Evolution equation for classical and quantum light in turbulence

F. Stef Roux^{*}, T. Wellens^b and V. Shatokhin^b

^a CSIR National Laser Centre, South Africa

^b Institute of Physics, Albert-Ludwigs University of Freiburg, Germany

Presented at the Propagation through and Characterization of Distributed Volume Turbulence and Atmospheric Phenomena Conference, Renaissance Arlington Capital View Hotel, Arlington, Virginia, USA 8 June 2015

Free-space quantum communication

The entangled photon pair is sent through the atmosphere and measured at the receiver.

Turbulence distorts the OAM modes \Rightarrow loss of entanglement

 \Rightarrow How to determine the evolution of a quantum state in turbulence?

Single phase screen

To investigate evolution of quantum states in turbulence Single phase screen (SPS) approach (under weak scintillation): ^a

Ensemble averaged density matrix element:

$$\rho_{mn}(z) = \int E_m^*(\mathbf{r}_1) E_n(\mathbf{r}_2) \rho_0(\mathbf{r}_1, \mathbf{r}_2) \exp\left[-\frac{1}{2}D_\theta(\Delta r)\right] \mathrm{d}^2 r_1 \mathrm{d}^2 r_2$$

Modal basis functions: $E_n(\mathbf{r})$

Structure function: $D_{\theta}(\Delta r) = 6.88(|\mathbf{r}_1 - \mathbf{r}_2|/r_0)^{5/3}$ Fried parameter: $r_0 = 0.185(\lambda^2/C_n^2 z)^{3/5}$

 C_n is the structure constant; λ is wavelength and z is propagation distance

^aC. Paterson, Phys. Rev. Lett. 94, 153901 (2005).

Laguerre-Gauss (LG) modes

General solutions of the paraxial wave equation in normalized polar coordinates:

$$M_{p,\ell}^{\mathrm{LG}}(r,\phi,t) = \mathcal{N}\frac{(1+it)^p}{(1-it)^{p+|\ell|+1}}r^{|\ell|}\exp(i\ell\phi)L_p^{|\ell|}\left(\frac{2r^2}{1+t^2}\right)\exp\left(\frac{-r^2}{1-it}\right)$$
$$r = \frac{\sqrt{x^2+y^2}}{w_0} \qquad t = \frac{z}{z_R} \qquad z_R = \frac{\pi w_0^2}{\lambda}$$
$$\mathcal{N} = \left[\frac{2^{1+|\ell|}p!}{\pi(p+|\ell|)!}\right]^{1/2}$$

 $L_p^{|\ell|}$ — associate Laguerre polynomials p — radial mode index (non-negative integer) ℓ — azymuthal index (signed integer)

Orbital angular momentum (OAM) per photon = $\ell\hbar$.

OAM in turbulence (SPS approach) I

Application of SPS approach:

Change in OAM after turbulence due to OAM scattering: ^a

 $\langle s_{\Delta} \rangle$ — power fraction D — receiving aperture diameter r_0 — Fried parameter:

$$r_0 = 0.185 \left(\frac{\lambda^2}{C_n^2 z}\right)^{3/5}$$

^aG. A. Tyler and R. W. Boyd, Opt. Lett., 34, 142 (2009)

OAM in turbulence (SPS approach) II

Application of SPS approach:

Decay of OAM entanglement after turbulence: ^a

Concurrence:

measure of qubit entanglement

$$\mathcal{W} = \frac{w_0}{r_0}$$

 w_0 — beam radius r_0 — Fried parameter

^aB. J. Smith and M. G. Raymer, Phys. Rev. A, 74, 062104 (2006)

Weak scintillation limit

Consider scintillation strength vs normalized propagation distance

Rytov variance:

$$\sigma_R^2 = 1.23C_n^2 k^{7/6} z^{11/6}$$
i.t.o. $t = z/z_R = z\lambda/\pi w_0^2$:

$$\sigma_R^2 = \frac{85.6C_n^2 w_0^{11/3} t^{11/6}}{\lambda^3}$$
and i.t.o. $\mathcal{W} = w_0/r_0$:

$$\sigma_R^2 = 1.64 \left(\frac{w_0}{r_0}\right)^{5/3} t^{5/6}$$

$$10^{-4}$$

 \Rightarrow Weak scintillation for all \mathcal{W} require strong turbulence $\mathcal{K}_0 \rightarrow \infty$.

