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MESSAGE FROM GENERAL CHAIRS 

 

It is with the greatest of pleasure that we welcome you to the 2015 PRASA-RobMech 
International Conference, hosted at the Nelson Mandela Metropolitan University in 
Port Elizabeth, South Africa. This conference represents the coming together of two 
of South Africa’s premiere research events, by incorporating the 26th Annual 
Symposium of the Pattern Recognition Association of South Africa (PRASA), and the 
8th Robotics and Mechatronics Conference of South Africa (Robmech). 

PRASA has a long history as the flagship pattern recognition conference in South 
Africa, covering all aspects of artificial intelligence, machine learning, and data 
science in areas such as image, speech and text processing, and often applying 
these to uniquely African problems. Although it has not been running for anywhere 
near as long, RobMech has similarly been the go-to destination for local research in 
all aspects of robotics and automation, again often with particular applications in 
addressing local problems. 

Uniting these two communities provides a great opportunity to enhance the strengths 
of both, and increase the impact and significance of their respective contributions. 
Furthermore, there is much overlap in many of the underlying principles and 
technologies. South Africa has many great research institutions producing high-
impact work in multiple different areas. Between representatives from all over the 
country, and fresh insights from abroad, we really hope that this conference will 
provide a forum to host exciting new discussions, and grow connections between 
fields. 

We would like to take this opportunity to thank the Deon Sabatta and Marelie Davel 
for their commitment and hard work as the Programme Committee, as well as Karl du 
Preez and Eunice Marx for all the support as the Local Organising Committee. We’d 
also like to thank Riaan Stopforth for all his valuable advice, and everyone else who 
has been instrumental in pulling this conference together. 

On behalf of the entire organising committee, the Advanced Mechatronic Technology 
Centre at Nelson Mandela Metropolitan University, the South African chapter of the 
IEEE Robotics and Automation Society, the SAIMechE, and the SAIEE, we hope you 
have an exciting, productive and memorable time at PRASA-RobMech 2015. 

 

Theo van Niekerk and Benjamin Rosman 

PRASA-RobMech 2015 General Chairs 
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This year, the combined PRASA-RobMech conference attracted papers from 151 
authors originating from 12 different countries.  

Full papers included in the proceedings all passed a blind peer review process:  

• Track chairs were assigned for the main themes of the conference (robotics, 
mechatronics, speech and language processing, image processing/vision and 
general machine learning). 

• Track chairs matched submissions and reviewers, ensuring that at least two 
credible reviews were obtained per submission.   

• Reviewers commented on and scored the paper with regard to technical 
quality, relevance, clarity of presentation and contribution to the field.  

• Final decisions on the inclusion of the papers were made by the joint technical 
committee.  

• Reviews were returned to the authors. For papers that were conditionally 
accepted, authors were required to address reviewers' comments prior to 
submitting their camera-ready papers for final publication. 

	
  
The review process for work-in-progress papers addressed the same criteria but was 
less strict, while retaining a strong focus on relevance for the PRASA-RobMech 
audience.  

After disqualifying incomplete papers, 78 papers were submitted for formal review. 
During the review process, 177 individual reviews were processed. Of the reviewed 
papers, 45 (58%) were selected as full papers to be included in the proceedings. An 
additional 15 papers were allocated to a 'work-in-progress' session, where authors 
could obtain feedback on early work.   

A big 'thank you' to the track chairs and 66 reviewers, who assisted us in ensuring 
the quality of this conference. 
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Abstract
Large amounts of untranscribed audio data are generated

every day. These audio resources can be used to develop robust
acoustic models that can be used in a variety of speech-based
systems. Manually transcribing this data is resource intensive
and requires funding, time and expertise. Lightly-supervised
training techniques, however, provide a means to rapidly tran-
scribe audio, thus reducing the initial resource investment to
begin the modelling process.

