it, and on the other hand it is 
necessary to model what aerodynamic forces would be 
generated due to the movement of the structure.

• This presentation concerns mainly the structural dynamic 
component of the aeroelastic problem, and specifically the 
structural damping forces (which is usually not mentioned in the 
definition of aeroelasticity).
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Structural Dynamics

• The general structural dynamic equation of motion is

• Where the xi represent physical displacements, the fi
physical forces and the matrices can be finite element model 
matrices or something more abstract.  These mass, 
damping and stiffness matrices are generally full matrices.

• The eigenvalues of the corresponding un-damped equation 
are the natural frequencies of the structure (actually, the 
square of the angular frequencies in radians per second)
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Structural Dynamics (continued)
• The corresponding eigenvectors are real-valued and are the 

natural mode shapes of the structure
• By pre- and post-multiplying the structural dynamic equation of 

motion by a subset of these eigenvectors, the problem is 
transformed from a physical basis to a modal basis, i.e. the 
degrees of freedom become modal deflections rather than 
physical deflections.

• We are usually only interested in a small number of natural 
modes of a structure, defined by a frequency range of interest.  
The resulting modal basis structural dynamic model is orders of 
magnitude smaller than the physical model.

• Pre- and post-multiplying the physical mass and stiffness 
matrices by the eigenvectors diagonalises them. Under the 
condition of proportional damping, the damping matrix is also 
diagonalised and the eigenvectors of the un-damped equation 
of motion are also eigenvectors of the damped equation of 
motion.
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• It is not always justified to assume proportional damping: 
aircraft engines are relatively large masses mounted on 
various types of mountings.  This is a major source of non-
proportional damping in aircraft.
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Properties of normal modes

• A normal mode of an oscillating system is a pattern of 
motion in which all parts of the system move sinusoidally 
with the same frequency and with a fixed phase relation. 
(Wikipedia)

• In the case of proportionally damped systems, the phase 
relation between any two points is either in phase or 180 
degrees out of phase.  The mode shapes can therefore be 
described by real numbers (positive and negative) whereas 
complex numbers are required to describe the mode shapes 
of a non-proportionally damped system.

• When a structure is made to oscillate in one of its natural 
modes and the excitation is stopped, the structure will 
continue to oscillate in the same mode shape, even though 
the amplitude will decrease exponentially.  This is true for 
both proportionally damped and non-proportionally damped 
structures.



Slide 7 © CSIR  2006                        www.csir.co.za

Properties of normal modes

• It is important to note that the un-damped, real-valued, 
normal modes of the structure together with the full damping 
matrix in the case of non-proportionally damped structures is 
a complete structural dynamic model of the structure.

• It is convenient to use real-valued mode shapes in 
aeroelastic analysis, especially for the calculation of the 
unsteady aerodynamic forces.

• The unsteady aerodynamic code therefore needs no 
modification, only the flutter solver needs to read in an use a 
full damping matrix in stead of a diagonal one.
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Obtaining the structural dynamic model

• There are two main options: finite element modelling and 
ground vibration testing.

• In a finite element model the user has to specify the damping 
model – it is the user’s own fault if he chooses a difficult model

• In ground vibration testing the damping model must be 
determined experimentally – the user is not to blame if it turns 
out to be non-proportionally damped

• There are two main ground vibration testing methods: Phase 
separation (“broadband”) and phase resonance (“sine dwell”)

• In phase separation testing the test consists of measuring a 
large number of transfer functions, typically in the order of a 
hundred responses and in the order of ten excitation points.  
The structural dynamic model is obtained by post-processing of 
the measured data.

• In phase separation testing the structure is made to oscillate in 
each of its natural modes in turn and the mode shape and 
modal parameters are measured directly
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Obtaining the structural dynamic model 
from phase resonance testing

• In phase separation testing the structure is made to oscillate in 
its un-damped normal modes.  Several exciters may be 
required to achieve the desired phase relationship over the 
whole structure.  The modal parameters are measured for one 
mode at a time, therefore the interaction between modes (due 
to the off-diagonal damping matrix terms) appears to be lost.

• The sine-dwell method does however leave a record of the 
input forces and velocities at the excitation positions when the 
mode was excited.  This record is used to determine the off-
diagonal damping matrix terms for a set of modes.
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Obtaining the modal damping matrix from 
phase resonance testing

• The excitation forces are expressed in terms of a specific 
model, viz. that each excitation degree of freedom is connected 
to ground through a viscous damper and that each pair of 
excitation degrees of freedom are connected by a damper.

Where Fij and vij are the force and velocity, respectively, in degree of 
freedom i used in the isolation of mode j.   Cik is the damping 
constant of the damper between degrees of freedom i and k, except 
that when i=k, it is the damping constant of the damper between 
degree of freedom i and ground. 

• Once the damping values are known, they are used to construct the 
corresponding physical damping matrix.  The final step is to 
generalize the physical damping matrix using the displacement 
vectors of the excitation degrees of freedom. 
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Experimental setup
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Experimental setup

• The system has only two degrees of freedom
• Two electro-mechanical exciters (the grey ones) are used as 

dampers.  The external resistance determines the damping 
constant.

• The other two exciters are used to excite the structure.
• Impedance heads measure input force and response at the 

excitation positions.
• A setup in which one damper has minimum damping (open 

loop) and the other maximum damping (short circuit) produced 
significantly non-proportional damping.

• The results that follow are for this setup, for both phase 
separation tests and phase resonance tests.  



Slide 13 © CSIR  2006                        www.csir.co.za

Analysis using MATLAB SDT

• The first step is identifying “poles” in the responses
• The second step is to calculate “residues” in order to fit the 

measured transfer functions.  At this stage there is one residue 
per pole per response d.o.f per excitation d.o.f

• The poles and residues are typically iteratively refined to 
improve the fit .

• The final step is to transform the parameters used to fit the 
individual transfer functions to a structural dynamic model.

• SDT offers a choice of models: A pole-residue model that is 
suitable for proportionally damped structures, and a full 
damping matrix model for non-proportionally damped structures

• In the former case the number of residues is reduced 
substantially.

• There are pre-requisites for the latter type of model in terms of 
the number of sensors, actuators and modes that must be kept 
in mind at the test stage.
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Sine-dwell testing: exciting close to the modal 

frequency
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Sine-dwell testing: exciting at the modal 

frequency but with the wrong force ratio
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Sine-dwell testing: exciting at the modal 

frequency and with the correct force ratio
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Sine-dwell testing: extracting modal 

parameters
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Sine-dwell testing: force and velocity

Exciter 

number

Degree of 

freedom

Force Velocity

1 2+y 0.248883 0.013825

2 3+y -3.019044 -0.012175

Exciter 
number

Degree of 

freedom

Force Velocity

1 2+y -0.001936 0.007463

2 3+y 3.090704 0.011558

Mode 1

Mode 2
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Sine-dwell testing: damping matrix

Solution (physical dampers)

1    1      15.33

1    2       -1.09
2    2    258.59

Physical damping matrix

14.24        1.09

1.09    257.50

Generalized damping matrix

264.8 -217.1

-217.1  212.0
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Conclusion

• The analytical tools for modelling structures with non-
proportional damping is available in both phase 
separation and phase resonance testing.

• The only significant difference is that a full (as 
opposed to diagonal) modal damping matrix needs to 
be determined and used in the flutter solver.

• Careful planning of phase separation tests is 
necessary to ensure that it will in fact be possible to 
extract the full modal damping matrix.

• In phase resonance testing the number of excitation 
degrees of freedom should be kept to a minimum.

• The significance of non-proportional damping in 
aeroleastic analysis remains to be seen


