Evolution of OAM entanglement in turbulence

F. Stef Roux^a, T. Wellens^b and V. Shatokhin^b

- ^a CSIR National Laser Centre, South Africa
- ^b Institute of Physics, Albert-Ludwigs University of Freiburg, Germany

Presented at the *Third International Conference on Optical Angular Momentum, City College of New York, New York City, USA 6 August 2015*

Free-space quantum communication

An orbital angular momentum (OAM) entangled photon pair is sent through the atmosphere and measured at the receiver.

Turbulence distorts the OAM modes \Rightarrow loss of entanglement

 \Rightarrow How to determine the evolution of a quantum state in turbulence?

Single phase screen

Evolution of (scalar) photonic quantum states in turbulence Single phase screen (SPS) approach (under weak scintillation): ^a

Ensemble averaged density matrix element:

$$\rho_{mn}(z) = \int E_m^*(\mathbf{r}_1) E_n(\mathbf{r}_2) \rho_0(\mathbf{r}_1, \mathbf{r}_2) \exp\left[-\frac{1}{2} D_\theta(\Delta r)\right] d^2 r_1 d^2 r_2$$

Modal basis functions: $E_n(\mathbf{r})$
Structure function: $D_\theta(\Delta r) = 6.88(|\mathbf{r}_1 - \mathbf{r}_2|/r_0)^{5/3}$
Fried parameter: $r_0 = 0.185(\lambda^2/C_n^2 z)^{3/5}$

 C_n^2 is the structure constant; λ is wavelength and z is propagation distance

^aC. Paterson, Phys. Rev. Lett. 94, 153901 (2005).

OAM in turbulence (SPS approach)

Application of SPS approach:

Decay of OAM entanglement in turbulence: ^a

Concurrence is a measure of qubit entanglement

$$\mathcal{W} = \frac{w_0}{r_0}$$

 w_0 — beam radius r_0 — Fried parameter

For example, for OAM=1:

$$\mathcal{C} = \frac{4(\chi+1)^2 - \chi^4}{4(\chi^2 + \chi + 1)^2}$$

where $\chi = 3.44 \mathcal{W}^{5/3}$

^aB. J. Smith and M. G. Raymer, Phys. Rev. A, 74, 062104 (2006)

Weak scintillation limit

Consider scintillation strength vs normalized propagation distance

Rytov variance (scintillation strength):

 $\sigma_R^2 = 1.23 C_n^2 k^{7/6} z^{11/6}$ Using $t = z/z_R = z\lambda/\pi w_0^2$: $\sigma_R^2 = \frac{85.6 C_n^2 w_0^{11/3} t^{11/6}}{\lambda^3}$ and using $\mathcal{W} = w_0/r_0$:

$$\sigma_R^2 = 1.64 \left(\frac{w_0}{r_0}\right)^{5/3} t^{5/6}$$

 \Rightarrow Weak scintillation for all $\mathcal W$ requires strong turbulence

Multiple phase screen simulations

Simulate turbulent medium using multiple phase screens:

Numerical simulation results

Entanglement 'sudden death' for input Bell-state in OAM basis ^a

^aA. Hamadou Ibrahim, *et al.*, Phys. Rev. A, 90, 052115 (2014)

Infinitesimal propagation (MPS approach)

Multiple phase screen (MPS) approach:

Infinitesimal propagation: $\rho(z) \rightarrow \rho(z + \delta z)$

Using paraxial wave equation in an inhomogenous medium:

$$\nabla_T^2 g(\mathbf{x}) - i2k\partial_z g(\mathbf{x}) + 2k^2 \tilde{n}(\mathbf{x})g(\mathbf{x}) = 0$$

In the (2D transverse spatial) Fourier domain:

$$G(\mathbf{a}, z + \delta z) = G(\mathbf{a}, z) + i\pi\lambda\delta z \left[|\mathbf{a}|^2 G(\mathbf{a}, z) - \frac{k^2}{2\pi^2} N(\mathbf{a}, z) \star G(\mathbf{a}, z) \right]$$

 $G(\mathbf{a}, z)$ — transverse Fourier transformed field (angular spectrum) $N(\mathbf{a}, z)$ — transverse Fourier transformed refractive index fluctuations \mathbf{a} — spatial frequency vector ($\mathbf{k} = 2\pi \mathbf{a}$)

Infinitesimal propagation equation

Expand to second order in fluctuations and evaluate ensemble average, using Markov approximation [$N(\mathbf{a}, z)$ is delta-correlated in z].

