
A Low-cost, Low-energy Tangible Programming System for

Computer Illiterates in Developing Regions

Andrew Cyrus Smith

African Advanced Institute for Information & Communications Technology

acsmith@csir.co.za

Abstract

We present a low-cost, low-energy technology design

that addresses the lack of readily available functional

computers for the vast number of computer-illiterate

people in developing countries. The tangible

programming language presented is an alternative

entry point into the field of Information Technology.

We conclude with a list of further work needed.

1. Introduction

The majority of residents in developing countries do

not have access to a working computer. Neither is a

large number of this majority fully literate, having

limited reading and writing skills. On-going attempts

by local governments and funding agencies have not

yet been able to fully overcome the computer illiteracy

situation in developing countries. In an attempt to

improve this situation, relief programmes supply

computing infrastructure to schools, or community

centres, and provide training. But this model is not

always effective. As an example of this, consider the

trained personnel who soon leave the training centre for

more profitable employment in private practice, leaving

no expertise behind to assist the local population.

Another potential problem is the lack of technical

support for repair of the sophisticated computers. The

well-meaning suppliers of the equipment are not always

aware of the lack of resident technical support when

they return to their industrialised countries. In both of

these examples, these once well-equipped training

centres go into disrepair and are eventually no longer

functional.

The goal of these training centres is to increase the

number of information-technology- (IT) literate

citizens as it is believed that the modern economy is

based on IT.

In contrast to the provision of high-end technologies

to these training centres, we propose a novel,

alternative means of introducing illiterates to IT. Other

methods have previously been reported [2]. If we

acknowledge the high level of illiteracy in developing

countries, it serves little purpose to introduce large

numbers of sophisticated personal computers to these

areas. An alternative approach is to first develop, in the

illiterate population, the cognitive process of logical

thinking required in the IT field. Having developed this

ability, the illiterate person has a tool for potentially

controlling a number of objects in the immediate

surroundings. If so desired, this person is ready to

receive training using the traditional personal computer

and subsequently become integrated in the IT

mainstream.

Our approach makes use of symbols and physical

artefacts (figure 1) to compile a sequence of actions,

and is an extension of GameBlocks [3]. Two groups of

the general population who will benefit the most from

this technology are the young children and the elderly.

It can be argued that both of these groups are typically

illiterate and do not possess the fine motor skills of a

healthy young adult, making the use of large and

tangible input devices a strong contender as a

replacement for a keyboard. The population group that

fits between these age extremes typically does not have

these problems and is not the target group of the

research reported on in this paper.

Figure 1. A minimalist coding example which

is read and interpreted from left to right (“play

tune number two and then turn left”).

The technology we present is simple, requires little

energy to operate, can be modified, is open-sourced,

and can be interfaced to various output devices.

Our research contribution with this paper is our

motivation for using a tangible programming

environment in developing regions. We also give a

description of one implementation of a tangible

programming environment.

2. Motivation for using tangible interfaces

In many programming environments, programming

code consists of keywords designed by the original

programming language architect. In the modern context

this is usually a vocabulary familiar to people in the

western world (English), ignoring the ethnic

background and vocabulary of the users of the system.

Physical programming languages have recently seen

much development, but the associated tangibles are

fixed in their physical appearance and maintain the

look-and-feel as envisaged by the original designer. It

can be argued that an item crafted by the user herself

would better represent the user’s intensions than

something made by someone geographically distant

and from a very different culture.

We therefore hypothesise that the entry to the world

of programming can be made less traumatic by using

objects crafted by the end-users themselves.

We propose that physical syntax objects should rather

be shaped at the point of usage, not centrally by a team

of designers who might be located far from the point

where the technology is being used, or having done

their design research using user representation from the

local population.

We also propose the use of a physical material that

can be sculpted to conform and represent the coder’s

own interpretation of the action encoded by the object.

Prior research [1, 4, 5, 6] in the field of tangible

interfaces points to increased physical activity by the

end-user. Instead of the end-user being stationary in a

seated position in front of a computer screen and

keyboard, extended movements are possible and indeed

required to manipulate the tangible input devices. If we

accept that children in developing regions are

physically more active that children in developed

regions, then we can argue that the first group could

possibly be at an advantage when it comes to using

tangible interfaces.

We therefore hypothesise that using increased

physical space and 3-dimensional input objects will

reduce the divide which exists between the computer-

literate and those who have never had computer

exposure.

Our system removes all text from the user interface.

In addition, the tangible interface objects in our system

have properties of texture, weight, and colour. There is

also a strong correlation between the shape and

orientation of the input object, and the object’s

functionality. Because of these tangible and visual

properties, the cognitive burden on the user is reduced

as compared with text-only input systems.

