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Abstract. Surface fingerprint scanners are limited to a two-dimensional representation of the fingerprint
topography, and thus, are vulnerable to fingerprint damage, distortion, and counterfeiting. Optical coherence
tomography (OCT) scanners are able to image (in three dimensions) the internal structure of the fingertip
skin. Techniques for obtaining the internal fingerprint fromOCT scans have since been developed. This research
presents an internal fingerprint extraction algorithm designed to extract high-quality internal fingerprints from
touchless OCT fingertip scans. Furthermore, it serves as a correlation study between surface and internal
fingerprints. Provided the scanned region contains sufficient fingerprint information, correlation to the surface
topography is shown to be good (74% have true matches). The cross-correlation of internal fingerprints (96%
have true matches) is substantial that internal fingerprints can constitute a fingerprint database. The internal
fingerprints’ performance was also compared to the performance of cropped surface counterparts, to eliminate
bias owing to information level present, showing that the internal fingerprints’ performance is superior 63.6% of
the time. © 2015 SPIE and IS&T [DOI: 10.1117/1.JEI.24.6.063014]
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1 Introduction
The authenticity and performance of biometrics such as
fingerprints are under constant scrutiny. Matsumoto et al.1

highlighted the lack of fingerprint authenticity detection.
Although liveness detection has come a long way,2,3 there
is nevertheless a limit to surface fingerprints.

The inherent limit is that the current surface fingerprint
scanning standard provides a two-dimensional (2-D) finger-
print representation that accommodates fingerprint spoof-
ing,1,4 thus requiring sophisticated methods for authenticity
detection.3 The surface scanners are touch-based, and thus,
introduce distortion.5 Surface fingerprint skin is also prone to
damage.

Solutions to mitigate surface fingerprint disadvantages
have been developed. Three-dimensional (3-D) surface finger-
print imaging with 3-D to 2-D unwrapping,6 fingerprint
distortion removal,5 fingerprint recognition in low-quality
fingerprint images,7 fingerprint enhancement,8 and fingerprint
liveness detection3 are all noteworthy contributions to this
task. However, a solution exists that is able to compensate
simultaneously for all the deficiencies of the surface finger-
print: the internal fingerprint.

There is a layer of skin, known as the papillary junction,
that has the same topography as the surface. Thus, the sur-
face and internal fingerprint have the same structure.9 Owing
to the relative reflectivity of the papillary junction to the
epidermis, the upper edge of the papillary junction contains
the most pertinent internal fingerprint information.

The imaging of subsurface layers of skin is carried out
using a tool known as optical coherence tomography
(OCT).10 OCT has become known as a powerful and non-
invasive biomedical imaging tool. It is touchless and can
image the papillary junction in high-resolution 3-D. OCT
is subject to signal-degrading speckle noise that originates
from reflective elements of roughly the same size as the im-
aging wavelength.11 An OCT volume consists of a series of
image slices (known as B-scans) that consist of a series of
one-dimensional (1-D) signals (known as A-lines). A-lines
are columns in a B-scan.

Various successful attempts12–16 have made use of OCT to
image the internal fingerprint. However, these works usually
define the location of the papillary junction manually.
Furthermore, most employed either simple en face slice aver-
aging (over a static region) or used a single en face slice for
internal fingerprint extraction. Although the use of a glass
slide during the scanning process (as was the case in the
work of Bossen et al.12) does stabilize the location of the
papillary junction to a relatively fixed depth, it mitigates
the touchless capability of OCT. This earlier research
lacked automatic internal fingerprint zone detection and
was technically inefficient regarding internal fingerprint
extraction. The result was low-quality internal fingerprints.
An improved approach was developed by Khutlang and
Nelwamondo:17 Novelty detection was used to locate the
papillary junction. Compared to human observers, this tech-
nique performed well. However, their method required
B-scan images to be processed to reduce noise and the data-
set for testing was small.
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Darlow et al.18 used heuristic techniques to detect the pap-
illary junction upper edge and developed an improved tech-
nique for en face slice averaging. Slice averaging consisted
of averaging pixels over a fixed region (surrounding the
detected fingerprint zone) in each B-scan. Akhoury and
Darlow19 applied an automatic papillary junction detection
approach and mapped the obtained 3-D papillary junction
coordinates to a 2-D fingerprint representation. In addition,
internal fingerprint zone detection was accomplished by
Darlow et al.:20 the approximate location of the papillary
junction was detected by applying k-means clustering to
A-line local maxima; a fine-tuning procedure was applied
to localize the papillary junction upper edge (i.e., the internal
fingerprint zone). However, the fingerprints obtained in all
cases were not quantitatively tested for correlation with
their surface counterparts, nor was the dataset large enough
to conclude robustness with regard to internal fingerprint
extraction.

