Vortices in Gaussian beams

F. Stef Roux

CSIR National Laser Centre

PO Box 395, Pretoria 0001, South Africa

Contents

- Definition of polynomial Gaussian beam
- Calculation techniques and general properties of polynomial Gaussian beam
- Single vortex beams
- Gaussian beams with vortex dipoles

Gaussian beam notation

Gaussian beam in normalised coordinates:

$$g(u, v, t) = \exp\left(-\frac{u^2 + v^2}{1 - it}\right)$$
$$u = \frac{x}{\omega_0} \quad v = \frac{y}{\omega_0} \quad t = \frac{z}{\rho} \quad \rho = \frac{\pi\omega_0^2}{\lambda}$$

 $\omega_0 - 1/e^2$ beam waist radius; ρ — Rayleigh range

Gaussian beam

Gaussian beam in terms of amplitude and phase

$$g(u, v, t) = \exp\left(-\frac{u^2 + v^2}{1 + t^2}\right) \exp\left(-\frac{it(u^2 + v^2)}{1 + t^2}\right)$$

Normalised beam radius:

$$\sqrt{1+t^2}$$

Wavefront normalised radius of curvature:

$$R(t) = \frac{1+t^2}{t}$$

Polynomial prefactor

Polynomial Gaussian beam = prefactor \times Gaussian beam

$$f(u, v, t) = P(u, v, t)g(u, v, t)$$

g(u, v, t) — Gaussian beam

P(u, v, t) — complex bivariate polynomial (of finite order)

"bivariate" means two variables (u and v). Coefficients depend on t. Bivariate polynomials cannot always be factorised.

Complex bivariate polynomials

General form of complex bivariate polynomial prefactor:

$$P(u, v, t) = \sum_{p=0}^{N} \sum_{q=0}^{p} \alpha_{p,q}(t) (u + iv)^{p-q} (u - iv)^{q}$$

In terms of (u + iv) and (u - iv) instead of u and v

 $\alpha_{p,q}(t)$ — complex coefficients as functions of the propagation distance t

Helical coordinates

Occasionally it will be useful to re-express polynomial Gaussian beam in terms of helical coordinates:

$$f(w, \overline{w}, t) = P(w, \overline{w}, t) \exp\left(-\frac{w\overline{w}}{1 - it}\right)$$

where w = u + iv and $\overline{w} = u - iv$; and

$$P(w,\overline{w},t) = \sum_{p=0}^{N} \sum_{q=0}^{p} \alpha_{p,q}(t) w^{p-q} \overline{w}^{q}$$

Complex bivariate polynomials

$$p_4(w,\overline{w}) = \alpha_{00}$$

$$+ \alpha_{10}w + \alpha_{11}\overline{w}$$

$$+ \alpha_{20}w^2 + \alpha_{21}w\overline{w} + \alpha_{22}\overline{w}^2$$

$$+ \alpha_{30}w^3 + \alpha_{31}w^2\overline{w} + \alpha_{32}w\overline{w}^2 + \alpha_{33}\overline{w}^3$$

$$+ \alpha_{40}w^4 + \alpha_{41}w^3\overline{w} + \alpha_{42}w^2\overline{w}^2 + \alpha_{43}w\overline{w}^3 + \alpha_{44}\overline{w}^4$$

Leading order by itself is fully factorisable in terms of product of 1st order polynomials. Each 1st order polynomial represents a complex zero \Rightarrow an optical vortex.

