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Abstract
Data-driven elicitation of ontologies from struc-
tured data is a well-recognized knowledge acquisi-
tion bottleneck. The development of efficient tech-
niques for (semi-)automating this task is therefore
practically vital — yet, hindered by the lack of ro-
bust theoretical foundations. In this paper, we study
the problem of learning Description Logic TBoxes
from interpretations, which naturally translates to
the task of ontology learning from data. In the pre-
sented framework, the learner is provided with a
set of positive interpretations (i.e., logical models)
of the TBox adopted by the teacher. The goal is
to correctly identify the TBox given this input. We
characterize the key constraints on the models that
warrant finite learnability of TBoxes expressed in
selected fragments of the Description Logic EL and
define corresponding learning algorithms.

1 Introduction
In the advent of the Web of Data and various “e-” initiatives,
such as e-science, e-health, e-governance, etc., the focus of
the classical knowledge acquisition bottleneck becomes ever
more concentrated around the problem of constructing rich
and accurate ontologies enabling efficient management of
the existing abundance of data [Maedche and Staab, 2004].
Whereas the traditional understanding of this bottleneck has
been associated with the necessity of developing ontologies
ex ante, in a top-down, data-agnostic manner, this seems to
be currently evolving into a new position, recently dubbed the
knowledge reengineering bottleneck [Hoekstra, 2010]. In this
view, the contemporary challenge is to, conversely, enable
data-driven approaches to ontology design — methods that
can make use and make sense of the existing data, be it read-
ily available on the web or crowdsourced, leading to elicita-
tion of the ontological commitments implicitly present on the
data-level. Even though the development of such techniques
and tools, which could help (semi-)automate thus character-
ized ontology learning processes, becomes vital in practice,
the robust theoretical foundations for the problem are still
rather limited. This gap is addressed in the present work.

In this paper, we study the problem of learning Descrip-
tion Logic (DL) TBoxes from interpretations, which natu-

rally translates to the task of ontology learning from data.
DLs are a popular family of knowledge representation for-
malisms [Baader et al., 2003], which have risen to promi-
nence as, among others, the logics underpinning different
profiles of the Web Ontology Language OWL1. In this pa-
per, we focus on the lightweight DL EL [Baader et al., 2005]
and some of its more specific fragments. This choice is
motivated, on the one hand, by the interesting applications
of EL, especially as the logic behind OWL 2 EL profile,
while on the other, by its relative complexity, which enables
us to make interesting observations from the learning per-
spective. Our learning model is a variant of learning from
positive interpretations (i.e., from models of the target the-
ory) — a generally established framework in the field of
inductive logic programming [De Raedt and Lavrač, 1993;
De Raedt, 1994]. In our scenario, the goal of the learner is
to correctly identify the target TBox T given a finite set of
its finite models. Our overarching interest lies in algorithms
warranting effective learnability in such setting with no or
minimum supervision. Our key research questions and con-
tributions are therefore concerned with the identification of
specific languages and conditions on the learning input under
which such algorithms can be in principle defined.

In the following two sections, we introduce DL prelimi-
naries and discuss the adopted learning model. In Section 4,
we identify two interesting fragments of EL, called ELrhs

and ELlhs, which satisfy some basic necessary conditions
enabling finite learnability, and at the same time, we show
that full EL does not meet that same requirement. In Sec-
tion 5, we devise a generic algorithm which correctly iden-
tifies ELrhs and ELlhs TBoxes from finite data, employing a
basic equivalence oracle. Further, in case of ELrhs, we signif-
icantly strengthen this result by defining an algorithm which
makes no such calls to an oracle, and thus supports fully un-
supervised learning. In Section 6, we compare our work to
related contributions, in particular to the framework of learn-
ing TBoxes from entailment queries, by Konev et al. [Konev
et al., 2014]. We conclude in Section 7 with an overview of
interesting open problems.

