
1

WebRTC using JSON via XMLHttpRequest and SIP
over WebSocket: initial signalling overhead findings

Michael Adeyeye, Member, IEEE, Ishmeal Makitla, and Thomas Fogwill, Member, IEEE

Abstract—Web Real-Time Communication (WebRTC) intro-
duces real-time multimedia communication as native capabilities
of Web browsers. With the adoption of WebRTC the Web
browsers will be able to use WebRTC to communicate with
one another (peer-to-peer), and with WebSocket servers such
as Mobicents SIP Servlets and other server technologies that
support WebSocket communication to enable SIP-to-WebRTC
communication. This position paper discusses the two common
methods of doing real-time communication in Web browsers
through WebRTC. The methods are JavaScript Object Notation
(JSON) via XMLHttpRequest (XHR) and Session Initiation
Protocol (SIP) via WebSocket. A three-user WebRTC video
chat prototype application was developed and used to evalu-
ate both methods. Additional signalling overhead introduced
into a browser by each method was determined. The results
showed WebRTC-SIP/WS has more overhead than WebRTC-
JSON/XHR. This signalling overhead findings are useful in
informing the WebRTC working groups in terms of additional
overhead introduced by proposed WebRTC methods, the finding
could also help application developers make decision on their
choice of technologies and protocols when developing WebRTC-
supported applications.

Index Terms—WebRTC, JSON, XMLHttpRequest, SIP,
Browser communication

I. INTRODUCTION

The Internet Engineering Task Force (IETF) and the World
Wide Web Consortium (W3C) are currently tasked with bring-
ing WebRTC among browsers to an acceptable level in both
the industry and the academia. WebRTC is an open framework
that offers web application developers the ability to write rich
real-time multimedia applications (e.g. video and gaming ap-
plications) on the web without requiring plugins or extensions.
Its purpose is to help build a strong Real Time Communication
(RTC) platform that works across multiple web browsers
and platforms. In an implementation, the WebRTC API will
abstract several key components for real-time audio, video,
networking and signal [1], [2]. While the IETF is standardizing
the signaling protocols and media technologies (e.g. codecs)
required in WebRTC, the W3C is standardizing the APIs and
browsers for real time communication.

There are many implementations of RTC among web
browsers [3], [4], [5], [6], [7] and the WebRTC itself [8],
[9], [10]. The standard signalling protocol for WebRTC is
JavaScript Session Establishment Protocol (JSEP), however,
Remote Object Access and Replication (ROAR) has also been
used in some existing implementations. The reason JSEP is the

Department of Information Technology, Cape Peninsula University of
Technology, South Africa, e-mail: adeyeyem@cput.ac.za.

The Next Generation Network and Architecture Research Group, CSIR,
South Africa, e-mail: imakitla, tfogwill@csir.co.za.

preferred protocol is because it moves control or negotiations
from a browser to JavaScript (in an application). In addition,
there is a need to make the WebRTC implementation look
similar to the SIP Offer and Answer. Although the VP8 codec
seemed to be the preferred codec for WebRTC, it is faced
with royalty problems. Hence, codecs for the WebRTC are
also being addressed.

WebRTC is built on the PeerConnection API and repres-
ents what browser vendors will implement and expose to
web application developers. Web application developers can
choose an underlying protocol depending on their project
requirements. The underlying protocols, also called the sub-
protocols, include SIP and XMPP (with Jingle). The Libjingle
library, like a SIP stack, supports (Session Transversal Utilities
for NAT (STUN) and Transversal Using Relays and NAT
(TURN). Both these Interactive Connectivity Establishment
(ICE) techniques, namely STUN and TURN, make communic-
ation possible when the communicating endpoints are behind
a firewall.