Infinitesimal propagation equation for a single photon: ^a

$$\partial_{z} \rho(\mathbf{a}_{1}, \mathbf{a}_{2}, z) = i\pi \lambda \rho(\mathbf{a}_{1}, \mathbf{a}_{2}, z) \left(|\mathbf{a}_{1}|^{2} - |\mathbf{a}_{2}|^{2} \right) \\ -k^{2} \int \Phi_{0}(\mathbf{u}, 0) \left[\rho(\mathbf{a}_{1}, \mathbf{a}_{2}, z) - \rho(\mathbf{a}_{1} - \mathbf{u}, \mathbf{a}_{2} - \mathbf{u}, z) \right] d^{2}u$$

 $\rho(\mathbf{a}_1, \mathbf{a}_2, z) - \text{single photon density function in plane wave basis}$ Density operator: $\hat{\rho} = \int |\mathbf{a}_1 \rangle \, \rho(\mathbf{a}_1, \mathbf{a}_2, z) \, \langle \mathbf{a}_2 | \, \mathrm{d}^2 a_1 \, \mathrm{d}^2 a_2$

 $\Phi_0(\mathbf{u},0)$ — power spectral density for the refractive index fluctuations

^aF. S. Roux, Phys. Rev. A, 83, 053822 (2011);

^{-,} J. Phys. A: Math. Theor., 47, 195302 (2014).

Photon pairs (entanglement)

Infinitesimal propagation equation for photon pairs:

$$\partial_{z}\rho(\mathbf{a}_{1},\mathbf{a}_{2},\mathbf{a}_{3},\mathbf{a}_{4},z) = i\pi\lambda\rho(\mathbf{a}_{1},\mathbf{a}_{2},\mathbf{a}_{3},\mathbf{a}_{4},z)(|\mathbf{a}_{1}|^{2} - |\mathbf{a}_{2}|^{2} + |\mathbf{a}_{3}|^{2} - |\mathbf{a}_{4}|^{2}) \\ -k^{2}\int\Phi_{0}(\mathbf{u},0)\left[2\rho(\mathbf{a}_{1},\mathbf{a}_{2},\mathbf{a}_{3},\mathbf{a}_{4},z)\right. \\ \left.-\rho(\mathbf{a}_{1}-\mathbf{u},\mathbf{a}_{2}-\mathbf{u},\mathbf{a}_{3},\mathbf{a}_{4},z)\right. \\ \left.-\rho(\mathbf{a}_{1},\mathbf{a}_{2},\mathbf{a}_{3}-\mathbf{u},\mathbf{a}_{4}-\mathbf{u},z)\right] d^{2}u$$

 $\rho(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, z)$ — photon pair density 'matrix' in plane wave basis

<u>Previously</u>,^{*a*} expanded ρ in terms of LG basis to obtain infinite set of coupled differential equations:

$$\partial_z \rho_{mnpq} = V_{mnrs} \rho_{rspq} + V_{pqrs} \rho_{mnrs} + L_{mnrs} \rho_{rspq} - L_T \rho_{mnpq}$$

which required truncation \Rightarrow truncation problem!

^aF. S. Roux, Phys. Rev. A, 83, 053822 (2011)

Solving the IPE — without truncation

First for single photons — generalize for biphotons at the end:

1. Remove free-space term (quadratic phase factor):

$$\rho(\mathbf{a}_1, \mathbf{a}_2, z) = F(\mathbf{a}_1, \mathbf{a}_2, z) \exp[i\pi\lambda z(|\mathbf{a}_1|^2 - |\mathbf{a}_2|^2)]$$

2. Redefine coordinates i.t.o. sums and differences: $\mathbf{a}_{1,2} = \mathbf{a}_s \pm \mathbf{a}_d/2$

so that: $F(\mathbf{a}_1, \mathbf{a}_2, z) = F(\mathbf{a}_s + \mathbf{a}_d/2, \mathbf{a}_s - \mathbf{a}_d/2, z) \equiv G(\mathbf{a}_s, \mathbf{a}_d, z)$

3. Inverse Fourier transform w.r.t. sum coordinates:

$$H(\mathbf{x}, \mathbf{a}_d, z) = \int G(\mathbf{a}_s, \mathbf{a}_d, z) \exp(-i2\pi \mathbf{a}_s \cdot \mathbf{x}) \, \mathrm{d}^2 a_s$$

Resulting (single photon) equation:

$$\partial_z H(\mathbf{x}, \mathbf{a}_d, z) = -k^2 H(\mathbf{x}, \mathbf{a}_d, z) Q(\lambda z \mathbf{a}_d + \mathbf{x})$$
$$Q(\mathbf{x}) = \int \Phi_0(\mathbf{u}, 0) \left[1 - \exp(-i2\pi \mathbf{x} \cdot \mathbf{u})\right] \, \mathrm{d}^2 u$$
$$H(\mathbf{x}, \mathbf{a}_d, z) = H_0(\mathbf{x}, \mathbf{a}_d) \exp\left[-k^2 \int_0^z Q(\lambda z' \mathbf{a}_d + \mathbf{x}) \, \mathrm{d}z\right]$$

where:

Solution:

Kolmogorov or quadratic structure function?