1See http://www.w3.org/TR/owl2-profiles/.
This work was funded in part by the National Research Foun-
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2 Description Logic Preliminaries
The language of the Description Logic (DL) EL [Baader et
al., 2005] is given by (1) a vocabulary Σ = (NC , NR), where
NC is a set of concept names and NR a set of role names,
and (2) the following set of constructors for defining complex
concepts, which shall be divided into two groups:

EL: C,D ::= > | A | C uD | ∃r.C
Lu: C,D ::= > | A | C uD

where A ∈ NC and r ∈ NR. The set of Lu concepts nat-
urally captures the propositional part of EL. The depth of a
subconcept D in C is the number of existential restrictions
within the scope of which D remains. The depth of a concept
C is the depth of its subconcept with the greatest depth in C.
Every Lu concept is trivially of depth 0.

The semantics is defined through interpretations of the
form I = (∆I , ·I), where ∆I is a non-empty domain of
individuals and ·I is an interpretation function mapping each
A ∈ NC to a subset AI ⊆ ∆I and each r ∈ NR to a bi-
nary relation rI ⊆ ∆I ×∆I . The interpretation function is
inductively extended over complex expressions according to
the fixed semantics of the constructors:

>I = ∆I

(C uD)I = {x ∈ ∆I | x ∈ CI ∩DI}
(∃r.C)I = {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

A concept inclusion is an expression of the form C v D,
stating that all individuals of type C are D, as in, e.g.:
Father of son v Man u ∃hasChild.Man. The language
fragments considered in this paper are categorized w.r.t. re-
strictions imposed on the syntax of concepts C and D in per-
mitted concept inclusions C v D:
EL: C and D are both EL concepts;
ELrhs: C is an Lu concept and D an EL concept;
ELlhs: C is an EL concept and D an Lu concept;
Lu: C and D are both Lu concepts.

A TBox (or ontology) is a finite set of concept inclusions,
also called the TBox axioms, in a given language fragment.

An interpretation I satisfies a concept inclusion C v D
(I |= C v D) iff CI ⊆ DI . Whenever I satisfies all axioms
in a TBox T (I |= T ), we say that I is a model of T . For
a set of interpretations S, we write S |= C v D to denote
that every interpretation in S satisfies C v D. We say that T
entails C v D (T |= C v D) iff every model of T satisfies
C v D. Two TBoxes T and H are (logically) equivalent
(T ≡ H) iff they have the same sets of models.

A pointed interpretation (I, d) is a pair consisting of a
DL interpretation I = (∆I , ·I) and an individual d ∈ ∆I ,
such that every e ∈ ∆I different from d is reachable from
d through some role composition in I. By a slight abuse of
notation, given an arbitrary DL interpretation I and an indi-
vidual d ∈ ∆I , we write (I, d) to denote the largest subset
I ′ of I such that (I ′, d) is a pointed interpretation. If it is
clear from the context, we refer to pointed interpretations and
pointed models simply as interpretations and models. We say
that (I, d) is a model of a concept C iff d ∈ CI ; it is a model
of C w.r.t. T whenever also I |= T .

An interpretation (I, d) can be homomorphically embed-
ded in an interpretation (J , e), denoted as (I, d) 7→ (J , e),

iff there exists a mapping h : ∆I 7→ ∆J , satisfying the fol-
lowing conditions:

• h(d) = e,

• if (a, b) ∈ rI then (h(a), h(b)) ∈ rJ , for every a, b ∈
∆I and r ∈ NR,

• if a ∈ AI then h(a) ∈ AJ , for every a ∈ ∆I and
A ∈ NC .

A model (I, d) of C (w.r.t. T ) is called minimal iff it can
be homomorphically embedded in every other model of C
(w.r.t. T ). It is well-known that EL concepts and TBoxes
always have such minimal models (unique up to homomor-
phic embeddings) [Lutz et al., 2010]. As in most modal
logics, arbitrary EL models can be unravelled into equiva-
lent tree-shaped models. Finally, we observe that due to a
tight relationship between the syntax and semantics of EL,
every tree-shaped interpretation (I, d) can be viewed as an
EL concept CI , such that (I, d) is a minimal model of CI .
Formally, we set CI = C(d), where for every e ∈ ∆I we let
C(e) = >uA(e)u∃(e), withA(e) =

d
{A ∈ NC | e ∈ AI}

and ∃(e) =
d

(r,f)∈NR×∆I s.t. (e,f)∈rI ∃r.C(f). In that case
we call CI the covering concept for (I, d).