Our findings suggest that the lightly-supervised training
technique works well for English but when moving to an agglu-
tinative language, such as isiZulu, the process fails to achieve
the performance seen for English. Additionally, phone-based
performances are significantly worse when compared to an ap-
proach using word-based language models. These results in-
dicate a strong dependence on large or well-matched text re-
sources for lightly-supervised training techniques.
Index Terms: lightly-supervised training, unsupervised train-
ing, automatic transcription generation, audio harvesting, En-
glish, isiZulu

1. Introduction
Vast amounts of audio data are created on a daily basis. Typical
sources are radio / television broadcasts, podcasts and lectures.
Very few of these audio corpora have corresponding ortho-
graphic or other transcriptions. A particularly interesting sce-
nario where large amounts of audio data are created and where
text transcriptions would be of great benefit are call-centre envi-
ronments. Access to text representations of the audio would aid
in swiftly analysing the data and making necessary adjustments
where appropriate.

Manually transcribing audio data is a resource intensive
process requiring disproportionate amounts of money and time.
The time to produce a transcription depends on transcriber ex-
pertise and required accuracy of transcription: Approximate
transcriptions can be generated at 3 to 5 times real time while for
highly accurate transcriptions the time considerably increases to
50 times real time [1]. This turnaround time is often too long
to make business sense, considering the amount of audio data
collected in a day, and so automatic means become the only
feasible route.

An automatic solution would require an automatic speech
recognition (ASR) system at its core, but in general one would
not have access to matching in-domain audio and text data. To
sidestep this dilemma, the “lightly supervised” acoustic model
(AM) training approach [2] provides a mechanism to develop
and constantly refine AMs needed by an ASR system. This

approach, however, requires approximate transcriptions (for in-
stance, closed-caption transcriptions are frequently employed).
Another approach is “unsupervised” AM training [2, 3] which
follows the same broad steps as the lightly-supervised approach
but does not make use of approximate transcriptions. What
makes these approaches attractive is the minimal initial resource
investment. An added incentive is that the AMs are trained on
in-domain data, which removes the mismatch between the audio
data and the AMs.

In this paper we investigate factors related to the resources
required to start and maintain the automatic harvesting of
untranscribed audio data using an unsupervised AM training
approach. Specifically, we investigate the scenario for the
resources-constrained South African English (SAE) and isiZulu
languages.

2. Background
Lightly-supervised and unsupervised acoustic model training
have been applied in many different scenarios [2, 3, 4, 5, 6,
7, 8, 9]. The basic steps of the iterative algorithm are [2] the
following:

• Partition the audio data into homogeneous portions
based on characteristics such as channel, environment or
speaker.

• Normalise all approximate transcriptions (if available)
and produce appropriate phonetic pronunciations.

• Develop seed acoustic models by manually transcribing
a small portion of the in-domain audio data or using ex-
isting AMs.

• Automatically transcribe the raw audio data using well-
trained or biased language models (LM) or word-graphs
trained on the approximate transcriptions (e.g. closed
captions).

• As an optional step, use acoustic models to align the au-
dio and the available approximate transcriptions. Re-
move audio data where the alignment and automatic
transcription disagree excessively.

• Use the newly transcribed data to re-train AMs and re-
peat the process.

If the penultimate step is not implemented then the lightly-
supervised approach collapses to an unsupervised training ap-
proach.

Lamel et al. [2] investigated the minimal requirements
needed to bootstrap the lightly-supervised and unsupervised
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processes. AMs trained on 10 minutes of audio data and a LM
developed on 1.8 M word corpus (40k lexicon) were sufficient
to initiate the process. On 200 hours of raw audio data, using the
Topic Detection and Tracking (TDT-2) English corpus, the min-
imal system obtained a final word-error-rate (WER) of 28.8%,
which was significantly worse compared to 18% achieved by a
system utilising a LM trained on text corpora (Hub4 and TDT
corpora) – but these corpora contain orders of magnitude more
text. In a completely unsupervised approach, the minimal sys-
tem achieved a WER of 37.4% on 140 hours of raw audio.
Similarly, the same unsupervised approach was applied to train
AMs on Portuguese broadcast news audio [4]. The 3.5 hour
trained AM produced a WER of 42.6% while AMs trained on
automatically transcribed 30 hours delivered a WER of 39.1%.
The LMs were trained on news-related text corpora containing
72.6M words.

