The 5th CSIR CONFERENCE IDEAS THAT WORK

8-9 October 2015 | CSIR ICC

Southern African Coastal Vulnerability Assessment

Dr Christo Rautenbach

Content layout

- Introduction to coastal vulnerability
- Climate change
- Consequences on the coast
- Vulnerability and risk on coastal zones
- Adaptation measures
- Technology solutions

Introduction

Severe weather conditions:

- Potential delays at ports
- Impacts on tow-operations
- Impact on coastal infrastructure
- Present problems may increase due to climate change (e.g. SLR, storminess)
- Need to quantify how much worse it will become due to climate change. (e.g. coastal setback lines)

The 5th CSIR CONFERENCE IDEAS THAT WORK 8-9 October 2015 | CSIR ICC CELEBRATING our future through science

Climate change

Sea level rise

Present global sea level rise (since 1993)

 $= 3.3 \text{ mm} \pm 0.4 \text{ mm/y}$

Literature: wide range of SLR scenarios,

but most "physics/process based"

projections (since 2007)

for 2100 ~ **0.5 m to 2 m** range

Proof of global warming?

Sea-Level Rise and Its Impact on Coastal Zones Robert J. Nicholls, et al. Science 328, 1517 (2010); DOI: 10.1126/science.1185782

The 5th CSIR
CONFERENCE
IDEAS THAT WORK
8-9 October 2015 | CSIR ICC

Consequences on the coast

Some important potential consequences of global warming on southern African coast:

- Potential changes in ocean winds & local wave regime direct wave impacts
- Extreme inshore sea water levels due to SLR & storms flooding & inundation
- Coastal erosion & under-scouring due to SLR & sea storms
- Complexities, thresholds, & non-linearities e.g. sand transport
- <u>Combination of extreme events</u> (sea storms during high tides + sea level rise)
 will have greatest impacts these will increasingly overwhelm existing infrastructure.
 Southern WIO coastal zone very vulnerable to climate change impacts:

To prevent (more of) this: High seawater levels, wave run-up, flooding, erosion

The 5th CSIR
CONFERENCE
IDEAS THAT WORK
8-9 October 2015 | CSIR ICC

Vulnerability and risk of coastal zones

Coastal hazard/vulnerability assessment & mitigation

Example: Mossel Bay Vulnerability Mapping

→ Extreme SA "storm surge" levels (i.e. excluding wave run-up)

SA regional coastal storm surge levels for 1-in-10 year wave return period and 0 m SLR scenario

SA regional coastal storm surge levels for 1-in-50 year wave return period and 1 m SLR scenario

Quantification of risks to coastal areas and development: wave run-up, erosion, climate change.

Illustration of predicted combined effects of potential shoreline erosion with Bruun's rule and higher wave runup for a 0.5 m rise in sea level and a 1-in-20-year sea storm on the Blaauberg coast.

Examples of coastal development setback lines determined for Richards Bay.

CELEBRATING

Adaptation to change or hazards

- Southern African states: very little adaptive capacity + ability to halt coastal impacts on a large scale virtually non-existent.
- Adaptation would reduce impacts by factor 10 to 100 minor cost compared to damage avoided.
 - » Set & implement adaptation measures sooner rather than later!
- To mitigate detrimental impacts of climate change: understand adaptation options available to s. African society – considerably different from developed county approaches.

PURPOSE & APPROACH To adaptation measures

- Conservative / precautionary principle
 - ✓ Authorities: pro-active approach to protect lives, livelihoods and infrastructure (Prevention is better than Cure)
- Sustainable solutions
 - Durable and low cost to the Municipality and / or State
- >> 'NO REGRET' ADAPTATION MEASURES

Coastal protection measures

Adaptation measures - "Management option A1"

"Accept and retreat": repositioning infrastructure at risk; zoning/set-back lines, resettlement...

Natures Valley, an excellent example of an appropriate development setback landward of a well-maintained natural foredune functioning as an effective buffer dune system (DEA, 2009)

Adaptation / protection options

Adaptation/ protection options

The 5th CSIR CONFERENCE IDEAS THAT WORK 8-9 October 2015 | CSIR ICC

Mozambique example:
Site specific analysis
and
recommended prioritised
adaptation actions

Technology solutions

Off-shore to near-shore wave transformation

The 5th CSIR
CONFERENCE
IDEAS THAT WORK
8-9 October 2015 | CSIR ICC

Model locations

- The runs of numerical wave models are completed (23 in total around the coast).
- Provide medium resolution inshore wave climate data at 0.5 km resolution. Each model ~ 100 km

Off-shore wave climate obtained from historical to current record of NCEP data transformed to nearshore through look-up table (transformation coefficients).

Quantification of risk to coastal areas and development: potential coastal flood lines

TBC28

The 5th CSIR CONFERENCE

8-9 October 2015 | CSIR ICC

Red line — Scenario 1:

1-in-10yr runup + MHWS + 1-in-10yr residual + 0.35m SLR

Blue line — <u>Scenario 2</u>: (on-land)

1-in-30yr runup + MHWS + 1-in-10yr residual + 0.35m SLR

Yellow line — Scenario 6:

1-in-50yr runup + MHWS + 1-in-10yr residual + 1.0m SLR

(all Mather wave runup model)

COASTCAM

The 5th CSIR CONFERENCE IDEAS THAT WORK

8-9 October 2015 | CSIR ICC

- There are currently 2 pilot sites; Fish Hoek &
 Yzerfontein
- The Fish Hoek camera is mounted indoors while the Yzerfontein camera is mounted outdoors
- A 3rd site, namely Port St Johns is currently being set up
- Data communication & site maintenance :

Operational forecasting

The 5th CSIR CONFERENCE

IDEAS THAT WORK

8-9 October 2015 | CSIR ICC

Forecasts informing public for recreational use and safety.

Including monitoring via COASTCAM

Operational forecasting model example

The 5th CSIR
ONFERENCE
IDEAS THAT WORK
8-9 October 2015 | CSIR ICC

False Bay on Wave-net

Thank you