Multiple phase screen simulations

Simulate turbulent medium using multiple phase screens:

Numerical simulation results

Entanglement 'sudden death' a

^aA. Hamadou Ibrahim, *et al.*, Phys. Rev. A, 90, 052115 (2014)

Infinitesimal propagation (MPS approach)

Multiple phase screen (MPS) approach:

Infinitesimal propagation: $\rho(z) \rightarrow \rho(z + \delta z)$

Using paraxial wave equation in an inhomogenous medium:

$$\nabla_T^2 g(\mathbf{x}) - i2k\partial_z g(\mathbf{x}) + 2k^2 \tilde{n}(\mathbf{x})g(\mathbf{x}) = 0$$

In the (2D transverse spatial) Fourier domain:

$$G(\mathbf{a}, z + \delta z) = G(\mathbf{a}, z) + i\pi\lambda\delta z \left[|\mathbf{a}|^2 G(\mathbf{a}, z) - \frac{k^2}{2\pi^2} N(\mathbf{a}, z) \star G(\mathbf{a}, z) \right]$$

 $G(\mathbf{a}, z)$ — transverse Fourier transformed field $N(\mathbf{a}, z)$ — transverse Fourier transformed refractive index fluctuations \mathbf{a} — spatial frequency vector ($\mathbf{k} = 2\pi \mathbf{a}$)

Infinitesimal propagation equation

Expand to second order in fluctuations and evaluate ensemble average, using Markov approximation [$N(\mathbf{a}, z)$ is delta-correlated in z].

Infinitesimal propagation equation for a single photon: ^a

$$\partial_{z}\rho(\mathbf{a}_{1},\mathbf{a}_{2},z) = i\pi\lambda\rho(\mathbf{a}_{1},\mathbf{a}_{2},z)\left(|\mathbf{a}_{1}|^{2}-|\mathbf{a}_{2}|^{2}\right) \\ -k^{2}\int\Phi_{0}(\mathbf{u},0)\left[\rho(\mathbf{a}_{1},\mathbf{a}_{2},z)-\rho(\mathbf{a}_{1}-\mathbf{u},\mathbf{a}_{2}-\mathbf{u},z)\right] \,\mathrm{d}^{2}u$$

 $\rho(\mathbf{a}_1, \mathbf{a}_2, z)$ — single photon density function in plane wave basis $\Phi_0(\mathbf{u}, 0)$ — power spectral density for the refractive index fluctuations

 \rightarrow Reminiscent of evolution of mutual coherence function:

Single photon density function \leftrightarrow mutual coherence function

^aF. S. Roux, Phys. Rev. A, 83, 053822 (2011);

^{-,} J. Phys. A: Math. Theor., 47, 195302 (2014).

Photon pairs (entanglement)

Infinitesimal propagation equation for photon pairs:

$$\partial_{z}\rho(\mathbf{a}_{1},\mathbf{a}_{2},\mathbf{a}_{3},\mathbf{a}_{4},z) = i\pi\lambda\rho(\mathbf{a}_{1},\mathbf{a}_{2},\mathbf{a}_{3},\mathbf{a}_{4},z)(|\mathbf{a}_{1}|^{2} - |\mathbf{a}_{2}|^{2} + |\mathbf{a}_{3}|^{2} - |\mathbf{a}_{4}|^{2}) \\ -k^{2}\int\Phi_{0}(\mathbf{u},0)\left[2\rho(\mathbf{a}_{1},\mathbf{a}_{2},\mathbf{a}_{3},\mathbf{a}_{4},z)\right. \\ \left.-\rho(\mathbf{a}_{1}-\mathbf{u},\mathbf{a}_{2}-\mathbf{u},\mathbf{a}_{3},\mathbf{a}_{4},z)\right. \\ \left.-\rho(\mathbf{a}_{1},\mathbf{a}_{2},\mathbf{a}_{3}-\mathbf{u},\mathbf{a}_{4}-\mathbf{u},z)\right] d^{2}u$$

 $\rho(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, z)$ — photon pair density 'matrix' in plane wave basis Density operator:

$$\hat{\rho} = \int |\mathbf{a}_1\rangle_A |\mathbf{a}_3\rangle_B \,\rho(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, z) \,\langle \mathbf{a}_2|_A \,\langle \mathbf{a}_4|_B \,\,\mathrm{d}^2 a_1 \,\,\mathrm{d}^2 a_2 \,\,\mathrm{d}^2 a_3 \,\,\mathrm{d}^2 a_4$$

 a_1 and a_2 — spatial frequencies for photon A a_3 and a_4 — spatial frequencies for photon B