The motivation for this work is that application developers
will soon begin to create innovative WebRTC-supported ap-
plications with little or no consideration on the total cost
of usage of their applications. An application with a high
signalling overhead would incur more cost with poorer quality
of experience for users having low Internet bandwidth and
paying high cost for Internet access. This work examined
the additional signalling overhead introduced by WebRTC
applications. The contribution of this research is therefore the
development of a three-user WebRTC video chat application
with a report on the signalling overheads introduced by the
two common methods of doing WebRTC.

The remainder of this paper is arranged as follows: Section
II discusses the common methods of doing WebRTC within
compliant Web browsers and the current ways of implementing
video streaming using WebSocket. Section III presents the
three-user WebRTC vide chat prototype which was used to
evaluate the resultant signalling overhead. Section IV then
presents and discusses the resultant signalling overhead of the
two commond methods of doing WebRTC. In Section V the
paper is concluded.

II. WEB REAL-TIME COMMUNICATION (WEBRTC)
METHODS AND ISSUES

The two prominient ways of doing WebRTC are using pure
SIP via websocket (WebRTC-SIP/WS) and JavaScript Object
Notation via XMLHttpRequest (WebRTC-JSON/XHR). While
the former uses a WebRTC-SIP proxy/gateway as its applica-
tion engine and SIP over websocket for signalling, the latter

http://adeyeyem@cput.ac.za
http://{imakitla, tfogwill}@csir.co.za


2

uses a custom engine (e.g. the Google App. Engine) as its
application engine and JSON over XHR for signalling. For
the Google App. Engine, the JSON/XHR signalling is done
via its Channel API. However, both approaches are based on
JSEP, which mimics the SIP Offer and Answer signalling.

There are however other implementations developed to meet
specific requirements. An example is the Ericsson WebRTC
implementation [8], which uses ROAR. In this example, some
changes were made to the webkit libraries in the Epiphany web
browser in order to support WebRTC. There are other kinds
of implementation in the form of an extension to a browser.
An example is the IEWebRTC extension (which uses Chrome-
Frame) for Internet Explorer [12]. As web browsers are being
extended, the number of WebRTC applications and frame-
works, such as SIPML5 (which uses SIP over websocket) [13]
and SIP-JS (with support for Flash-network) [5], are rapidly
increasing. At the time of this research, Google Chrome
is taking the lead in the WebRTC implementation. Mozilla
Firefox is yet to have a version that has the PeerConnection or
getUserMedia API. A SIP stack (called SIPCC) is now being
integrated into it [14]. Hence, it does not currently support
WebRTC. Other browser makers, such as Microsoft and Opera,
are also contributing to the WebRTC standadization.

Figure 1 shows the signalling between two UAs (User
Agents) or devices; the sequence of events starts from top to
bottom. Some of the processes (such as PeerConnectionFact-
ory, ProcessSignalingMessage and OnSignalingMessage) are
peculiar to Google Chrome, which uses the libjingle. A caller
first creates a new peerconnection and adds stream using the
PeerConnection API as shown in Figure 1. In addition, a local
session description (for audio and/or video) is applied. ICE is
then started in order to get available IP (Internet Protocol)
address and port number for media transfer (these additional
processes are not shown for simplicity). A peerconnection and
remote session description (for the callee) are later created.
When a callback at the callee’s notifies that a stream is
added (via a channel), an offer is created. It is sent and
processed by the caller. An answer is then sent back and a
local session description (for the callee) is created. The answer,
which contains the remote session description and some hints,
is sent to the callee. A local session description (for audio
or/and video) is then set and applied in the callee’s browser.
Lastly, ICE is also started in order to get available IP (Internet
Protocol) address and port number for media transfer. The
caller later applies the remote session description in order to
present video/audio from the callee. Encryption of WebRTC
media in Google AppEng is achieved by sending the UDP
(User Datagram Protocol) data via SCTP (Stream Control
Transmission Protocol) and DTLS (Datagram Transport Layer
Security).