The research presented here is an improvement on, and
conglomeration of, the above-mentioned works. Internal
fingerprint zone detection is an improvement as it uses
fuzzy c-means to improve clustering performance, uses
better cluster result postprocessing, and improves upon
the fine-tuning procedure through the application of Sobel
and Feldman21 edge detection. The fingerprint extraction
approach is an improvement on the work by Darlow et al.18

in that it is localized to individual A-lines, instead of being
fixed on a B-scan basis.

No research has been undertaken to show the correlation
between surface and internal fingerprints in a decisive quan-
titative manner. This is necessary to provide evidence that
(1) the internal fingerprint is a viable replacement for the
surface fingerprint and (2) the internal fingerprint can be
incorporated into legacy fingerprint databases.

To accomplish this, an internal fingerprint extraction algo-
rithm is developed in this research, tested, and applied to
OCT fingertip scans. The approach is novel and technically
advanced in its use of computer vision techniques. Although
the origin of this algorithm has its roots in earlier works,
the deviations, improvements, and consequent additions are
significant.

This algorithm uses clustering and image-enhancement
procedures to detect the upper edge of the papillary junction
with high accuracy. Following this, the papillary junction
undulation zone is described in a local fashion for internal
fingerprint extraction.

This paper is structured as follows. The internal finger-
print extraction algorithm is presented in Sec. 2. The exper-
imental setup is detailed in Sec. 3, and the results obtained
are exhibited in Sec. 4. The conclusions are drawn and future
work is suggested in Sec. 5.

2 Internal Fingerprint Extraction Algorithm
Internal fingerprint extraction consists of two main parts:
fingerprint zone detection and extraction. Zone detection
uses fuzzy c-means clustering to approximate the location
of the papillary junction (i.e., the internal fingerprint zone).
Edge detection is used to further localize this location. The
following section details the approach developed for internal
fingerprint zone detection.

2.1 Internal Fingerprint Zone Detection
Figure 1 is an overview flowchart describing the internal
fingerprint extraction algorithm. The data acquisition process
and respective resolution constraints are explained in Sec. 3.
No glass slide was used during fingertip scanning as this mit-
igates the touchless advantage of OCT. Figures 1(a) and 1(b)

(a)

(b)

Fig. 1 The novel internal fingerprint extraction algorithm. (a) A typical optical coherence tomography
(OCT) fingertip scan with resolution constraints (see Sec. 3), while (b) identifies the layers of skin by
their relative reflectivity in a single OCT scan image (B-scan).
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are indicative of the visible curvature of the scanned
fingertips.

There is an intensity depth dependency roll-off problem
inherent in OCT scans of a curved object. Regions
further from the scanner have lower intensity, and the natural
finger curvature makes internal fingerprint zone detection
complex. This research endeavors to detect the internal
fingerprint zone in unprocessed, touchless OCT finger-
tip scans.

To do so, fuzzy c-means clustering is applied to en face
1-D intensity signals (known as A-lines, exemplified in
Fig. 2) for internal fingerprint zone detection. This informa-
tion is used to define en face localized regions for each
A-line over which to average pixel intensities for the 2-D
internal fingerprint. Following this, the internal fingerprint
is enhanced.

Fuzzy c-means22 clustering is applied to internal finger-
print zone detection as: it suits the task of papillary junction
detection, has been implemented and tested in various
scenarios, and is highly robust against outliers. The outlier
detection capacity of fuzzy c-means is used by setting a
high threshold for cluster membership [Eq. (1)] and duly
accommodated for by coordinate interpolation.

Clustering requires input data and descriptive features. A
number (n) of intensity local maxima in each A-line are
extracted as data. Examples of this data are the (green)
dots in Fig. 2. Refer to this graph for visual descriptors of
the following features:

1. Relative distance to the stratum corneum: Black
arrows in Fig. 2. The stratum corneum is detected
as detailed in Fig. 3(a). The distances from this esti-
mate—the dashed (green) line in Fig. 2—to the
extracted data points are normalized on a B-scan basis
by estimating the average (median) distance between
the two strongest peaks in all A-lines in the respective
B-scan.