Propagation

We want to find out what the *t*-dependence is for a beam with a certain input function at $t = t_0$.

our future through science

Fresnel integral

$$g(u',v',t) = \Omega Q(u',v',t) \iint_{-\infty}^{\infty} f(u,v)Q(u,v,t)K(u,v,t) \ dudv$$

 Ω — *t*-dependent complex factor f(u, v) — two-dimensional complex input function at $t = t_0$

$$Q(u, v, t) = \exp\left[-\frac{i}{t - t_0} \left(u^2 + v^2\right)\right]$$
$$K(u, v, t) = \exp\left[\frac{i^2}{t - t_0} \left(uu' + vv'\right)\right]$$

Propagating Gaussian beams

Fresnel propagation of polynomial Gaussian beam is represented by,

 $g(u',v',t) = \Omega Q(u',v',t) \mathcal{FR} \{ P(u,v)g(u,v,t_0) \}$

P(u, v) — polynomial prefactor in the input plane (at $t = t_0$)

 $g(u, v, t_0)$ — Gaussian beam in the input plane (at $t = t_0$)

Replacement

Replace variable with derivative

$$u \exp\left(\frac{i2}{t-t_0}uu'\right) = \frac{t-t_0}{i2}\frac{\partial}{\partial u'}\exp\left(\frac{i2}{t-t_0}uu'\right)$$

Since the derivatives are independent of the integration variables they can be pulled out of the integral.

Operator approach

One can simplify calculations, by turning polynomial prefactor into differential operator:

 $\mathcal{FR} \{ P(u, v)g(u, v, t_0) \} = \mathbf{P}(d_u, d_v) \{ \mathcal{FR} \{ g(u, v, t_0) \} \}$ Replacement:

$$u \to d_u = \frac{t - t_0}{i2} \frac{\partial}{\partial u'}$$
$$v \to d_v = \frac{t - t_0}{i2} \frac{\partial}{\partial v'}$$

Differentiation i.s.o integration

Evaluate the integral over the Gaussian beam (once and for all). Then, instead of evaluating an integral every time, one only needs to perform differentiations:

$$g(u, v, t) = \Omega Q(u, v, t) \left(\frac{t_0 + i}{t + i}\right) \mathbf{P}(d_u, d_v) \left\{ \Gamma(u, v, t) \right\}$$

where we replace (u', v') with (u, v).

$$\Gamma(u, v, t) = \exp\left[i\frac{(t_0 + i)(u^2 + v^2)}{(t + i)(t - t0)}\right]$$

Helical coordinates

For propagation:

$$g(w,\overline{w},t) = \Omega \exp\left(-\frac{iw\overline{w}}{t-t_0}\right) \left(\frac{t_0+i}{t+i}\right) \mathbf{P}\left(d_w,d_{\overline{w}}\right) \left\{\Gamma(w,\overline{w},t)\right\}$$

where

$$\Gamma(w,\overline{w},t) = \exp\left[i\frac{(t_0+i)w\overline{w}}{(t+i)(t-t0)}\right]$$
$$w' \to d_w = -i(t-t_0)\frac{\partial}{\partial\overline{w}}$$
$$\overline{w}' \to d_{\overline{w}} = -i(t-t_0)\frac{\partial}{\partial w}$$

Single noncanonical vortex

Prefactor at $t = t_0$:

$$p_1(w,\overline{w}) = \xi(w-w_0) + \zeta(\overline{w} - \overline{w}_0)$$

where $w_0 = u_0 + iv_0$ and $\overline{w}_0 = u_0 - iv_0$.

After propagation:

$$p_1(w,\overline{w},t) = \xi\left(w\left[\frac{t_0+i}{t+i}\right] - w_0\right) + \zeta\left(\overline{w}\left[\frac{t_0+i}{t+i}\right] - \overline{w}_0\right)$$

Trajectories

Steps to find the vortex trajectories:

- ▷ Substitute: w, \overline{w} , ξ and ζ in terms of real and imaginary parts.
- Separate prefactor into real and imaginery parts.
- ▷ Find coordinates (u, v) as function of t where both parts become zero.

Trajectories for example

Trajectories for $p_1 = w - w_0$ (single off-axis canonical vortex).

$$p_1 = (u+iv)\left[\frac{t_0+i}{t+i}\right] - (u_0+iv_0)$$

Trajectory:

$$u(t) = \frac{u_0 - v_0 t_0}{1 + t_0^2} + \frac{u_0 t_0 + v_0}{1 + t_0^2} t$$
$$v(t) = \frac{u_0 t_0 + v_0}{1 + t_0^2} - \frac{u_0 - v_0 t_0}{1 + t_0^2} t$$

Visual example

For $v_0 = 0$ (rotate beam) and $t_0 = 0$ (input in waist): $u(t) = u_0$ and $v(t) = -u_0 t$ The vortex propagate on a straight line lying in a plane parallel to axis.