On the other hand, there are still NAT and rewall issues in
the WebRTC. In addition, SBCs (Session Border Controllers)
could be required to handle connections between two or more
domains. ICE techniques (STUN and TURN) are likely to
increase duration to set-up a call. Security of media and
permissions are also hot issues in the WebRTC, though there
are a couple of solutions that can be used. Other issues of
interest include recording video, supporting other SIP/SIMPLE

Figure 1. The WebRTC Signalling in a Call Session

features, such as presence and messaging, and doing multi-user
video chat using the WebRTC framework.

As of this writing, and whereas the issues mentioned
above are receiving sufficient attention, the issue of additional
overhead introduced by WebRTC methods has not been in-
vestigated. The next section describes a prototype application
which was used to investigate additional signalling overhead.

III. A THREE-USER WEBRTC VIDEO CONFERENCE
PROTOTYPE

To determine the additional signalling overhead introduced
by WebRTC applications, a three-user WebRTC video chat ap-
plication was developed as a prototype for this research using
the PeerConnection API. The prototype application used both
WebRTC communication methods discussed in Section III
namely WebRTC-SIP/WS and WebRTC-JSON/XHR. Google
Chrome Web browser which integrated libjingle (with XMPP)
was used for experimentation as it is the only browser with
an acceptable level of WebRTC support required for this
research. As at the time of writing, this is the only work
that has considered signalling overhead introduced by the two
WebRTC methods, In addition, the three-user WebRTC video
chat application is one of the few WebRTC video chat applic-
ations that support three or more users. Most WebRTC video
chat applications are only for two users, since WebRTC is
currently being standardized. The Three-user WebRTC video
chat is depicted in Figure 2.

Although the application was built for no more than three
users (as shown in Figure 2), the signalling between two
users is shown here (Figure 1) for simplicity reasons. The



3

Figure 2. The Three-user WebRTC demo

application in-between the two User Agents (UAs) acts as
a B2BUA and is common feature among multi-user con-
ference applications. The video conference application was
first developed and deployed in Google AppEngine (i.e. the
WebRTC-JSON/XHR). It used the Channel API in the Google
AppEngine for WebRTC signalling and the getUserMedia
and PeerConnection APIs in the Google Chrome browser for
media streaming. Since the PeerConnection API only works
for two devices, each device created two instances of “we-
bkitPeerConnnection00” and each instance was used to set-up
a peer-to-peer connection with the other device. In order to
demonstrate WebRTC-SIP/WS, a SIP servlet application was
modified and deployed into the Mobicents AS (Application
Server) as a SIP proxy in an IMS. The Mobicents SIP Servlets
AS used Apache Tomcat 7.0, which supports WebSocket.
The SIP proxy acted as a B2BUA, which sets up a video
chat among the three users. The source of the application
is published on the Internet for contributions from interested
parties and the Open Source (OS) community [15]. It is one
of the few WebRTC works on the Internet that support more
than two users. Figure 2 also shows the signalling in a browser
using the browser’s developer tools.

IV. WEBRTC-JSON/XHR AND WEBRTC-SIP/WS
SIGNALLING OVERHEAD

As stated in Section II, the issue of signalling overhead
introduced by the two WebRTC methods has not been studied
before. Therefore, in order to report the performances and dif-
ferences between WebRTC-JSON/XHR and WebRTC-SIP/WS
method of doing WebRTC, an experiment was performed
using each method. The signalling overhead in a peer-to-peer
connection was measured. The upload and download speed
for the network were 0.15Mbps and 0.81Mbps, respectively.
The test was carried out on a Local Area Network (LAN),
and the WebRTC-SIP/WS application played the role of both
a WebRTC-SIP proxy/gateway and a SIP Registrar. Hence,
there were no outbound connections. Like every application,
its QoS (Quality of Service) depends on the network speed.
Connection time (latency) and signalling overheads are two

factors that can be used to evaluate the performance of the
two WebRTC methods. The connection time and delay were
determined by running Network Time Protocol (NTP) on
all machines used in the experiment. While connection time
among peers in a video chat was infinitesimal or not noticeable
(being a test performed on a LAN), the signalling overhead
was noticeable. As a result, this work focuses on the signalling
overheads of each WebRTC method. The payload of each
application was not included in the values of signalling over-
heads. Table I shows the signalling overheads in a web browser
when the browser runs the WebRTC prototype applications
for the three-urse video chat. In addition, the values were
compared with overheads introduced by a regular SIP client
- PJSIP. The result shows the signalling overheads as they
increases in both WebRTC approaches. The experiment was
repeated multiple times in order to report mean values and,
for each value, its variance in brackets for the overheads.