2. Relative intensity: Height of the (green) dots in Fig. 2.
The second strongest local maximum usually (but not
always) corresponds with the papillary junction. The
median (on a B-scan basis) of these maxima is used to
normalize this feature. The median is used as it is
robust regarding outliers.

3. Peak width: Bottom (blue, above peaks) arrows in
Fig. 2. Calculated as twice the distance from the
data point to the next upper local minimum.

4. Standard deviation: Top (purple, above peaks) arrows
in Fig. 2. Calculated over the region defined by the
peak width.

5. Gradient: Measured atX, half the distance between the
data point and the next upper local minimum.

It is the normalization of the distance and intensity fea-
tures that adjusts fingertip curvature and roll-off. Cluster
membership is defined by

EQ-TARGET;temp:intralink-;e001;326;653TðcÞ ¼ min

�
m
c
; threshold

�
; (1)

where m > 1 is the multiplication factor, c is the number of
clusters, and threshold is the maximum membership value
and is set to 0.9. Threshold exists to ensure at least some
membership in fringe cases (i.e., when m is high and c is
low). m was set to 1.6 for this research, although it must
be noted that this parameter is not sensitive. If a data point
does not have a membership of at least T in any of the c
clusters, it is an outlier. A large number of outliers must
not be interpreted as poor performance. Instead, it serves
to ensure strong cluster membership. Figure 3(b) is an exam-
ple of clustering output.

The cluster best describing the internal fingerprint zone is
determined by comparing each cluster to the estimate used
for relative distance normalization. The data contained in the
chosen cluster are denoted as C.

Owing to the imposed requirement of strong cluster mem-
bership, it is entirely possible that A-lines may contain no
data within C. Interpolating missing data is thus required.

The inpaint_nan23 interpolation algorithm is used to cal-
culate missing values in C. A median filter is applied to the
coordinates to reduce anomalies. The resultant coordinates
are denoted as PC. The process followed is exhibited in
Fig. 4.

PC describes the center of the papillary junction only and
is thus inefficient at capturing the internal fingerprint undu-
lations. PC is fine-tuned into papillary junction upper-
edge coordinates (denoted as P). P describes the internal
fingerprint zone entirely. Fine-tuning involves processing
small image regions. This region is exemplified as the region
between the (red and blue) lines in Figs. 3(c) and 3(d).
These image regions contain the papillary junction upper
edge.
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Fig. 2 A region of interest in a single one-dimensional A-line intensity profile. The features extracted for
fuzzy c-means clustering are exemplified herein.
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The optimized blockwise nonlocal means (OBNLM)
speckle filter was shown by Darlow et al.24 to perform
well regarding OCT fingertip scans and is applied in succes-
sion to the regions. Local intensity normalization is used
to alleviate the effects of the curvature roll-off problem.
The Sobel and Feldman21 operator detects the horizontal
edges, and unsharp masking enhances them. The thresholded
result is processed for edge coordinates and used to adjust
PC, yielding P. This process is demonstrated in Fig. 5.
PC and P are illustrated as the bottom (cyan) and top
(green) lines in Fig. 6(a), respectively.

An earlier work by Darlow et al.20 served as a precursor to
this approach. In that work, k-means clustering was used,
and a different set of procedures was used for fine-tuning.
The novelty of this work is found in the manner in which
fuzzy c-means is able to identify outliers, the approach to
cluster result postprocessing, and the use of Sobel edge
detection for fine-tuning.

Since there should only be a single data point per A-line
that corresponds to the papillary junction, and because fuzzy
c-means performs well regarding outlier detection, a ratio of
c∶nwhere c > n is hypothesized to yield satisfactory results.

Fig. 3 Clustering process. (a) Exemplifies stratum corneum detection: the thin (yellow) line indicates the
local maxima estimates closest to the previous B-scan’s stratum corneum and a polynomial fitted to
strong data points [i.e., the thick (cyan) line]; the (green) crosses are outliers; and the (red) dots are
corrected outliers. (b) An example of output clusters: different color/marker combinations are different
clusters; large (green) circles encircle the outliers; and the bottom (red) and top (green) lines show
the region extracted for fine-tuning (Fig. 5).