3 Learning Model
The learning model studied in this paper is a variant of learn-
ing from positive interpretations [De Raedt and Lavrač, 1993;
De Raedt, 1994]. In our setting, the teacher fixes a target
TBox T , whose set of all models is denoted byM(T ). Fur-
ther, the teacher presents a set of examples fromM(T ) to the
learner, whose goal is to correctly identify T based on this in-
put. The learning process is conducted relative to a mutually
known DL language L and a finite signature ΣT used in T .
Obviously,M(T ) contains in principle sufficient information
in order to enable correct identification of T , as the following
correspondence implies:

M(T ) |= C v D iff T |= C v D, for every C v D in L.

However, as M(T ) might consist of infinitely many mod-
els of possibly infinite size, the teacher cannot effectively
present them all to the learner. Instead, the teacher must con-
fine him- or herself to certain finitely presentable subset of
M(T ), called the learning set. For the sake of clarity, we
focus here on the simplest case when learning sets consist
of finitely many finite models.2 Formally, we summarize the
learning model with the following definitions.

Definition 1 (TIP) A TBox Identification Problem (TIP) is a
pair (T ,S), where T is a TBox in a DL language L and S,
called the learning set, is a finite set of finite models of T .

Definition 2 (Learner, identification) For a DL language
L, a learner is a computable functionG, which for every set S
over ΣT returns a TBox in L over ΣT . Learner G correctly
identifies T on S whenever G(S) ≡ T .

2An alternative, more general approach can be defined in terms
of specific fragments of models. Such generalization, which lies be-
yond the scope of this paper, is essential when the learning problem
concerns languages without finite model property.



Mother ≡ Woman u ∃hasChild.>
Father ≡ Man u ∃hasChild.>

Father of son ≡ Father u ∃hasChild.Man

Man, Father, Father_of_son

Man Man, FatherWoman, Mother

hasChildhasChildhasChild Woman

Figure 1: A sample TIP with an EL TBox (above, whereC ≡
D abbreviates C v D and D v C) and a finite learning set
(below).

Definition 3 (Learnability) For a DL language L, the class
of TBoxes expressible in L is learnable iff there exists a
learner G such that for every TBox T in L there exists a
learning set S on which G correctly identifies T . It is said
to be finitely learnable whenever it is learnable from finite
learning sets only.

We are primarily interested here in the notion of finite
learnability, as it provides a natural formal foundation for the
task of ontology learning from data. Intuitively, any finite
collection of data, structured with respect to some implic-
itly adopted ontology, can be seen as a potentially instructive
learning set, as presented in an example in Figure 1. The key
question is then what formal criteria must this set satisfy to
warrant correct identification of the ontology constraining it.
To this end we employ the basic admissibility condition, char-
acteristic also of other learning frameworks [Shapiro, 1981],
which ensures that the learning set is sufficiently rich to en-
able precise discrimination between the correct hypothesis
and all the incorrect ones.
Definition 4 (Admissibility) A TIP (T ,S) is admissible iff
for every C v D in L such that T 6|= C v D there exists
I ∈ S such that I 6|= C v D.

For the target TBox T , let T 6|= to be the set of all concept
inclusions in L that are not entailed by T , i.e., T 6|= = {C v
D in L | T 6|= C v D}. The admissibility condition requires
that for every C v D ∈ T 6|=, the learning set S must con-
tain a “counterexample” for it, i.e., an individual d ∈ ∆I , for
some I ∈ S , such that d ∈ CI and d 6∈ DI . Consequently,
any learning set must contain such counterexamples to all el-
ements of T 6|=, or else, the learner might never be justified
to exclude some of these concept inclusions from the hypoth-
esis. If it was possible to represent them finitely we could
expect that ultimately the learner can observe all of them and
correctly identify the TBox. In the next section, we investi-
gate this prospect formally in different fragments of EL.