Novotney et. al. [5] experimented with limited amounts of
labelled audio and text data in their unsupervised AM training
investigations. They focused on the Fisher corpus data, con-
taining telephone-quality conversational speech and had access
to a text corpus containing 1.1 billion words. Interestingly, their
findings suggest weaker LMs do not severely impact the unsu-
pervised training of AMs and have a greater impact when de-
coding the actual evaluation set.

To improve their transcribing system Nguyen and Xiang
[6] added 702 hours of audio selected from a 1 400 hour audio
data set using the lightly-supervised procedure. The audio data
was selected from the TDT English corpora – TDT2, TDT3 and
TDT4. The initial acoustic models were trained on 141 hours
of audio data and the subset-specific (depending on data set)
LMs were trained by interpolating from a 360M word common
LM. The baseline system WER of 12.1% was reduced to 10.1%
using the 702 hours of added training data.

Gales et. al. [8] made use of lightly-supervised training to
automatically transcribe audio data from the TDT and 2003 BN
collection corpora. The biased LMs were trained on broadcast
news text as well as closed captions. The LM weighting was
similar to that of Hazen [1] – 90% closed-caption text and 10%
general broadcast news.

Chan and Woodland [7] applied lightly-supervised training
to 500 hours TDT2 and 300 hours TDT4 corpora. The LMs
were trained on text sourced from the closed captions as well as
closely related text. The entire text corpus consisted of approxi-
mately a billion words. The out-of-vocabulary rates were 0.68%
and 0.47% for the different corpora. Again, a biased LM was
used with interpolation weights of 0.92 and 0.90, respectively.

Gollan et. al. [3] utilised unsupervised training to improve
upon baseline AMs trained on 100 hours of manually tran-
scribed audio data selected from English-only European Par-
liament Plenary Session speeches. Adding 180 hours of auto-
matically transcribed audio improved the WERs from 10.4% to
9.6%.

Davel et. al. [9] showed that lightly-supervised automatic
harvesting for ASR resource creation in a resource-scarce envi-
ronment does not require well-trained LMs. In their approach,
a phone-based ASR system was used to automatically gener-
ate transcriptions, for roughly 100 hours of SAE radio broad-
cast audio data, using a flat-phone task grammar. The seed
models were initially developed on US English data and gradu-
ally replaced by the in-domain SAE dialect. Data filtering was
achieved by using a garbage model that absorbed badly aligned
audio portions.

Gelas et. al. [10] made use of a Swahili ASR system to
aid in speeding up the task of manually transcribing a 12 hour

audio portion of a 200 hour Swahili web broadcast news speech
corpus. The initial ASR system was trained on 3.5 hour read
speech Swahili corpus. The procedure used an ASR to auto-
matically transcribe a 2 hour portion of audio. These transcrip-
tions were manually corrected. After the correction process, the
newly transcribed audio data was used to increase the amount
of training data used to train the new AMs. The process was
repeated until 12 hours were transcribed. Utilising the ASR
system to automatically transcribe the data reduced the manual
correction time from an initial 40 hours to a final 15 hours. The
LM was trained on a text corpus which contained 28 M words
and had a 65k lexicon.

Previous investigations suggest that the unsupervised AM
training approach does not require vast resources to begin the
harvesting process. As few as 10 minutes of labelled audio data
to train AMs and 100k – 1M words to train language models.
Some approaches do not require LMs – Davel et. al. [9] – but
approximate transcriptions were available for data filtering. If
LMs are used, however, the text corpora are quite well matched
to the domain which in a resource-constrained environment will
not be easy to access or develop.

In this study we therefore investigate:

• unsupervised AM training without the aid of a language
model – phone decodes only – ,

• the usefulness of language models trained on unrelated
text corpora, and,

• the effect of text corpus size used to train N-gram LMs.

3. Method
3.1. Corpora

The NCHLT corpus is a read-speech corpus containing high-
bandwidth audio data and transcriptions thereof for all eleven
South African languages [11]. Mobile devices were used to col-
lect the audio data. The transcriptions contain short sentences
and were derived from large text corpora in order to attain cov-
erage of the most common triphones of the target language. For
our unsupervised AM training investigations we limited our-
selves to using the English and isiZulu sub-corpora.