As reported on Table I, all results show a limited variance.
A basic HTTP request-response (with no payload) is 150B.
The HTTP overhead is higher than the WebRTC-JSON/XHR
overhead for a completed session (104B) because the HTTP
server (Apache) responded with some additional information
in its response header. It is however possible for a developer
to compress HTTP response headers or reduce the response
information to the essential ones. The WebRTC-SIP/WS over-
head can affect quality of experience, where access to the
Internet is costly and the Internet connection speed is low.

Table I
SIGNALLING OVERHEAD IN WEBRTC VIA JSON/XHR AND SIP/WS

WebRTC-JSON/XHR WebRTC-SIP/WS A SIP
Client (PJSIP)

On Register 13B (0.58) 34B (1) 2.5kB (1.1)
On Invite 39B (0.58) 204KB (0.88) 4.9kB (1.02)

During Call 78B (0.78) 240KB (1) 9.6kB (1)
Session

Ending Call 104B (0.78) 275KB (1) 10.4kB (1.02)
Session

Shown in Table I are initial signalling overhead findings
from the experiment that was conducted. These results open up
a number of issues such as why is there such a big difference
(i.e. 39B versus 204KB) between WebRTC-JSON/XHR and
WebRTC-SIP/WS. Could this be the fact that SIP is XML
based and that XML uses too many bytes simply to structure
its content (i.e opening and closing tags) which may account
for this big difference in byte-sizes? These and many other
issues we hope to investigate as part of our continued WebRTC
experimental research.

V. CONCLUSIONS

A three-user WebRTC video chat has been developed and
released to the OS community and researchers exploring
WebRTC. In addition, the signalling overheads for the two
WebRTC approaches have been reported.The support for
WebRTC would create an additional ways of communicating



4

between two devices. Voice services in existing telecommu-
nication networks may likely drop as customers will pay more
for data services in order to use WebRTC. Like there are
unique attributes in CSS for different browsers, developers
may need use some browser-specific features, most notably in
JavaScript, after the standardization effort. They would have
to choose what approach they want to use to develop their
applications, and one of their considerations would be the
signalling overhead.

With a Web browser becoming a real-time communication
application, its installer file size is expected to drastically
increase as it will now support new features, such as WebRTC
and WebGL. While libjingle (with XMPP) is integrated into
Google Chrome, a SIP stack is integrated in Mozilla Firefox to
implement WebRTC. The integration of these protocols would
open enormous opportunities for developers. On one hand,
web developers can develop websites and applications that
would run in a browser using HTML5 with the APIs exposed
to webpages. On the other hand, application developers can
develop applications that work with a browser internals (e.g.
a XULRunner or Chrome Application) thereby directly com-
municating with the underlying protocols and mechanisms in
that browser.

Interoperability between WebRTC and current SIP servlets
and VoIP services have great potential to create new markets.
Necessarily current efforts within IETF and other working
groups for WebRTC seek to address WebRTC-SIP interop-
erability. This means that further experiments and analyses
of potential signalling overhead that this will introduce are
very curcial to inform the direction taken by these WebRTC
working groups.

REFERENCES

[1] WebRTC, http://www.webrtc.org, accessed on October 13, 2011.
[2] IETF WebRTC, http://tools.ietf.org/wg/rtcweb, accessed on October 13,

2011.
[3] David Linner, Horst Stein, Ulrich Staiger and Stephan Steglich, “Real-

time Communication Enabler for Web 2.0 Applications,” in: Proceedings
of the Sixth International Conference on Networking and Services (ICNS
’10), Cancun, Mexico, March 7-13, 2010, pp. 42 - 48.

