#### Quantum communication and other quantum information technologies

*F Stef Roux* CSIR National Laser Centre *Presented at the University of Pretoria* 20 February 2014



## Contents

- > Over view of quantum mechanics
- Quantum communication
  - Quantum state preparation
  - Quantum teleportation
- Decay of entanglement in turbulence
  - Theory
  - Numerical simulations
  - Experimental results

#### **Quantum mechanics**



#### **Einstein-Podolsky-Rosen**



– p. 4/41

## Parametric down conversion

#### One incoming photon $\rightarrow$ Two outgoing photons



Type II phase matching  $\Rightarrow$  photons have perpendicular polarization:  $\theta_B = \theta_A - \pi/2$ 

However, each beam on its own is unpolarized — contains all states of polarization.

#### **Multiple realities**



## **Separability**

$$|\Psi\rangle = \frac{1}{2}|H\rangle_A|V\rangle_B - \frac{1}{2}|H\rangle_A|H\rangle_B + \frac{1}{2}|V\rangle_A|V\rangle_B - \frac{1}{2}|V\rangle_A|H\rangle_B$$

... can be factored (separated)

$$|\Psi\rangle = \frac{1}{2} \left(|H\rangle_A + |V\rangle_A\right) \left(|H\rangle_B - |V\rangle_B\right)$$



Separability  $\Rightarrow$  Not entangled

## **Quantum communication**

What does quantum communication have that classical communication doesn't?  $\rightarrow$  Fundamental security!

One cannot copy a quantum state  $\Rightarrow$  one cannot eavesdrop without sender/receiver knowing



 $\rightarrow$  Quantum protokol (Quantum Key Distribution — QKD) to produce an encryption key that is fundamentally secure

## **Quantum Key Distribution — BB84**



#### **Polarization vs modes**

Can always specify polarization with two polarization states:

$$|\Psi\rangle = C_H |H\rangle + C_V |V\rangle = C_L |L\rangle + C_R |R\rangle$$

Polarization  $\Rightarrow$  2-dimensional Hilbert space

 $\Rightarrow$  each photon can carry one qubit of information

For more information per photon (larger channel capacity)  $\Rightarrow$  need larger Hilbert space

Transverse spatial modes have an infinite dimensional Hilbert space

#### Laguerre-Gaussian modes

General solutions of the paraxial wave equation in normalized polar coordinates:

$$M_{p\ell}^{\mathrm{LG}}(r,\phi,t) = N \frac{r^{|\ell|} \exp(\mathrm{i}\ell\phi)(1+\mathrm{i}t)^p}{(1-\mathrm{i}t)^{p+|\ell|+1}} \mathcal{L}_p^{|\ell|} \left(\frac{2r^2}{1+t^2}\right) \exp\left(\frac{-r^2}{1-\mathrm{i}t}\right)$$

$$x = rw_0 \cos \phi, y = rw_0 \sin \phi, z = z_R t \ (z_R = \pi w_0^2 / \lambda)$$
  
 $L_p^{|\ell|}$  — associate Laguerre polynomials  
 $p$  — radial mode index (non-negative integer)  
 $\ell$  — azimuthal index (signed integer)  
 $N$  — normalization constant



#### **Bessel-Gaussian modes**

In normalized polar coordinates:

$$M_{\ell}^{\mathrm{BG}}(r,\phi,t;\chi) = \sqrt{\frac{2}{\pi}} \mathcal{J}_{\ell}\left(\frac{\sigma r}{1-\mathrm{i}t}\right) \exp\left(\frac{\mathrm{i}\sigma^2 t - 4r^2}{4(1-\mathrm{i}t)}\right) \exp(\mathrm{i}\ell\phi - \mathrm{i}zk_z)$$

 $x = rw_0 \cos \phi$ ,  $y = rw_0 \sin \phi$ ,  $z = z_R t$  ( $z_R = \pi w_0^2 / \lambda$ ) J<sub> $\ell$ </sub> — Bessel function  $\sigma = w_0 k_r$  — normalized radial scale parameter

 $k_r, k_z$  — radial and longitudinal wavenumber



## **QKD** in higher dimensions

Need mutually unbiased bases in higer dimensions

$$|\langle \phi_{a,n} | \phi_{b,m} \rangle|^2 = \frac{1}{d} \quad \text{for} \quad a \neq b$$



## **Quantum state preparation**

Experimental setup to prepare and measure entangled photon states:



## **Spatial light modulators**

Pure phase modulation or complex amplitude modulation



#### Quantum state tomography

To reconstruct density matrix  $\rho_{mn} = \langle \phi_m | \rho | \phi_n \rangle$ for density operator  $\rho = \sum_n P_n |\psi_n \rangle \langle \psi_n |$ 



## **Spiral bandwidth**

Orbital angular momentum (OAM) ( $\propto$  azimuthal index) is conserved in SPDC  $\Rightarrow$  OAM entanglement

High dimensional entanglement  $\rightarrow$  broad OAM spectrum



## **Quantum teleportation (2-dim)**



## **Quantum teleportation (n-dim)**



#### **Turbulence vs Scintillation**

Turbulence: velocity distribution in fluid

Refractive index:  $n(\mathbf{r}) = 1 + \delta n(\mathbf{r})$ 

Scintillation: what happens to light in turbulence Random phase modulations + diffraction.