3.1.1. NCHLT English

The English NCHLT sub-corpus contains audio data collected
from 210 different speakers. There are a total of 77 412 utter-
ances with each speaker contributing roughly 500 utterances.
Table 1 shows the duration in hours, the number of speakers
and utterance amount for the training and evaluation data sets
for the NCHLT English sub-corpus

Table 1: The duration, amount of speakers and number of utter-
ances for the NCHLT English sub-corpus.

Data Set Duration (Hours) # speakers # utterances

Training 54.19 202 74180
Evaluation 2.42 8 3232

There is a total of 223 561 tokens and a lexicon of 8 350
words for the entire corpus. The training set contains 214 192
tokens in total and a lexicon of 8 328 words, while the evalua-
tion set contains a total of 9 369 tokens and a lexicon of 3 627
words. The out-of-vocabulary (OOV) rate between the training
and evaluation set is 0.61%.
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3.1.2. NCHLT isiZulu

Similar to the English sub-corpus, the isiZulu NCHLT sub-
corpus contains audio data collected from 210 different speak-
ers. There are 44 673 utterances in total with each speaker con-
tributing roughly 500 utterances. Table 2 shows the duration in
hours, the numer of speakers and utterance amount for the train-
ing and evaluation data sets for the NCHLT isiZulu sub-corpus

Table 2: The duration, amount of speakers and number of utter-
ances for the NCHLT isiZulu sub-corpus.

Data Set Duration (Hours) # speakers # utterances

Training 52.23 202 41871
Evaluation 4.02 8 2802

There is a total of 133 480 tokens and a lexicon of 25 651
words for the entire corpus. The training set contains 125 028
tokens in total and a lexicon of 25 231 words, while the evalua-
tion set contains a total of 8 452 tokens and a lexicon of 5 189
words. The out-of-vocabulary rate between the training and
evaluation set is 8.1%.

3.2. Pronunciation Modelling

The pronunciation dictionaries for the NCHLT sub-corpora
were sourced from previous work as outlined in Davel and Mar-
tirosian [12].

The English pronunciation dictionary contained 15 000
unique entries and a phone set of 43 phones. Phonetisaurus
[13] was used to perform grapheme-to-phoneme (G2P) predic-
tion for words not found in the seed pronunciation dictionary.
Phonetisaurus implements a WFST-driven G2P framework that
can rapidly develop high quality G2P or P2G systems. The En-
glish NCHLT text required 3 966 G2P predictions.

For isiZulu a more elaborate approach was followed. For
isiZulu words only G2P prediction was performed using the
default&refine algorithm proposed in [14], while for code-
switched English words, the above Phonetisaurus G2P predic-
tion was used. To identify English words a simple N-gram text-
based language identification was implemented. The MIT lan-
guage modelling toolkit [15] was used to build 3-gram back-off
LMs for both English and isiZulu. The training word sets were
extracted from the seed pronunciation dictionaries – the English
word set had 15 000 words in total and isiZulu had a total of
15 404 words. A word was classified based on the perplexity
score. Once all words with missing pronunciations were pre-
dicted the English phone set was mapped to the isiZulu phone
set using manual rules. Lastly, the isiZulu phone set was fur-
ther mapped using the MultiPron rules [16] which resulted in
32 phones in total.

3.3. ASR system

The speech recognition system development follows a similar
structure to that described in Kim et. al. [17]. The audio
data was converted to Perceptual Linear Prediction (PLP) co-
efficients. The 52 dimensional feature vector was created by
appending the first, second and third derivatives to the 13 static
coefficients (including the 0’th component). Corpus-wide mean
and variance normalisation was applied.

AMs were developed by following an iterative training
scheme. Firstly, 32-mixture context-independent (CI) AMs
were trained and used to produce state aligns for the CI
AMs trained in the initial development of cross-word triphone

context-dependent (CD) AMs. Once the CD AMs were trained
the process was repeated and the previous AMs were used to
produce all state alignments before the model mixture incre-
menting phase. The process was repeated twice for all experi-
ments.

All Hidden Markov Models (HMM) employed a three state
left-to-right structure. Each CD HMM’s state contained eight
mixture diagonal covariance Gaussian models. A question-
based tying scheme was followed to create a tied-state data shar-
ing system [18] - where any context-dependent triphone having
the same central context could be tied together.