Solving the IPE — without truncation

1. Remove free-space term (quadratic phase factor):

$$\rho(\mathbf{a}_1, \mathbf{a}_2, z) = F(\mathbf{a}_1, \mathbf{a}_2, z) \exp[i\pi\lambda z(|\mathbf{a}_1|^2 - |\mathbf{a}_2|^2)]$$

2. Redefine coordinates i.t.o. sums and differences: $\mathbf{a}_{1,2} = \mathbf{a}_s \pm \mathbf{a}_d/2$

so that: $F(\mathbf{a}_1, \mathbf{a}_2, z) = F(\mathbf{a}_s + \mathbf{a}_d/2, \mathbf{a}_s - \mathbf{a}_d/2, z) \equiv G(\mathbf{a}_s, \mathbf{a}_d, z)$

3. Inverse Fourier transform w.r.t. sum coordinates:

$$H(\mathbf{x}, \mathbf{a}_d, z) = \int G(\mathbf{a}_s, \mathbf{a}_d, z) \exp(-i2\pi \mathbf{a}_s \cdot \mathbf{x}) \, \mathrm{d}^2 a_s$$

Resulting (single photon) equation:

$$\partial_z H(\mathbf{x}, \mathbf{a}_d, z) = -k^2 H(\mathbf{x}, \mathbf{a}_d, z) Q(\lambda z \mathbf{a}_d + \mathbf{x})$$
$$Q(\mathbf{x}) = \int \Phi_0(\mathbf{u}, 0) \left[1 - \exp(-i2\pi \mathbf{x} \cdot \mathbf{u})\right] \, \mathrm{d}^2 u$$

where:

Solution: $H(\mathbf{x}, \mathbf{a}_d, z) = H_0(\mathbf{x}, \mathbf{a}_d) \exp\left[-k^2 \int_0^z Q(\lambda z' \mathbf{a}_d + \mathbf{x}) \, \mathrm{d}z'\right]$

Kolmogorov

Consider Q-integral:

$$Q(\mathbf{x}) = \int \Phi_0(\mathbf{u}, 0) \left[1 - \exp(-i2\pi \mathbf{x} \cdot \mathbf{u})\right] \, \mathrm{d}^2 u$$

For Kolmogorov:

$$\Phi_0(\mathbf{u},0) = \frac{0.033C_n^2}{(2\pi)^{2/3}|\mathbf{u}|^{11/3}}$$

(2π -factor due to use of spatial frequency)

Result: $Q(\mathbf{x}) = 1.457C_n^2 |\mathbf{x}|^{5/3}$

Hence,

$$H(\mathbf{x}, \mathbf{a}_d, z) = H_0(\mathbf{x}, \mathbf{a}_d) \exp\left[-1.457C_n^2 k^2 \int_0^z |\lambda z' \mathbf{a}_d + \mathbf{x}|^{5/3} dz'\right]$$

Quadratic structure function

Hard to evaluate integrals with power of 5/3.

Quadratic structure function approximation: $5/3 \rightarrow 2$ (but beware of anomalous dimension)

The result after *z*-integration:

$$H(\mathbf{x}, \mathbf{a}_d, z) = H_0(\mathbf{x}, \mathbf{a}_d) \exp\left[\frac{-2\mathcal{K}_0\Theta}{w_0^3} p(\mathbf{x}, \mathbf{a}_d, z)\right]$$

where

 $\Theta = \lambda / \pi w_0$ — beam divergence angle w_0 — beam radius

$$\mathcal{K}_0 = 2.9 \frac{\pi^3 C_n^2 w_0^{11/3}}{\lambda^3} = 2.9\kappa$$

$$p(\mathbf{x}, \mathbf{a}_d, z) = |\mathbf{x}|^2 z + \mathbf{a}_d \cdot \mathbf{x} \ \lambda z^2 + \frac{1}{3} |\mathbf{a}_d|^2 \lambda^2 z^3$$

Single photon state

Convert back to original variables

Evolving (single photon) state:

$$\rho(\mathbf{a}_{1}, \mathbf{a}_{2}, t) = \frac{\pi w_{0}^{2}}{2\mathcal{K}_{0}t} \int \rho_{0}(\mathbf{u} + \mathbf{a}_{1}, \mathbf{u} + \mathbf{a}_{2}) \exp\left\{-\pi^{2} w_{0}^{2} \left[\frac{\mathcal{K}_{0}t^{3}}{6}|\mathbf{a}_{1} - \mathbf{a}_{2}|^{2}\right] - \mathrm{i}t (|\mathbf{a}_{1}|^{2} - |\mathbf{a}_{2}|^{2}) + \frac{|\mathbf{u}|^{2}}{2\mathcal{K}_{0}t}\right]\right\} d^{2}u$$

where

 $t = z/z_R = z\lambda/\pi w_0^2$ — normalized propagation distance w_0 — beam radius