Fig. 4 Cluster result processing. (a) A region of interest in a B-scan: the (red) crosses are cluster results,
(b) the (blue) dots are interpolated values; (c) the deviating (green) line is prior to median smoothing; and
(d) the smooth (blue) line is after smoothing. (b), (c), and (d) are en face perspectives of the papillary
junction center coordinates before interpolation, after interpolation, and after smoothing, respectively.

Fig. 5 Fine-tuning process. (a) An example of the small image regions processed for fine-tuning,
extracted from between the lines in Fig. 3(b). (b) After the successive application of optimized blockwise
nonlocal means (OBNLM) (in three stages) and local normalization. (c) The application of the Sobel
operator yields. The edge detected is shown in (d).

Journal of Electronic Imaging 063014-4 Nov∕Dec 2015 • Vol. 24(6)

Darlow and Connan: Study on internal to surface fingerprint correlation. . .



This is shown in Sec. 4. Fingerprint extraction using P is
discussed in the following section.

2.2 Localized Internal Fingerprint Extraction
A 2-D en face coordinate mean-map and standard deviation-
map is calculated from P. These are P convolved with aver-
aging and standard deviation filters, respectively. They are
localized to an individual XY pixel and are used to provide
statistical evaluations of the papillary junction undulations.
The region describing the internal fingerprint starts at the
mean-map adjusted by some offset (meano), and ends at
the deviation-map multiplied by a constant (devm) and
adjusted by some offset (devo). This region is demonstrated
in Fig. 6(b) as the region between the middle (green) and top
(blue and white) lines.

The statistical evaluation of the fingerprint zone results in
resistance toward deviation in the detected zone. Thus, this
manner of fingerprint extraction is insensitive to incon-
sistencies in detection, whether from poor algorithmic per-
formance or deviations introduced owing to coordinate
interpolation.

The internal fingerprint is extracted by averaging the pix-
els in the above-mentioned region. It is enhanced following
the procedure outlined in Fig. 7: speckle noise is reduced
using OBNLM, contrast is normalized on a local basis, and
the intensity values are saturated. The experimental setup,
designed to test the correlation between internal and surface
fingerprints, and the extraction algorithm are detailed in the
following section.

3 Experimental Setup
Fingertips were scanned using a swept-source OCT system
(OCS1300SS, Thorlabs). It has a central wavelength of
1325 nm, a spectral bandwidth of 100 nm, an axial scan
rate of 16 kHz, and a coherence length of 6 mm. No
glass slide was used for stabilization. The depth and resolu-
tion of A-lines obtained were set at 3 mm and 512 pixels,
respectively. En face areas of 10 mm × 10 mm and 15 mm ×
15 mm were combined with resolutions of 512 × 512 pixels
and 256 × 256 pixels. Multiple instances of 10 fingers were
scanned, totaling 55 OCT volumes.

P was tested against a ground-truth estimation (G) that
was manually performed on a single OCT volume. The pap-
illary junction upper edge (i.e., fingerprint zone) was man-
ually detected. The mean squared error (MSE) and the
Hausdorff25 distance metric (H) were used to assess the per-
formance of the proposed algorithm. The tested range for
both n and c is 2∶23. This limit was imposed by the lengthy
time taken to process when c and n are high.

The G’MIC26 image computing library was used for local
normalization. All other image-enhancement procedures
were carried out in MATLAB.

The volumes obtained were within three subjectively
defined categories: (1) small region and bad area (i.e., far
from the fingerprint core); (2) small region and good area
(i.e., at or near the fingerprint core); and (3) large region
and good area. The area- and resolution-based categorization
were used to emphasize internal fingerprint performance
dependency on the imaged region (i.e., available minutiae).

The Integrated Biometrics Watson Mini (and the
IBScanUltimate 1.6.10 software) and the SecuGen Hamster

Fig. 6 Adjustments owing to fine-tuning and the localized region for extraction. (a) A region of interest in a
B-scan: PC and P are the bottom (cyan) and top (green) lines, respectively. (b) The localized region
capturing the internal fingerprint: A-lines are averaged between the top (blue and white) and middle
(green) lines, while the bottom (red and white) line is the mean-map used to describe this region.
Meano ¼ 2, devo ¼ 3, and devm ¼ 5.

Fig. 7 Internal fingerprint enhancement: (a) an internal fingerprint extracted from the OCT volume using
P and the technique shown in Fig. 6; (b) after OBNLM speckle noise reduction; (c) after local contrast
normalization; and (d) after global intensity saturation.
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Plus (and the device software) were used to capture surface
fingerprints. Eight surface fingerprints were provided by
each of these scanners, resulting in 16 full-sized correspond-
ing surface scans for each finger.