4 Finite Learning Sets
As argued in the previous section, to enable finite learnabil-
ity of T in a given language L, the relevant counterexamples
to all the concept inclusions not entailed by T must be pre-
sentable within a finite learning set S. Firstly, we can im-
mediately observe that this requirement is trivially satisfied

for Lu. Clearly, Lu can only induce finitely many different
concept inclusions (up to logical equivalence) on finite signa-
tures, such as ΣT . Hence, the set T 6|= can always be finitely
represented (up to logical equivalence) and it is straightfor-
ward to finitely present counterexamples to all its members.
For more expressive fragments of EL, however, this cannot
be assumed in general, as the ∃r.C constructor induces in-
finitely many concepts. One negative result comes with the
case of EL itself, as demonstrated in the next theorem.

Theorem 1 (Finite learning sets in EL) Let T be a TBox in
EL. There exists no finite set S such that (T ,S) is admissible.

The full proof of this and subsequent results is included in
the online technical report [Klarman and Britz, 2015]. The
argument rests on the following lemma. Let (T ,S) be an
admissible TIP and C a concept. By S(C) we denote the set
of all models (I, d) ofC w.r.t. T such that I ∈ S . By

⋂
S(C)

we denote the intersection of all these models, i.e., the model
(J , d), such that (J , d) 7→ (I, d) for every (I, d) ∈ S(C),
and for every other model (J ′, d) such that (J ′, d) 7→ (I, d)
for every (I, d) ∈ S(C) and (J , d) 7→ (J ′, d), it is the case
that (J ′, d) 7→ (J , d).

Lemma 1 (Minimal model lemma) Let (T ,S) be an ad-
missible TIP for T in EL (resp. in ELrhs), and C be an
EL (resp. Lu) concept. Whenever S(C) is non-empty then⋂
S(C) is a minimal model of C w.r.t. T .

Given the lemma, we consider a concept inclusion of type:
τn := ∃r. . . . ∃r.︸ ︷︷ ︸

n

> v ∃r. . . . ∃r.∃r.︸ ︷︷ ︸
n+1

>

Suppose τn ∈ T 6|= for some n ∈ N. Since by the admissibil-
ity condition a counterexample to τn must be present in S, it
must be the case that S(C) 6= ∅, whereC is the left-hand-side
concept in τn. By the lemma and the definition of a minimal
model, it is easy to see that S must contain a finite chain of
individuals of length exactly n+ 1, as depicted below:

• r−−−−−→ • . . . • r−−−−−→ •︸ ︷︷ ︸
n+1

Finally, since there can always exists some n ∈ N, such that
τm ∈ T 6|= for every m ≥ n, we see that the joint size of all
necessary counterexamples in such cases must inevitably be
also infinite. Consequently, for some EL TBoxes admissible
TIPs based on finite learning sets might not exist, and so finite
learnability cannot be achieved in general.

One trivial way to tame this behavior is to “finitize” T 6|=
by delimiting the entire space of possible TBox axioms to a
pre-defined, finite set. This can be achieved, for instance, by
restricting the permitted depth of complex concepts or gener-
ally setting some a priori bound on the size of axioms. Such
ad hoc solutions, though likely efficient in practice, are not
very elegant. As a more interesting alternative, we are able
to show that there exist at least two languages between Lu
and EL, namely ELlhs and ELrhs, for which finite learning
sets are always guaranteed to exist, regardless of the fact that
they permit infinitely many concept inclusions. In fact, we
demonstrate that in both cases such learning sets might well
consist of exactly one exemplary finite model.



A, ∃r.(A⊓B)

A, B, A⊓B, ∃r.(A⊓B), ∃r.∃r.A B, ∃r.∃r.A

∃r.A

Figure 2: A finite learning set for an ELrhs TBox {A v
∃r.(AuB), B v ∃r.∃r.A} (all arrows represent r-relations).
The figure includes type contents (in grey), as defined in the
proof of Theorem 2.