[4] SIP on the Web, http://sip-on-the-web.aliax.net, accessed on June 11,
2012.

[5] SIP-JS, http://code.google.com/p/sip-js, accessed on June 11, 2012.
[6] The Phono WebRTC, http://phono.com/webrtc, accessed on June 11,

2012.
[7] Michael Adeyeye, Neco Ventura and Luca Foschini, “Converged

Multimedia Services in Emerging Web 2.0 Session Mobility Scen-
arios ,” in: the Springer Wireless Networks (WINET) Journal. DOI:
10.1007/s11276-011-0394-z.

[8] Ericsson WebRTC, https://groups.google.com/group/ericsson-labs-web-
rtc, accessed on June 11, 2012.

[9] Chrome WebRTC Implementation, http://www.w3.org/2011/04/webrtc/wiki/im-
ages/7/7f/Webrtc-chrome-impl-status.pdf, accessed on June 11, 2012.

[10] IETF RTCWeb-SIP WG, http://tools.ietf.org/html/draft-kaplan-rtcweb-
sip-interworking-requirements-01, accessed on October 13, 2011.

[11] The IMS World Forum Summary, http://www.alan-
quayle.com/blog/2012/04/the-ims-world-forum-summary-pa.html,
accessed on June 11, 2012.

[12] http://code.google.com/p/webrtc4ie/, Accessed on January 17, 2012.
[13] SIPML5, http://www.sipml5.org/, accessed on June 11, 2012.
[14] https://github.com/ethanhugg/ikran, Accessed on January 17, 2012.
[15] https://github.com/micadeyeye/three-user-webrtc, Accessed on August 3,

2012.

[16] Vijay K. Gurbani, Xian-He Sun and A. Brusilovsky, Inhibitors for
Ubiquitous Deployment of Services in the Next-Generation Network,
in: the IEEE Communications Magazine, Vol. 43, No. 9, pp. 116-121,
September 2005.

[17] Karim Sbata, Houda Khrouf, Sabine Zander and Monique Becker,
Converging Web and IMS Services: Stakes and Solution Proposals, in:
Proceedings of the International ACM Conference on Management of
Emergent Digital EcoSystems (MEDES ’09), Lyon, France, October
27-30, 2009.

[18] Haruno Kataoka, Masashi Toyama, Yoshiko Sueda, Osamu Mizuno
and Kenji Takahashi, Demonstration of Web Contents Collaborative
System for Call Parties, in: Proceedings of the 7th IEEE Consumer
Communications and Networking Conference (IEEE CCNC ’10), Las
Vegas, Nevada, USA, January 9-12, 2010.

[19] .http://www.google.com/chromeframe?quickenable=true, Accessed on
January 17, 2012.

[20] http://code.google.com/p/webrtc-samples/, Accessed on January 17,
2012.

[21] https://apprtc.appspot.com, Accessed on January 17, 2012.
[22] Hideo Nishimura, Hiroyuki Ohnishi and Miki Hirano, “Architecture for

Web-IMS Co-operative Services for Web Terminals ,” in: Proceedings
of the 13th International Conference on Intelligence in Next Generation
Networks (ICIN ’09), Bordeaux, France, October 26 - 29, 2009, pp 1-6.

[23] The PJSIP Project, http://www.pjsip.org, April 12, 2012.
[24] The Mozilla Firefox Web browser, http://www.mozilla.org, April 12,

2012.
[25] M. Handley and V. Jacobson, SDP: Session Description Protocol, IETF

RFC 2327, April 12, 2012.


	I Introduction
	II Web Real-Time Communication (WebRTC) Methods and Issues
	III A Three-user WebRTC Video Conference Prototype
	IV WebRTC-JSON/XHR and WebRTC-SIP/WS Signalling Overhead
	V Conclusions
	References