Q-integral.

Q-integral:
$$Q(\mathbf{x}) = \int \Phi_0(\mathbf{u}, 0) \left[1 - \exp(-i2\pi \mathbf{x} \cdot \mathbf{u})\right] \, \mathrm{d}^2 u$$

Kolmogorov spectral density:
$$\Phi_0(\mathbf{u}, 0) = \frac{0.033C_n^2}{(2\pi)^{2/3}|\mathbf{u}|^{11/3}}$$

 $(2\pi$ -factor due to use of spatial frequency)

Result: $Q(\mathbf{x}) = 1.457C_n^2 |\mathbf{x}|^{5/3}$

Quadratic structure function approximation: $5/3 \rightarrow 2$

 $H(\mathbf{x}, \mathbf{a}_d, z) = H_0(\mathbf{x}, \mathbf{a}_d) \exp\left[\frac{-2\mathcal{K}_0\Theta}{w_o^3} p(\mathbf{x}, \mathbf{a}_d, z)\right]$ Result:

 $\Theta = \lambda / \pi w_0$ — beam divergence angle w_0 — beam radius

$$\mathcal{K}_0 = 2.9 \frac{\pi^3 C_n^2 w_0^{11/3}}{\lambda^3} = 2.9\mathcal{K}$$

$$p(\mathbf{x}, \mathbf{a}_d, z) = |\mathbf{x}|^2 z + \mathbf{a}_d \cdot \mathbf{x} \ \lambda z^2 + \frac{1}{3} |\mathbf{a}_d|^2 \lambda^2 z^3$$

Single photon state

Convert back to original variables

Evolving single photon state in turbulence:

$$\rho(\mathbf{a}_{1}, \mathbf{a}_{2}, t) = \frac{\pi w_{0}^{2}}{2\mathcal{K}_{0}t} \int \rho_{0}(\mathbf{u} + \mathbf{a}_{1}, \mathbf{u} + \mathbf{a}_{2}) \exp\left\{-\pi^{2} w_{0}^{2} \left[\frac{\mathcal{K}_{0}t^{3}}{6}|\mathbf{a}_{1} - \mathbf{a}_{2}|^{2}\right] - \mathrm{i}t (|\mathbf{a}_{1}|^{2} - |\mathbf{a}_{2}|^{2}) + \frac{|\mathbf{u}|^{2}}{2\mathcal{K}_{0}t}\right]\right\} d^{2}u$$

Normalized propagation distance:

$$t = \frac{z\lambda}{\pi w_0^2}$$

 $\rho_0(\mathbf{a}_1, \mathbf{a}_2)$ — input state at t = 0

Biphoton photon state (entanglement)

Evolving biphoton state in turbulence:

$$\rho(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}, \mathbf{a}_{4}, t) = \left(\frac{\pi w_{0}^{2}}{2\mathcal{K}_{0}t}\right)^{2} \int \rho_{0}(\mathbf{u}_{1} + \mathbf{a}_{1}, \mathbf{u}_{1} + \mathbf{a}_{2}, \mathbf{u}_{2} + \mathbf{a}_{3}, \mathbf{u}_{2} + \mathbf{a}_{4}) \\
\times \exp\left\{-\pi^{2} w_{0}^{2} \left[\frac{\mathcal{K}_{0}t^{3}}{6}|\mathbf{a}_{1} - \mathbf{a}_{2}|^{2} - \mathrm{i}t \, \mathbf{u}_{1} \cdot (\mathbf{a}_{1} - \mathbf{a}_{2})\right] \\
-\mathrm{i}t \left(|\mathbf{a}_{1}|^{2} - |\mathbf{a}_{2}|^{2}\right) + \frac{|\mathbf{u}_{1}|^{2}}{2\mathcal{K}_{0}t}\right] \\
\times \exp\left\{-\pi^{2} w_{0}^{2} \left[\frac{\mathcal{K}_{0}t^{3}}{6}|\mathbf{a}_{3} - \mathbf{a}_{4}|^{2} - \mathrm{i}t \, \mathbf{u}_{2} \cdot (\mathbf{a}_{3} - \mathbf{a}_{4})\right] \\
-\mathrm{i}t \left(|\mathbf{a}_{3}|^{2} - |\mathbf{a}_{4}|^{2}\right) + \frac{|\mathbf{u}_{2}|^{2}}{2\mathcal{K}_{0}t}\right] \\$$