The NIST27 fingerprint minutiae extractor (mindtct) and
matching algorithm (bozarth3) were used to evaluate internal
to surface fingerprint correlation and internal fingerprint
cross-correlation. Since high-surface fingerprint quality is
500 ppi, the internal fingerprints were scaled to correspond
to this. Regarding fingerprint quality evaluation, the NIST
fingerprint score (NFIQ) and the orientation certainty
level (OCL)28 were calculated for all fingerprints. NFIQ is
a category-based score that ranges from 1 (best) to 5
(worst) and is dependent on information level (i.e., number
and quality of minutiae points), while lower OCL scores
indicate better energy concentration along the dominant
ridge-valley orientation.

In order to provide a thorough qualitative assessment of
the performance of the internal fingerprint, some reference
point must be given. To provide such a reference point,
three conventional surface fingerprints were obtained (using
the Integrated Biometrics Watson Mini) and cropped to cor-
respond each internal fingerprint. This process mitigated the
potential for bias based on fingerprint region size (and, thus,
number of minutiae present for matching) and locality (i.e.,
orientation about the center of the fingerprint). Where nec-
essary, comparisons were made between the internal and the
surface-region-of-interest-fingerprints (SROI-fingerprints).

The capture and subjective division of OCT fingertip
scans into three categories are advantageous in the compari-
son between internal fingerprints and SROI-fingerprints.
Testing different fingerprint area sizes and localities provided
a means of assessment dependent upon a similar level of
accessible information (i.e., available minutiae points). This
was paramount in comparatively understanding the internal
fingerprint in the context of current surface fingerprinting
technology.

The following section exhibits the results obtained and
provides a discussion thereof.

4 Results
On average, 45.4� 9.6% of C was interpolated to yield PC;
this is due to the strong cluster membership requirement.
Figure 8 conveys the performance analysis of the internal
fingerprint extraction algorithm. Although the error metrics
measured were never zero—on account of human error in
G—there is a clearly evident region of stable high perfor-
mance. The lowest MSE and H values are 21.65 and
147.78, respectively. In contrast, the work presented in
Ref. 20 yielded a minimum MSE of 23.6 and similar H val-
ues. Furthermore, the region of stable performance evident in
both Figs. 8(a) and 8(b) is more significant than the region
observed in the earlier work.20 These results are evidence of
the robustness of the algorithm in detecting the internal
fingerprint zone.

The internal and surface fingerprints’ OCL scores are
shown in Table 1, and the NFIQ scores are given in
Fig. 9. Although the category 1 internal fingerprints had,
on average, higher OCL scores than the surface fingerprints,
both the category 2 and 3 internal fingerprints outperformed
the surface fingerprints. The NFIQ pie charts demonstrate
that the subjective division of internal fingerprints into

three categories is dependent upon minutiae present (since
the NFIQ score itself is dependent on this): 36.8% of the cat-
egory 3 internal fingerprints had an NFIQ score of 1, com-
pared to 22.2% and 5.6% for category 2 and 3 internal
fingerprints, respectively. Furthermore, category 3 internal
fingerprints outperformed the surface fingerprints in this
regard, indicating superiority regarding minutiae available
and the quality thereof.

Table 1 also presents the quantitative results of internal
fingerprint to surface fingerprint and cross-correlation. The
match scores were calculated as the mean (i.e., average
match score when comparing an internal fingerprint to 16
surface counterparts) and maximum (i.e., the maximum
score obtained considering all comparisons) scores. Both
mean and maximum match scores were given as each is use-
ful to fingerprint verification and identification processes.
Figure 10 accompanies this, providing (a) the internal to sur-
face correlation scores and (b) the internal cross-correlation
scores, arranged in ascending order (denoted as the internal
fingerprint index) by fingerprint category, NFIQ, and OCL.
NIST states that a “true match” must have a score greater
than 40; the dashed horizontal lines indicate this.

None of the category 1 fingerprints and only one of the
category 2 fingerprints met the true match criteria, when
compared to their surface counterparts. However, 74% of
the category 3 fingerprints met this criterion. Thus, provided
the OCT fingertip scan covers a sufficiently large area
(15 mm × 15 mm, in this research) and the internal

Fig. 8 Quantitative results comparing G and P over a range of
n ¼ c ¼ 2∶23. (a) The mean squared error results and (b) the H
results.