We therefore hypothesise that our input devices are

well suited for computer-illiterate people.

3. The tangible programming system

description

3.1 The language

The current version of the tangible language consists

of six instructions. These are move forwards, move

backwards, turn left, turn right, play tune number one,

and play tune number two (figure 2). It is a simple,

single procedure language that allows for sequential

execution.

Figure 2. The six instructions used in the tangible

programming system (clockwise from bottom left):

move forwards, move back, turn left, turn right,

play tune number one, and play tune number two.

3.3 The system

The tangible programming system consists of foam

cubes (figure 2), a programming mat, controlling

electronics (figure 3), and an output device. The cubes

contain low-cost magnets to encode the functionality

that each cube represents.

Embedded into the programming-mat are low-cost

magnetic sensors. These sensors are wired to the

controlling electronic circuit. The controlling circuit is

a very simple design containing a single 8-bit

microprocessor plus some discreet logic circuitry.

Figure 3. The proof-of-concept electronic

controller circuitry.

Program output is made tangible by the motions and

sounds emitted from a remote-controlled toy car. The

toy car executes a number of actions such as moving

and playing musical tunes These movements are based

on the sequence of the cubes placed onto the

programming mat.

4. Overview of the evaluation methodology

The described system was evaluated with children in

a number of environments in South Africa. These

include two science shows held nearly 900 kilometres

apart, and a few sessions held in our laboratories. In all

cases where tests were conducted away from our

laboratories we did not have any a-priory information

on the testees. Although not formally established in the

tests it can be argued that the social, cultural,

educational and financial disposition of the testees

differed between these two geographic regions away

from our laboratories.

Children from both primary- and secondary- schools

participated in these tests. In total, approximately 200

children have been given the opportunity to experience

the system. In all cases the evaluation took place in a

controlled environment with the number of testees

being limited to groups no being larger than 20.

The following is a description of the testing

process: Initially the testees were welcomed and given

a questionnaire relating to their background and

knowledge of IT. They were then introduced to the

system and given a challenge which had to be solved

using the system. This stage was iterated a number of

times in order for the testees to become comfortable in

using the system. The sessions concluded with the

testees completing the second part of the questionnaire.

This part solicited testees’ comment on the system

which will inform future research.

We have not yet formally analysed the information

gathered during the user tests.

5. Future work

5.1. Component costs

The current concept demonstrator has been

implemented using dual-in-line integrated circuits (DIL

IC’s) and other discreet through-hole components. This

approach makes for easy construction and fault finding

which is ideal for regions where only basic

manufacturing technology is available. However,

system component cost can be reduced by combining

the active components into a single IC. Field

Programmable Gate Arrays (FPGA’s) or Application

Specific Integrated Circuits (ASIC’s) are examples of

high-density, low component cost options.

5.2. Customisable and recyclable tangibles

The bright and light-weight foam cubes used in the

concept demonstrator are attractive and robust, but they

are manufactured from man-made materials and not

easily recyclable. Future research can include the use of

natural material such as wood, cardboard, and soft

stone as tangibles. These materials can be sculpted at

the point-of-use to meet the exact requirements of the

end-user. The natural materials have the additional

advantage of being of very low cost, easily recyclable,

and readily available.

6. Conclusions

We have presented an alternative programming

environment which addresses a number of problems in

the developing world. The problems include the low

level of IT literacy, the lack of IT maintenance

infrastructure, and limited motor skills in some cases.

The presented system can provide an alternative entry

point into the field of IT, aimed at the computer

illiterates of developing countries. We concluded by

briefly introducing two areas in which the system may

be improved to make it better suited for developing

regions.

7. Acknowledgements

This research was financially supported by the South

African Department of Science and Technology.

8. References

[1] Horn, M.S. and Jacob, R.J.K. Tangible programming in

the classroom with tern. In CHI '07 extended abstracts on

Human factors in computing systems, ACM Press (2007),

1965-1970.

[2] Kelleher, C. and Pausch, R. Lowering the barriers to

programming: A taxonomy of programming environments

and languages for novice programmers, ACM Comput. Surv.,

2005, vol 37,83-137, no 2.

[3] Smith, A. C. Using magnets in physical blocks that

behave as programming objects, Proc. Tangible and

embedded interaction, 147-150, ACM Press (2007).

[4] Suzuki, H. and Kato, H. Interaction-level support for

collaborative learning: AlgoBlock-an open programming

language, CSCL '95: Computer support for collaborative

learning, 1995, 349-355.

[5] Tang, T. S. Storytelling Cube: A tangible interface for

playing a story.

[6] Wyeth, P. and Wyeth, G. Electronic Blocks: Tangible

Programming Elements for Preschoolers, In Proc INTERACT

2001, 2001.