 \rightarrow generalizable for two-photon states

Example: OAM scattering

As example, consider OAM scattering due to turbulence:

Input: $\rho_0(\mathbf{a}_1, \mathbf{a}_2) = M_{0,\ell}^{\mathrm{LG}}(\mathbf{a}_1) M_{0,\ell}^{\mathrm{LG}*}(\mathbf{a}_2)$ — (mutual coherence function)

 $M_{p,\ell}^{LG}(\mathbf{a})$ — angular spectrum of Laguerre-Gauss mode p, ℓ — radial and azimuthal mode index

LG mode generating function

Represent angular spectra of LG modes i.t.o. generating function:

$$\mathcal{G} = \frac{\pi w_0}{1+\eta} \exp\left[\frac{i\pi (a\pm ib)w_0\mu - \pi^2 (a^2 + b^2)w_0^2 \Omega(t,\eta)}{1+\eta}\right]$$

where (η, μ) are generating parameters for (p, ℓ) , and $\Omega(t, \eta) = 1 - it - (1 + it)\eta$

To generate a particular LG mode's angular spectrum:

$$M_{p,\ell}^{\mathrm{LG}}(\mathbf{a}) = \mathcal{N} \left[\frac{1}{p!} \partial_{\eta}^{p} \partial_{\mu}^{|\ell|} \mathcal{G} \right]_{\eta,\mu=0}$$

where

$$\mathcal{N} = \left[\frac{2^{1+|\ell|}p!}{\pi(p+|\ell|)!}\right]^{1/2}$$

Power fraction in LG basis: SPS vs MPS

Power fraction $s_{\Delta} = |\eta(t)|^2$ is square of coupling coefficient:

$$|\eta(t)|^2 = \int \rho(\mathbf{a}_1, \mathbf{a}_2, t) M_{0,\ell}^{\mathrm{LG}*}(\mathbf{a}_1, t) M_{0,\ell}^{\mathrm{LG}}(\mathbf{a}_2, t) \ d^2a_1 \ d^2a_2.$$

Single phase screen approach compared with multiple phase screen approach ($\kappa = 0.344\mathcal{K}_0$; input $\ell = 1$):

OAM scattering: weak scintillation limit

In weak scintillation limit (assume p = 0):

Previous analysis ^a

^aG. A. Tyler and R. W. Boyd, Opt. Lett., 34, 142 (2009)

OAM scattering: weak turbulence I

Weak turbulence implies further propagation, entering the region of strong scintillation Comparing IPE and SPS for $\kappa = 0.01$:

Scale in $W = w_0/r_0$ sets in at the onset of strong scintillation

OAM scattering: weak turbulence II

The effect of the onset of strong scintillation is seen at larger propagation distances.

Compare $\kappa = 0.01$ and $\kappa = 10$:

Strength of turbulence produce scaling in t for SPS but with IPE there are other deviations

OAM scattering: partial coherence

To consider an input state that is only partially coherent, we modify the input state as follows:

$$\rho_0(\mathbf{a}_1, \mathbf{a}_2) = 2\pi\delta^2 \int \exp(-2\pi^2 |\mathbf{u}|^2 \delta^2) M_{0,\ell}^{\mathrm{LG}}(\mathbf{a}_1 - \mathbf{u}) M_{0,\ell}^{\mathrm{LG}*}(\mathbf{a}_2 - \mathbf{u}) \,\mathrm{d}^2 u$$

where δ represents the transverse spatial coherence length.

OAM scattering: output mode size

Use output mode size w_{out} (measurement basis) that is different from the input mode size w_{in} (input basis)

For $w_{\rm out} = w_{\rm in}/2$:

Summary

- \triangleright Turbulence distorts spatial modes \Rightarrow loss of entanglement
- Investigate evolution of quantum states in turbulence
 - Single phase screen (SPS) approach
 - Multiple phase screen (MPS) approach
- Numerical simulations show where SPS breaks down
- Infinitesimal propagation equation (IPE) provides MPS approach
- Solve IPE without truncation in Fourier domain
- Application: OAM scattering in turbulence
- ▷ Allows us to investigate the effects of:
 - weak turbulence
 - partial coherence
 - output mode size