Once the CD AM development was completed, Het-
eroscedastic Linear Discriminant Analysis (HLDA) was applied
to reduce the 52-dimensional PLP feature vectors to a dimen-
sion of 39. A global transform was used for the estimation –
a single class for all the triphones. After estimating the HLDA
transform, the CD AMs’ parameters were updated. It was found
that allowing the variances to be updated resulted in a large per-
centage of floored variances. Therefore, only the weights and
mean parameters were updated. Two update iterations were per-
formed.

Lastly, Speaker Adaptive Training (SAT) was applied us-
ing Constrained Maximum Likelihood Linear Regression (CM-
LLR) transformations. The same HLDA global transform was
used and the CD AMs were updated twice – only weights and
means.

The decoding task was a two-step process. The HLDA CD
AMs were used to automatically generate transcriptions and a
speaker-based CMLLR transform estimated. Then the CMLLR
was applied on the second decoding pass.

3.4. Language Models

To investigate the effect of developing LMs on mismatched text
corpora, two alternate sources of text unrelated to the NCHLT
corpora were used. Before training the LM, the text had to be
normalised. This involved,

• Removing punctuation marks.

• Converting numbers to written form.

• Converting characters to lower-case.

Once normalised, the MIT-LM toolkit was used to develop
the LMs. Only back-off bigram LMs were created due to limi-
tations of HVite (the HTK decoder). For probability smoothing,
fixed Kneser-Ney smoothing was applied.

3.4.1. English

The English LM was developed on a 1.6M word text corpus.
The text forms part of the 109M word South African Broadcast
News (SABN) text corpus [19]. This corpus contains text ex-
tracted from a number of major South African newspapers. The
text contain 1 692 929 tokens and a lexicon of 45 664 types.
The OOV rate between the SABN and NCHLT text is 29.17%.

3.4.2. isiZulu

The isiZulu LM was developed on a text corpus provided by
the Centre for Text Technology (CText) [20]. The original cor-
pus had 223 709 tokens but after applying text normalisation
this number increased slightly to 234 216 (due to number ex-
pansion). The lexicon associated with the processed text was
38 869 types. The OOV between the CTEXT and NCHLT cor-
pora was 71.59% – the OOV rate is far from ideal and may neg-
atively influence the isiZulu results. Similar Zulu OOV rates
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have been seen in the investigation performed by Gales et. al.
[21] and is common to morphological rich languages.

In addition to training a word-based LM, a syllable LM
was also trained. Only words classified as isiZulu, using the
text-based N-gram classification approach, were split into syl-
lables. After splitting the words of the LM development text,
there were 677 971 tokens and 7 759 types.

3.5. Unsupervised training

To investigate the effectiveness of unsupervised AM training on
SAE and isiZulu, the training sets of the NCHLT corpora were
partitioned into a number of non-overlapping portions. The seed
AMs were trained on a single hour selected at random from
the entire training set and from 50 speakers. The transcrip-
tions were used during the seed AM training which simulates
the need for manually transcribing a portion of the audio if no
other AMs or labelled data is available.

The remainder of the training data set was partitioned into
smaller 3, 6, 12 and 241 hour sets of untranscribed audio. At
each stage, the previously transcribed data sets, including the
seed data, were pooled and used to develop new AMs. The
current stage’s untranscribed data was transcribed using the new
AMs set.

To measure the progress of the unsupervised model train-
ing and accuracy of the models, phone-error-rates (PER) are
reported on the evaluation set as well as the data set that was
transcribed. PER are reported since, in the HTK model train-
ing recipes, only phone level representations are needed to train
acoustic models.

Lastly, two methods of unsupervised acoustic model train-
ing were investigated. These are phone-based (flat phone gram-
mars) and word-level LM-based approaches. Additionally, for
isiZulu the syllable LMs are also investigated.

4. Results
The PERs of the AMs developed through unsupervised training
are reported. The accuracy is measured in terms of automati-
cally transcribing the successive data portion (if for instance the
AMs are trained on the seed plus three hours of data, the next
six hour data set is viewed as a “testing” set) and the evaluation
data set – the successive data portion set is labelled “Raw” and
the evaluation set is labelled “Eval”.