 $\rho_0(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4)$ — input state at t = 0

Evolution of OAM entanglement

As example, consider evolution of OAM entanglement due to turbulence for input Bell-state:

$$\left|\Psi^{-}\right\rangle = \frac{1}{\sqrt{2}} \left(\left|\ell\right\rangle_{A}\left|-\ell\right\rangle_{B} - \left|-\ell\right\rangle_{A}\left|\ell\right\rangle_{B}\right)$$

Laguerre-Gauss (LG) modes

General solutions of the paraxial wave equation in normalized polar coordinates:

$$M_{p,\ell}^{\mathrm{LG}}(r,\phi,t) = \mathcal{N}\frac{(1+it)^p}{(1-it)^{p+|\ell|+1}}r^{|\ell|}\exp(i\ell\phi)L_p^{|\ell|}\left(\frac{2r^2}{1+t^2}\right)\exp\left(\frac{-r^2}{1-it}\right)$$

$$r = \frac{\sqrt{x^2 + y^2}}{w_0} \qquad t = \frac{z}{z_R} \qquad z_R = \frac{\pi w_0^2}{\lambda}$$
$$\mathcal{N} = \left[\frac{2^{1+|\ell|}p!}{\pi(p+|\ell|)!}\right]^{1/2}$$

 $L_p^{|\ell|}$ — associate Laguerre polynomials p — radial mode index (non-negative integer) ℓ — azymuthal index (signed integer)

Orbital angular momentum (OAM) per photon = $\ell\hbar$.

LG mode generating function

Generating function for angular spectra of LG modes:

$$\mathcal{G} = \frac{\pi w_0}{1+\eta} \exp\left[\frac{i\pi (a\pm ib)w_0\mu - \pi^2 (a^2 + b^2)w_0^2 \Omega(t,\eta)}{1+\eta}\right]$$

where (η, μ) are generating parameters for (p, ℓ)

and
$$\Omega(t,\eta) = 1 - it - (1+it)\eta$$

To generate a particular LG mode's angular spectrum:

$$M_{p,\ell}^{\mathrm{LG}}(\mathbf{a}) = \mathcal{N} \left[\frac{1}{p!} \partial_{\eta}^{p} \partial_{\mu}^{|\ell|} \mathcal{G} \right]_{\eta,\mu=0}$$

IPE calculations

Steps:

- 1. Produce input density matrix (Bell-state) i.t.o. generating function
- 2. Produce overlap function i.t.o. generating function
- 3. Evaluate all integrals

 \Rightarrow generating function for density matrix elements having 8 generating parameters for azimuthal indices (assume p = 0).

- 4. Generate the density matrix for particular azimuthal indices
- 5. Calculated the concurrence

 \Rightarrow concurrence as function of t and \mathcal{K} .

$$\mathcal{K} = \frac{\pi^3 C_n^2 w_0^{11/3}}{\lambda^3}$$

Weak scintillation limit

One can obtain the weak scintillation limit result from the IPE:

Weak scintillation condition: $\sigma_R^2 \lesssim 1$.

Express σ_R^2 i.t.o. \mathcal{W} and \mathcal{K} , using definitions of \mathcal{W} and \mathcal{K} .

Subsitute (into
$$\sigma_R^2$$
):
 $t \rightarrow \frac{0.59 \mathcal{W}^{5/3}}{\mathcal{K}}$
Result:
 $\sigma_R^2 = \frac{1.055 \mathcal{W}^{55/18}}{\mathcal{K}^{5/6}}$

Conclusion: for weak scintillation limit ($\sigma_R^2 \to 0$) we need $\mathcal{K} \to \infty$.

Applying this weak scintillation limit to IPE result, we obtain for $\ell = 1$:

$$\mathcal{C} = \frac{4(\chi + 1)^2 - \chi^4}{4(\chi^2 + \chi + 1)^2} \qquad \chi = 3.44 \mathcal{W}^{5/3}$$

 \Rightarrow Identical to SPS result.

OAM entanglement

Is larger OAM better?

 \Rightarrow no clear benefit in using higher OAM.

Summary

- \triangleright Turbulence distorts spatial modes \Rightarrow loss of entanglement
- Investigate evolution of quantum states in turbulence
 - Single phase screen (SPS) approach
 - Multiple phase screen (MPS) approach
- Numerical simulations show where SPS breaks down
- Infinitesimal propagation equation (IPE) provides MPS approach
- Solve IPE without truncation in Fourier domain
- Application: OAM entanglement evolution in turbulence
- ▷ Allows us to investigate the effects of:
 - weak turbulence
 - higher OAM