We adopt the technique of so-called types, known from the
area of modal logics [Pratt, 1979]. Types are finite abstrac-
tions of possible individuals in the interpretation domain, out
of which arbitrary models can be constructed. Let con(T ) be
the set of all concepts (and all their subconcepts) occurring in
T . A type over T is a set t ⊆ con(T ), such that C uD ∈ t
iff C ∈ t and D ∈ t, for every C u D ∈ con(T ). A type t
is saturated for T iff for every C v D ∈ T , if C ∈ t then
D ∈ t. For any S ⊆ con(T ), we write tS to denote the small-
est saturated type containing S. It is easy to see, that tS must
be unique for EL.

The next theorem addresses the case of ELrhs. Figure 2
illustrates a finite learning set for a sample ELrhs TBox, fol-
lowing the construction in the proof.

Theorem 2 (Finite learning sets in ELrhs) Let T be a TBox
in ELrhs. There exists a finite set S such that (T ,S) is ad-
missible.

Proof sketch. Let Θ be the smallest set of types satisfying
the following conditions:
• tS ∈ Θ, for every S ⊆ NC and for S = {>},
• if t ∈ Θ then t{C} ∈ Θ, for every ∃r.C ∈ t.

We define the interpretation I = (∆I , ·I) as follows:
• ∆I := Θ,
• t ∈ AI iff A ∈ t, for every t ∈ Θ and A ∈ NC ,
• (t, t{C}) ∈ rI , for every t ∈ Θ, whenever ∃r.C ∈ t.

Then S = {I} is a finite learning set such that (T ,S) is
admissible. q

A similar, though somewhat more complex construction
demonstrates the existence of finite learning sets in ELlhs.
Again, we illustrate the approach with an example in Fig-
ure 3.

Theorem 3 (Finite learning sets in ELlhs) Let T be a TBox
in ELlhs. There exists a finite set S such that (T ,S) is admis-
sible.

Proof sketch. Let Θ be the set of all saturated types over
T , and Θ∗ be its subset obtained by iteratively eliminating all
those types t that violate the following condition: for every
r ∈ NR and every existential restriction ∃r.C ∈ t there is
u ∈ Θ∗ such that:

A, ∃r.∃r.A

A, ∃r.A

∃r.A

A

A, ∃r.∃r.A, ∃r.A

Figure 3: A finite learning set for an ELlhs TBox {∃r.∃r.A v
A} (all arrows represent r-relations). The figure includes type
contents (in grey), as defined in the proof of Theorem 3.

• C ∈ u,
• for every ∃r.D ∈ con(T ), if D ∈ u then ∃r.D ∈ t.

Further, we define the interpretation I = (∆I , ·I) as follows:
• ∆I := Θ∗,
• t ∈ AI iff A ∈ St, for every t ∈ Θ∗ and A ∈ NC ,
• (t, u) ∈ rI iff for every ∃r.C ∈ con(T ), if C ∈ u then
∃r.C ∈ t.

Then S = {I} is a finite learning set such that (T ,S) is
admissible. q

5 Learning Algorithms
In this section we devise basic learning algorithms that cor-
rectly identify ELlhs and ELrhs TBoxes in admissible TIPs
based on finite learning sets. Since T 6|= can be in general still
infinite, our starting observation is that a learner cannot effec-
tively eliminate concept inclusions from T 6|= using a straight-
forward enumeration, thus arriving at the target TBox T . The
only feasible strategy is to try to identify the “good” candi-
date axioms to be included in T , and possibly apply the elim-
ination strategy only to finitely many incorrect guesses. One
generic procedure to employ such heuristic, which we define
as Algorithm 1, attempts to construct the hypothesis by ex-
tending it with consecutive axioms of systematically growing
size that are satisfied by the learning set. There, by `(C v D)
we denote the size of the axiom C v D measured in the total
number of symbols used for expressing this axiom. At each
step the algorithm makes use of a simple equivalence oracle,
which informs whether the currently considered hypothesis is
already equivalent to the learning target (in that case the iden-
tification succeeds) or whether some axioms are still missing.
Theorem 4 demonstrates the correctness of this approach.