## Kolmogorov model

Refractive index structure function: <sup>a</sup>

$$D_n = \langle [\delta n(\mathbf{r}_1) - \delta n(\mathbf{r}_2)]^2 \rangle = C_n^2 (|\mathbf{r}_1 - \mathbf{r}_2|)^{2/3}$$

 $C_n^2$  — Refractive index structure constant

Power spectral density:

$$\Phi_n(\mathbf{k}) = 0.033 C_n^2 |\mathbf{k}|^{-11/3}$$



Phase structure function:

$$D_{\theta}(d) = \langle [\theta(x_1, y_1) - \theta(x_2, y_2)]^2 \rangle = 6.88 \left(\frac{d}{r_0}\right)^{5/3}$$

where  $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ and Fried parameter (distance):  $r_0 = 0.185 \left(\frac{\lambda^2}{C_n^2 z}\right)^{3/5}$ 

<sup>a</sup>LC Andrews and RL Phillips, *Laser beam propagation through random media*, 2nd ed. SPIE Press (2005)

# Single phase screen

#### Assuming weak scintillation (only affects the phase)<sup>a</sup>



Use single phase screen with single parameter  $(r_0 - Fried parameter)$ :

$$\rho_{mn}(z) = \iint E_m^*(\mathbf{r}_1) E_n(\mathbf{r}_2) \psi(\mathbf{r}_1) \psi^*(\mathbf{r}_2)$$
$$\times \exp\left[-\frac{1}{2} D_\theta \left(|\mathbf{r}_1 - \mathbf{r}_2|\right)\right] d^2 r_1 d^2 r_2$$

Function of only  $w_0/r_0$  (contains all parameters including z) Evaluated at z = 0

<sup>&</sup>lt;sup>a</sup>C. Paterson, Phys. Rev. Lett., **94**, 153901 (2005)

## **Entanglement decay**

Decay of qubit OAM entanglement (concurrence C) in turbulence<sup>*a*</sup> use quadratic structure function approximation:

$$D \sim \left(\frac{x}{r_0}\right)^{5/3} \to \left(\frac{x}{r_0}\right)^2$$



Observations:

- $\triangleright$  Concurrence decays as function of  $w_0/r_0$  only
- $\triangleright$  Decays to zero (sudden death) at  $w_0/r_0 \approx 1$
- Last longer for larger azimuthal indices

<sup>&</sup>lt;sup>a</sup>B.J. Smith and M.G. Raymer, Phys. Rev. A, **74**, 062104 (2006)

# **Infinitesimal propagation**

Propagate over infinitesimal distance

Instead of going from 0 to z in 1 step, we proceed in many small steps of dz



# Infinitesimal propagation equation

#### Infinitesimal propagator equation (IPE):<sup>a</sup>

 $\partial_{z}\rho_{mnpq} = i\left(\mathcal{P}_{mx}\rho_{xnpq} - \rho_{mxpq}\mathcal{P}_{xn} + \mathcal{P}_{px}\rho_{mnxq} - \rho_{mnpx}\mathcal{P}_{xq}\right) \\ + \Lambda_{mnxy}\rho_{xypq} + \Lambda_{pqxy}\rho_{mnxy} - 2\Lambda_{T}\rho_{mnpq}$ 

$$\rho = \sum_{m,n} |m\rangle |p\rangle \ \rho_{mnpq} \ \langle n|\langle q|$$

$$\mathcal{P}_{mp}(z) = \frac{1}{2k} \int |\mathbf{a}|^2 G_m^*(\mathbf{a}, z) G_p(\mathbf{a}, z) \, \mathrm{d}^2 a$$
$$\Lambda_{mnpq} = k^2 \int W_{mp}^*(\mathbf{a}, z) W_{nq}(\mathbf{a}, z) \Phi_0(\mathbf{a}, 0) \, \mathrm{d}^2 a$$
$$W_{mn}(\mathbf{a}, z) = \int G_m(\mathbf{a}' + \mathbf{a}, z) G_n^*(\mathbf{a}', z) \, \mathrm{d}^2 a'$$
$$\Lambda_T = k^2 \int \Phi_0(\mathbf{a}, 0) \, \mathrm{d}^2 a$$