Vortex dipole — input

Input prefactor for vortex dipole (pair of oppositely charged vortices):

 $p_{2}(w,\overline{w}) = [\xi_{1}(w-w_{1}) + \zeta_{1}(\overline{w}-\overline{w}_{1})] [\xi_{2}(w-w_{2}) + \zeta_{2}(\overline{w}-\overline{w}_{2})]$ $w_{1}, \overline{w}_{1}, w_{2}, \overline{w}_{2} - \text{locations of the two respective vortices}$ $\xi_{1}, \zeta_{1}, \xi_{2}, \zeta_{2} - \text{morphologies of the two respective vortices}$

Vortex dipole — propagated

Propagation gives:

$$p_{2}(w,\overline{w},t) = \left[\xi_{1}\left(w\left[\frac{t_{0}+i}{t+i}\right]-w_{1}\right)+\zeta_{1}\left(\overline{w}\left[\frac{t_{0}+i}{t+i}\right]-\overline{w}_{1}\right)\right]$$
$$\times \left[\xi_{2}\left(w\left[\frac{t_{0}+i}{t+i}\right]-w_{2}\right)+\zeta_{2}\left(\overline{w}\left[\frac{t_{0}+i}{t+i}\right]-\overline{w}_{2}\right)\right]$$
$$-(\zeta_{2}\xi_{1}+\xi_{2}\zeta_{1})(t-t_{0})\left(\frac{t_{0}+i}{t+i}\right)$$

Result contains product of vortices, plus additional coupling term. Coupling term destroys factorisability

Annihilations

Coupling term \Rightarrow dipole annihilations and dipole creations. Without coupling term, prefactor is always factorisable \Rightarrow fixed number of vortices. Points where dipole annihilations and dipole creations occur are called critical points.

Simulated example

Dipole propagation example

Follow same steps as before. Trajectory equations are in general second order in u and $v \Rightarrow$ only solutions when discriminant > 0

Example: two canonical vortices: $p_2 = (w - u_0)(\overline{w} + u_0)$

After propagation:

$$p_2(w,\overline{w},t) = \left[(u+iv)\left(\frac{t_0+i}{t+i}\right) - u0 \right]$$
$$\times \left[(u-iv)\left(\frac{t_0+i}{t+i}\right) + u0 \right]$$
$$-i(t-t_0)\left(\frac{t_0+i}{t+i}\right)$$

Dipole trajectories

Trajectory:

$$v(t) = \left[\frac{1}{2u_0} - \frac{u_0}{1+t_0^2}\right](t-t_0)$$

$$u(t) = \pm \frac{\sqrt{4\left(1+t_0^2\right)\left(1+t^2\right)u_0^4 - \left(t-t_0\right)^2\left(1+t_0^2 - 2u_0^2\right)^2}}{2\left(1+t_0^2\right)u_0}$$

Part under square root must be positive.

Critical point analysis

Critical points are where discriminant= 0. Find critical point by setting discriminant equal to 0 and solve for parameters u_0 .

Morphology evolusion

The morphology for a vortex dipole changes during propagation.

The compute the morphology:

- Compute trajectories for vortex dipole
- Compute morphology distributions
- Evaluate distributions at locations on trajectory

Morphology evolusion example

Observation

- Vortices become edge dislocations (degenerate) near critical points.
- ▷ Vortices are only isotropic (canonical) in input plane.
- ▷ Morphology at $t = \infty$ is the same as the morphology at $t = -\infty$.

Conclusions

- Polynomial Gausian beams provide a relatively easy way to investigate vortex behaviour.
- Single vortices propagate in straight lines.
- Vortex dipoles give dipole creation and dipole annihilation.
- Vortex morphologies evolve for vortex dipoles.