Theorem 4 (Correct identification in ELrhs/ELlhs) Let
(T ,S) be an admissible TIP for T in ELrhs/ELlhs. Then the
hypothesis TBoxH generated by Algorithm 1 is equivalent to
T .

Obviously the use of the oracle is essential to warrant ter-
mination of the algorithm. It is not difficult to see that without
it, the algorithm must still converge on the correct TBox for
some n ∈ N, and consequently settle on it, i.e., Hm ≡ Hn

for every m ≥ n. However, at no point of time can it guar-
antee that the convergence has been already achieved, and



Algorithm 1 Learning ELrhs/ELlhs TBoxes on finite inputs.
Input: a TIP (T ,S)
Output: a hypothesis TBoxH

1: n := 2
2: Hn := ∅
3: while ‘Hn ≡ T ’? is ‘NO’ (equivalence oracle querying)

do
4: n := n+ 1
5: Candn := {C v D ∈ ELrhs/ELlhs | `(C v D) =

n}
6: Acceptn := {C v D ∈ Candn | S |= C v D}
7: Hn := Hn−1 ∪ Acceptn
8: end while
9: return Hn

so it can only warrant learnability in the limit. This result is
therefore not entirely satisfactory considering we aim at finite
learnability from data in the unsupervised setting.

A major positive result, on the contrary, can be delivered
for the case of ELrhs, for which we devise an effective learn-
ing algorithm making no reference to any oracle. It turns out
that in ELrhs the “good” candidate axioms can be directly ex-
tracted from the learning set, thus granting a proper unsuper-
vised learning method. The essential insight is provided by
Lemma 1, presented in the previous section. Given any Lu
concept C such that S(C) 6= ∅ we are able to identify a tree-
shaped minimal model of C w.r.t. T . Effectively, it suffices
to retrieve only the initial part of this model, discarding its
infinitely recurrent (cyclic) subtrees. Such an initial model
Iinit is constructed by Algorithm 2. The algorithm performs
simultaneous unravelling of all models in S(C), while on the
way, computing intersections of visited combinations of in-
dividuals, which are subsequently added to the model under
construction. Whenever the same combination of individuals
is about to be visited for the second time on the same branch
it is skipped, as the cycle is evidently detected. The covering
concept CIinit for the resulting interpretation Iinit is then in-
cluded in the hypothesis within the axiom C v CIinit . Mean-
while, all Lu concepts C such that S(C) = ∅ are ensured
to entail every EL concept, as implied by the admissibility
condition. The contents of the hypothesis TBox are formally
specified in Definition 5. Theorem 5 demonstrates the cor-
rectness of the whole learning procedure.

Definition 5 (ELrhs hypothesis TBox) Let (T ,S) be an ad-
missible TIP for T in ELrhs over the signature ΣT . The hy-
pothesis TBox H is the set consisting of all the following ax-
ioms:

• C v CIinit for every Lu concept C such that S(C) 6= ∅,
whereCIinit is the covering concept for the interpretation
(Iinit, d) generated by Algorithm 2 on S(C);

• C v
d

r∈NR
∃r.

d
NC for every Lu concept C such

that S(C) = ∅.

Theorem 5 (Correct identification in ELrhs) Let (T ,S) be
an admissible TIP for T in ELrhs. Then the hypothesis TBox
H for S is equivalent to T .

Algorithm 2 Computing the initial part of the minimal model⋂
S(C)

Input: the set S(C) = {(Ii, di)}0≤i≤n, for some n ∈ N
Output: a finite tree-shaped interpretation (J , d), where
J = (∆J , ·J )

1: ∆J := {f(d0, . . . , dn)}, for a “fresh” function symbol
f

2: AJ := ∅, for every A ∈ NC

3: rJ := ∅, for every r ∈ NR

4: for every f(d0, . . . , dn) ∈ ∆J , (e0, . . . , en) ∈ ∆I0 ×
. . .×∆In , r ∈ NR do

5: if (di, ei) ∈ rIi for every 0 ≤ i ≤ n and there ex-
ists no function symbol g such that g(e0, . . . , en) is an
ancestor of f(d0, . . . , dn) in J then