4.1. English

Table 3 shows the AM PERs for increasing amounts of automat-
ically transcribed data and using a flat phone-based grammar to
harvest more data. Interestingly, when adding three hours of au-
tomatically transcribed data the error rates on the evaluation set
decreases by more than 2% absolute; a 3% absolute decrease
is seen on the raw six hour data set. After the +3 hour mark,
however, PERs increase as more automatically transcribed data
is used to train AMs.

Table 4 shows the PERs of AMs trained on automatically
transcribed data and using a word LM model when decoding
the data. The general trend is a decreased in PERs as more data
is used to train the AMs, which is consistent with trends seen in
literature. (The “Raw” +24 hr experiment was not reported in
table 4, as “Raw” and “Eval” results are highly correlated and
the same performance can be expected for the +24 hr “Raw”
case).

1All the remaining data was around 24 hours in duration.

Table 3: The accuracy of the English acoustic models developed
using a flat phone grammar approach.

Data Set Raw Eval

Seed (1 hr) 42.47 40.36
+ 3 hr 39.33 38.32
+ 6 hr 39.9 38.85
+ 12 hr 41.55 40.21

Table 4: The PERs of different English AMs trained on increas-
ing portions of automatically transcribed data using a LM.

Data Set Raw Eval

Seed (1 hr) 25.26 23.52
+ 3 hr 21.33 20.39
+ 6 hr 19.11 18.74
+ 12 hr 14.66 14.73
+ 24 hr - 13.98

4.2. Text data dependency for English

Novotney et. al. [5] suggested that the size of the LM has a
limited effect on the unsupervised training of AMs. To investi-
gate this, we limited the amount of text used to train the English
LMs. The text was limited to half and then a quarter of the full
text. Table 5 shows the number of tokens, types and OOV rate
for various sized text corpora used to train different LMs.

Table 5: Tokens, types and OOV of text used to develop LMs on
full, half and quarter amounts of the English text corpus.

Percentage Tokens Types OOV
of Full Text

100 % 1.69 M 45k 29%
50 % 846k 35k 34%
25 % 423k 26k 40%

Table 6 shows the AMs correctness and accuracies devel-
oped on increasing portions of automatically transcribed data
using a LM trained of half the text corpus. As with the full text
trained LM, all values increase as the amount of automatically
transcribed data is used to train the AMs.

Table 7 shows the PERs obtained by using various AMs
trained on automatically transcribed data and using a LM
trained on a quarter of the full text corpus. Again, decreasing
trends can be seen.

Considering the final evaluation results for AMs trained on
all the acoustic data and the quarter, half and full sized LMs
(17.36%, 16.78% and 13.98%), we can see a slight increase in
accuracy as more text data is used to develop the LM. The drop
in performance may also be attributed to the increase in OOV
rates, observed for the LMs trained on less text data.

4.3. isiZulu

Table 8 shows the performance of AMs trained on increasing
amounts of automatically transcribed data using a flat phone
decoding grammar. Besides a slight decrease in error rate for
the raw set at the added three hour mark, the remaining PERs
for both data sets steadily increase as more automatically tran-
scribed data is added to the training pool.

Table 9 shows the PERs for various AMs trained on increas-
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Table 6: The performance of English AMs used to automatically
transcribe data using a LM developed on half the available text
data.

Data Set Raw Eval

Seed (1 hr) 25.7 23.92
+ 3 hr 21.95 20.81
+ 6 hr 19.51 18.9
+ 12 hr 17.95 17.6
+ 24 hr - 16.78

Table 7: The performance of English AMs used to automati-
cally transcribe data using a LM developed on a quarter of the
available text data.

Data Set Raw Eval

Seed (1 hr) 25.7 24.99
+ 3 hr 22.4 21.49
+ 6 hr 20.07 19.44
+ 12 hr 18.69 18.31
+ 24 hr - 17.36

ing amounts of harvested data and using a word LM during the
decoding process. As with the flat phone approach, the same
overall increasing trends are observed, however, the absolute
performance values are somewhat lower.

Table 10 captures the performances of the AMs trained in
an unsupervised manner while using a syllable LM during de-
coding. Again, there is a general increasing trend in the PERs as
more automatically transcribed data is used to develop the AMs
– except for the evaluation PER which decreases slightly for the
added three hour mark. The PER values of the syllable approach
are consistently better compared to the flat phone approach, but
in general worse compared to the LM-based approach.