Journal of Electronic Imaging 063014-6 Nov∕Dec 2015 • Vol. 24(6)

Darlow and Connan: Study on internal to surface fingerprint correlation. . .



fingerprint is extracted using the algorithm presented here,
the internal fingerprint can be integrated with current surface
fingerprints. The top-right block of Fig. 10(a) is evidence of
this. The dependence of the match score on the fingerprint
quality (NFIQ) is evident in the upward trend exhibited in
Fig. 10(a).

Ninety-six percentage of the internal fingerprints had a
corresponding true match with another internal fingerprint.
Therefore, a fingerprint database consisting only of internal
fingerprints may perform well.

Figure 10(b) serves to exhibit internal fingerprint to sur-
face and cross correspondence. Each conventional surface
scan was compared to all others, of the same finger, in

order to assess the relative performance of internal finger-
prints. The surface fingerprints yielded an average match
score of 97� 76. Although the average surface-to-surface
match score is well above the “true match” threshold, the
high standard deviation present is evidence of inconsistency.
These scores are comparable to the internal-to-internal match
scores, but may seem to indicate that internal fingerprints do
not perform sufficiently when a comparison is made between
internal and surface fingerprints. However, the following
factors must be taken into account:

1. A combination of the distortion induced by 3-D to 2-D
planar extraction, “jitter” from the touchless OCT

Table 1 Average fingerprint match results for each internal fingerprint category.

Fingerprint type OCL Surface score (mean; max) Cross score (mean; max)

Category 1 0.234� 0.074 11.0� 3.3; 18.0� 6.1 59.3� 35.3; 112.3� 62.3

Category 2 0.168� 0.028 15.4� 4.9; 24.9� 9.3 65.8� 34.8; 128.6� 56.9

Category 3 0.133� 0.056 37.4� 11.5; 61.6� 32.1 57.9� 48.8; 152.0� 77.4

Surface 0.182� 0.056 — —

Fig 9 NFIQ scores. (a), (b), and (c) The NFIQ scores for category 1, 2, and 3 internal fingerprints, respec-
tively. (d) The NFIQ scores for the full-sized corresponding surface fingerprints. The numbers inside
the pie charts denote the NFIQ scores.
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imaging, and surface fingerprint distortion have an
effect on the surface to internal correlation. This
needs to be addressed in future research. The category
3 internal fingerprint given in Fig. 11 shows signifi-
cant jitter. The touchless OCT scans take approxi-
mately 20 s to complete and it is difficult for an
individual to keep still for this period. Although it
is difficult to attribute precise performance degrada-
tion owing to jitter, this must be dealt with in hardware
design as a future task, but it is outside the scope of
this research. Furthermore, future research will entail
assessing various fingerprint matching algorithms
with regard to invariance toward jitter.

2. The scan area size and localization are inconsistent
between conventional surface and extracted internal
fingerprints but consistent across all the surface
scans. This is mainly owing to the difference in

acquisition procedure—a hardware constraint to be
imposed in future research.

3. The characteristics of the surface scans are similar
because they have the same or similar origins: the sur-
face scanners. The OCT scan results in qualitatively
different scans. This effect is difficult to quantify,
but Fig. 11 shows examples of the three internal
fingerprint categories with corresponding surface
counterparts.

Figure 11 also shows that surface anomalies, such as
wrinkles, are seen on the surface fingerprints, but not on
the corresponding internal fingerprints; the internal finger-
print is resistant to damage due to everyday wear and
tear.

It should be noted that the viability of this method
for extracting internal fingerprints is independent of the

Fig. 10 Fingerprint match score results. (a and b) Encapsulate the NIST match scores for internal to
surface and internal cross-correlation, respectively. The vertical divisions denote the three internal finger-
print categories. The vertical light to dark colors are the NFIQ scores. Within each vertical color bar, the
fingerprints are ordered according to their orientation certainty level scores. The dashed horizontal line
denotes a true match.
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performance of the fingerprint itself (i.e., whether the imaged
area is sufficient or not). The subjective classification of
internal fingerprint categories used throughout this research
exhibits the dependence of fingerprint performance on the
scanned area itself. Therefore, for the internal fingerprint

to be considered a viable replacement for current surface
fingerprints, the scanned area must be sufficient.