## **Properties of the IPE**

- ▷ Derived in Fourier domain Based on power spectral density:  $\Phi_n(\mathbf{k})$
- ▷ The resulting density matrix is <u>hermitian</u> Follows from identity:  $\Lambda_{mnpq} = \Lambda^*_{nmqp}$
- Expressible as Master equation in Lindblad form (However *z*-derivative and not time-derivative)
   ⇒ valid density matrix
- > Transverse spatial modes
  - $\rightarrow$  infinite dimensional Hilbert space
  - $\Rightarrow$  IPE is an infinite set of coupled differential equations
- ▷ To solve them one needs to truncate the set ⇒ truncated IPE is not trace preserving:  $tr{\rho} \le 1$

## **Example: symmetric qubits**

For initial state:  $(|\ell, -\ell\rangle - |-\ell, \ell\rangle)/\sqrt{2}$ , density matrix:

$$\rho_{mnpq} = \frac{T}{4} \begin{bmatrix} 1 - R^2 & 0 & 0 & 0 \\ 0 & 1 + R^2 & -2R & 0 \\ 0 & -2R & 1 + R^2 & 0 \\ 0 & 0 & 0 & 1 - R^2 \end{bmatrix}$$
  
where  $T = \exp\left[-\frac{127}{36}Z(t)\right]$   $R = \exp\left[-\frac{5}{72}Z(t)\right]$   
t-dependence:  $Z(t) \equiv \sigma \int_0^t (1 + \tau^2)^{5/6} d\tau \approx \sigma t$   
where  $\sigma = \frac{\pi^{3/2}C_n^2 w_0^{11/3}}{6\Gamma(2/3)\lambda^3}$   
Concurrence:  $\mathcal{C} = \frac{1}{2}(R^2 + 2R - 1)$ 

#### **Comparison of results**



#### Do we need the IPE?



## **Numerical simulations**

General procedure:

- Prepare input state
- ▷ Split-step method:
  - Multiply mode by random phase function
  - Propagate through free-space (without turbulent)
- Extract density matrix
- Compute concurrence

#### Input state

Bell state: 
$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|\ell\rangle_A \left|-\ell\rangle_B + \left|-\ell\rangle_A \left|\ell\rangle_B\right)\right.$$

4 modes separately propagated through turbulence

 $|\ell\rangle$ ,  $|-\ell\rangle$  — LG modes at the waist (z=0) with p=0

For 
$$\ell = 1$$
:  $U_{01}^{(LG)} = 2\sqrt{\pi}r \exp(i\phi)L_0^1(2r^2)\exp(-r^2)$ 

r — normalized radial coordinate  $\phi$  — azimuthal angle  $L_0^1(\cdot)$  — associated Laguerre polynomial

## **Split-step method**



#### **Random phase screens**

Phase function: 
$$\theta(x,y) = \frac{k_0}{\Delta_k} \sqrt{\frac{\Delta z}{2\pi}} \mathcal{F}^{-1} \left\{ \tilde{\chi}_n(\mathbf{K}) \left[ \Phi_0(\mathbf{K},0) \right]^{1/2} \right\}$$

 $\tilde{\chi}_n(\mathbf{K})$  — random complex spectral function:

- $\triangleright \text{ delta correlated: } \langle \tilde{\chi}(\mathbf{K}_1) \tilde{\chi}^*(\mathbf{K}_2) \rangle = (2\pi \Delta_k)^2 \, \delta_2(\mathbf{K}_1 \mathbf{K}_2)$
- on normally distributed
- ⊳ zero mean



#### **Numerical of results**

$$S = \log_{10} \left( \frac{\pi^3 C_n^2 w_0^{11/3}}{\lambda^3} \right)$$



#### **Experimental setup**



#### **Comparison of results**

Qubit (Bell state) — both photons through turbulence:



#### **Decay distance**

Distance scale for entanglement decay:

$$L_{\rm dec}(\ell) = \frac{0.06\lambda^2 \ell^{5/6}}{w_0^{5/3} C_n^2}$$

For  $w_0 = 10$  cm,  $\lambda = 1550$  nm and  $C_n^2 = 10^{-15}$  m<sup>-2/3</sup>:

## **Higher dimensional states**



Tangle (Lower bound for entanglement):

$$\tau\{\rho\} = 2\mathrm{tr}\{\rho^2\} - 2\mathrm{tr}\{\rho_R^2\} \qquad \max(\tau) = \frac{2(d-1)}{d}$$

/ -

#### **Experimental results**



## **Comparison of results**



Theoretical single phase screen calculations:



## Conclusions

- Quantum communication, which enables fundamentally secure communication, is a new technology that is actively being develop by international research groups
- Quantum communication requires various other technologies:
  - Quantum state preparation
  - Quantum teleportation
  - etc.
- Free-space quantum communication suffers decay of entanglement due to turbulence in the atmosphere
- By studying the effect of scintillation on entanglement we can determine design constraint for free-space quantum communication