6: ∆J := ∆J∪{g(e0, . . . , en)}, for a “fresh” function
symbol g

7: rJ := rJ ∪ {(f(d0, . . . , dn), g(e0, . . . , en))}
8: end if
9: end for

10: for every f(d0, . . . , dn) ∈ ∆J , A ∈ NC do
11: if di ∈ AIi for every 0 ≤ i ≤ n then
12: AJ := AJ ∪ {f(d0, . . . , dn)}
13: end if
14: end for
15: return (J , f(d0, . . . , dn)), where f(d0, . . . , dn) is the

root of J , created at step 1.

The learning algorithm runs in double exponential time in the
worst case and generates TBoxes of double exponential size
in the size of S. This follows from the fact that the tree-
shaped interpretations generated by Algorithm 2 might be of
depth exponential in the number of individuals occurring in S
and have exponential branching factor. Importantly, however,
there might exist solutions far closer to being optimal which
we have not as far investigated.

It is our strong conjecture, which we leave as an open prob-
lem, that a related learning strategy should also be applicable
in the context of ELlhs.

6 Related Work
An alternative approach to learning DL TBoxes, based on An-
gluin’s model of learning from entailment [Angluin, 1988],
was recently introduced by Konev et al. [Konev et al., 2014].
There, the learner identifies the TBox by posing two types
of queries: entailment (“T |= C v D?”) and equivalence
(“H ≡ T ? If no, then return a positive or a negative coun-
terexample”). The authors study polynomial learnability and
define corresponding algorithms for ELlhs and ELrhs, while
for EL they show that such polynomial algorithm does not
exist. Apart from the obvious differences in the motivation
underlying both learning models (unsupervised learning from
data vs. learning by queries from an expert), there are also
some strong formal connections. Essentially, given a finite
learning set in an admissible TIP, a learner from interpreta-
tions can autonomously answer arbitrary entailment queries,
thus effectively simulating the entailment oracle. However,
the learner does not have by default access to the equivalence



oracle. Once such oracle is included, as done in our Algo-
rithm 1, the learning power of both learners becomes com-
parable (note that with some smart heuristic our learner can
find a positive or negative counterexample whenever the or-
acle gives a negative answer). In this sense, our Theorem 4
should be also indirectly derivable from the results by Konev
et al. However, our stronger result for ELrhs in Theorem 5
demonstrates that, at least in some cases, the learner from in-
terpretations is able to succeed without employing the equiv-
alence oracle, which is essential to the other approach.

Less directly, our work is also related to various contri-
butions on learnability of different types of formal struc-
tures from data, e.g.: first-order theories from facts [Shapiro,
1981], finite automata descriptions from observations [Pitt,
1989], logic programs from interpretations [De Raedt and
Lavrač, 1993; De Raedt, 1994]. In the area of DLs, a few
learning scenarios have been formally addressed, concerned
largely with learning concept descriptions via different learn-
ing operators [Straccia and Mucci, 2015; Lehmann and Hit-
zler, 2008; Fanizzi et al., 2008; Cohen and Hirsh, 1994] and
applications of formal concept analysis techniques to auto-
mated generation of DL axioms from data [Baader et al.,
2007; Distel, 2011].

7 Conclusions and Outlook
In this paper, we have delivered initial results on finite learn-
ability of DL TBoxes from interpretations. We believe that
this direction shows a lot of promise in establishing formal
foundations for the task of ontology learning from data. Some
immediate problems that are left open with this work concern
finite learnability of ELlhs TBoxes in an unsupervised setting,
and possibly of other lightweight fragments of DLs. Another
set of very interesting research questions should deal, in our
view, with the possibility of formulating alternative condi-
tions on the learning sets and the corresponding learnability
guarantees they would imply in different DL languages. In
particular, some limited use of closed-world operator over the
learning sets might allow to relax the practically restrictive
admissibility condition. Finally, the development of practical
learning algorithms, possibly building on existing inductive
logic programming methods, is an obvious area to welcome
further research efforts.
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