To try and rule out the possibility of poorly trained seed
models, a different seed model trained on three hours of data
was tried. Table 11 shows the PER percentages for AMs trained
on increasing amounts of automatically transcribed data using
a word LM during the decode cycle. Compared to the single
hour seed model, the performance measures are slightly better
but again the same increasing trend is observed as more data is
added to the training pool.

5. Conclusion
In this study we applied the well-known unsupervised acous-
tic model training scheme to resource-scarce South African En-
glish and isiZulu audio data. We investigated phone-based and
word-based language models and, in addition, a syllable lan-
guage model for isiZulu. The default seed acoustic model was
trained on a single hour of manually transcribed data. The
text corpora used to develop the language models were selected
from unrelated sources which differed significantly in the OOV
rates – 29% and 76% for English and isiZulu respectively. For
English, we also experimented with the amount of text data used
to train the language model.

From our results we may conclude:

• The unsupervised acoustic model training scheme per-
forms well for SAE if a word-based LM is used.

• The phone-based approach, for English and isiZulu, did
not achieve increasingly better results as more automati-
cally transcribed data was added to the training pool.

Table 8: Unsupervised isiZulu AM training approach using a
flat phone grammar.

Data Set Raw Eval

Seed (1 hr) 31.8 33.59
+ 3 hr 31.44 33.62
+ 6 hr 32.45 37.62
+ 12 hr 35.91 44.54

Table 9: Unsupervised isiZulu AM training approach using
word LM.

Data Set Raw Eval

Seed (1 hr) 29.11 30.65
+ 3 hr 29.0 31.84
+ 6 hr 30.36 35.68

• For SAE, the word LM gave expected performances, ac-
cording to the performance metrics, which confirms the
importance of a language model when using unsuper-
vised acoustic model training.

• The amount of text data used to develop the LM has a
slight effect on the performances: even with relatively
small amounts of text, successful unsupervised training
was achieved in SAE, though increasing performance
with more data added to the training pool was observed.
The drop in absolute performance may be related to the
increasing OOV rates.

• Based on all the isiZulu results, the application of the
unsupervised acoustic model training approach was un-
successful – increasing amounts of automatically tran-
scribed data produced poorer system accuracies. This
is probably related to the high OOV rate of the isiZulu
text corpus, which in turn results from the much larger
vocabulary of a conjunctively written agglutinative lan-
guage.

• Investigating the isiZulu results further showed: the cor-
rectness percentages for isiZulu increased, with increas-
ing amounts of audio data but it was found that increas-
ing the insertion penalty did not improve the accuracy
values. This might suggest that the extremely high OOV
rate severely limits the applicability of the unsupervised
acoustic model training approach.

6. Future Work
For future work, it would be informative to investigate whether
unsupervised acoustic model training for isiZulu can be made to
work with a sufficiently large text source, but also to understand
whether the approaches that do not require such a text source
can be adapted to succeed in this context.

Another unknown for the isiZulu investigation is the effect
of out-of-language words. English does not suffer from this
phenomenon and in the majority of cases is the “invader” lan-
guage in isiZulu. Out-of-Language words are particularly both-
ersome with respect to pronunciation modelling, and our phone-
mapping approach is clearly a rough approximation in that case.

One possible approach to deal with the high isiZulu OOVs
is to use a better syllabification approach. Our syllables did not
yield any improvement over the word-based LM, but following
the recent BABEL syllabification approach proposed by Davel

140



Table 10: Unsupervised isiZulu AM training approach using
syllable LM.

Data Set Raw Eval

Seed (1 hr) 30.28 30.7
+ 3 hr 30.3 30.14
+ 6 hr 31.18 33.13
+ 12 hr 34.61 38.62

Table 11: Unsupervised isiZulu AM training approach using
word LM but starting with three hours of seed data.

Data Set Raw Eval

Seed (3 hr) 25.44 29.47
+ 3 hr 26.29 30.7
+ 6 hr 27.66 32.68

et. al. [22] may help to achieve successful automatic isiZulu
harvesting.
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