To test this hypothesis, three surface fingerprints were
obtained and cropped (denoted as SROI-fingerprints) for
each internal fingerprint. Figure 12 exhibits the results

Fig. 11 Fingerprint category examples. C is indicative of fingerprint category. The category 1 internal
fingerprint shown here encompasses a region overlapping with the joint/fold of the finger, thus it exhibits
significant artifacts.

Fig. 12 Match performance results when compared to corresponding surface region. The (blue) dots
show the score of the internal fingerprints. The (brown) dots and error boxes show the average corre-
sponding surface-region-of-interest-fingerprints’ scores and the standard deviation thereof, respectively.
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obtained when comparing the internal fingerprints’ perfor-
mance to that of the SROI-fingerprints’ performance. The
majority of internal fingerprints performed either as well
(within the measured error) or better than their corresponding
SROI-fingerprints. Furthermore, the internal fingerprints had
higher average match scores than their SROI-fingerprint
counterparts’ 63.6% of the time. Notwithstanding other fac-
tors biasing these results toward the SROI-fingerprints (such
as different fingerprint distortion sources from internal and
surface fingerprints), the internal fingerprints perform at a
level comparable to the SROI-fingerprints.

The internal fingerprint could serve as a replacement for
the surface fingerprint. However, the assessments provided
in this section are not consistent with a traditional perfor-
mance evaluation of a biometric system. Instead, they are
to serve as an initial assessment of the internal fingerprint in
the context of the performance of identical fingerprints
extracted using traditional means (i.e., the surface scanner).
In addition, this research endeavors to provide an advanced
technique for fingerprint extraction from OCT fingertip
scans. That said, the results shown in Fig. 12 give the
most useful internal fingerprint performance indication.
Future research will certainly entail error rate assessments
using a large database of OCT scans and will provide a tradi-
tional biometric system evaluation.

Although not provided in this assessment, it would be
useful to compare the internal fingerprint to a conventional
surface fingerprint taken from an individual that has very
poor fingerprints, very dry skin, or a skin disease (such as
eczema). This will be carried out as future research.

The following section serves to draw conclusions regard-
ing these results.

5 Conclusions
The internal fingerprint extraction algorithm proposed in this
research has been shown to perform well regarding error
minimization against a manually estimated internal finger-
print zone. The critical component of the algorithm is fuzzy
c-means clustering. Since interpolation and image-enhance-
ment-based fine-tuning procedures were employed, the sta-
ble region (regarding the number of data points and number
of clusters) of high performance was large. The internal
fingerprint zone was detected accurately.

Internal fingerprints were successfully extracted from 55
OCT fingertip volumes of varying spatial area and resolu-
tion. The OCL of the internal fingerprints was high when
compared to their surface counterparts. When the captured
internal fingerprints contain sufficient fingerprint details,
they correlate well with their surface counterparts. Seventy-
four percent of category 3 internal fingerprints had a true
match with a surface counterpart. Furthermore, the cross-cor-
relation of internal fingerprints was high, with 96% having a
corresponding true match. Internal fingerprint cross-correla-
tion was shown to be comparable to conventional surface
fingerprint cross-correlation.

Three corresponding surface counterparts were obtained
and cropped to provide a reference comparison. This was
done to alleviate bias present due to the limitation of the
OCT scanner in providing sufficient fingerprint area and
locality. That is, the cropped surface counterparts contained
a similar set of minutiae points to those contained in the
internal fingerprints. This was necessary to quantitatively

assess the performance of the internal fingerprint itself,
rather than the area it constituted. The results of this testing
showed that the internal fingerprint performed as well or
better than cropped surface counterparts.

Procedural qualitative explanations of the algorithm were
given throughout this work, and example internal finger-
prints (with corresponding surface counterparts) were also
given.

This work served to show quantitatively the internal to
surface fingerprint correlation. Future work will be under-
taken to show the performance of internal fingerprints
through identification against existing fingerprint databases.

The work presented here detailed and tested an advanced
technique for internal fingerprint extraction from touchless
OCT fingertip scans. A 3-D to 2-D unwrapping6 procedure
is needed to reduce distortion and will be investigated in
future work. Hardware constraints will be developed and
employed, in a future work, to ensure the scanned area is
consistently large and central enough to maximize finger-
print performance. In addition, error rate assessments will
be carried out using a large dataset in order to comply
with traditional biometric systems assessment.
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