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Introduction
Human language technologies (HLT) hold much promise for

the developing world, especially for user communities that have
a low literacy rate, speak a minority language, or reside in areas
where access to conventional information infrastructure is
limited. For example, information systems that provide speech-
enabled services via a telephone can serve a user in his or her
language of choice in a remote location without requiring
additional expertise from the user or a sophisticated Internet
infrastructure. In South Africa, while Internet penetration is still
low, more than 90% of the population has access to a telephone
and the potential of voice services for improving access to infor-
mation is receiving increasing attention.1

The development of various forms of HLT — such as
speech-based information systems, speech recognition, speech
synthesis or multilingual information retrieval systems —
requires the availability of extensive language resources. The
development of these resources involves significant effort and
can be a prohibitively expensive task when such technologies
are developed for a resource-scarce language. This presents a
significant obstacle to the development of HLT in the developing
world, where few electronic resources are available for local
languages, skilled computational linguists are scarce and lin-
guistic diversity is high.

One such language resource required by many speech process-
ing tasks is a pronunciation model. A pronunciation model for
a specific language describes the process of letter-to-sound
conversion: given the orthography of a word, it provides a
prediction of the phonemic realization of that word. This
component is required by many speech processing tasks —
including general domain speech synthesis and large vocabu-
lary speech recognition — and is often one of the first resources

required when developing speech technology in a resource-
scarce language.

In order to accelerate the uptake of HLT in the developing
world, techniques are required that support the efficient devel-
opment of language resources. In prior work,2–4 we have devel-
oped bootstrapping techniques to accelerate the development of
a pronunciation model in a resource-scarce language. During
the procedure known as ‘bootstrapping’, a model is improved
iteratively via a controlled series of increments, at each stage
using the previous model to generate the next. This self-
improving circularity distinguishes bootstrapping from other
incremental learning processes and is the key to its efficiency, as
we discuss below.

In this work we define a generic framework for analysing a
bootstrapping process and apply this framework to the task of
creating pronunciation models for resource-scarce languages.
We use the framework to derive a mathematical model that
can be used to predict the amount of time required for the
development of a pronunciation lexicon of a given size, analyse
the effectiveness of the approach when developing a medium-
sized (5 000–10 000 word) pronunciation lexicon and demon-
strate the various tools that can accelerate the bootstrapping
process.

The paper is structured as follows: in the following section
we provide background with regard to the bootstrapping of
pronunciation models, and then we define a generic framework
for analysing a bootstrapping process. We next describe the
specific bootstrapping approach followed during the develop-
ment of an Afrikaans pronunciation lexicon, analyse the results
achieved and evaluate the efficiency of the process. Finally, we
discuss initial results obtained when bootstrapping pronuncia-
tion models in two additional languages, Zulu and Sepedi, and
discuss the implications of our results.

Background
In prior work, we developed an audio-enabled approach to

the bootstrapping of pronunciation models, and demonstrated
the efficiency of this process for small lexicons.2,3 The core of this
bootstrapping process relies on an efficient grapheme-to-phoneme
pronunciation prediction algorithm. This algorithm is used to
generalize from the existing lexicon (dictionary) in order to
predict additional entries, increasing the size of the lexicon in an
incremental fashion. The bootstrapping system is initialized
with a large word list (containing no pronunciation informa-
tion), or with a pre-existing pronunciation lexicon if such a
resource is available. The system chooses the next ‘best’ word to
consider, predicts a pronunciation for this word and presents
a human dictionary developer with an audio versiona of the
predicted pronunciation. The human acts as a ‘verifier ’ and
provides a verdict with regard to the accuracy of the word-
pronunciation pair: whether the pronunciation is correct as
predicted, or not. The verifier can also indicate that the word
itself is invalid (e.g. from a different language or a misspelled
word), ambiguous depending on context (e.g. the word ‘read’
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Bootstrapping techniques can accelerate the development of
language technology for resource-scarce languages. We define a
framework for the analysis of a general bootstrapping process
whereby a model is improved through a controlled series of incre-
ments, at each stage using the previous model to generate the next.
We apply this framework to the task of creating pronunciation
models for resource-scarce languages, iteratively combining
machine learning and human knowledge in a way that minimizes
the human intervention required during this process. We analyse
the effectiveness of such an approach when developing a medium-
sized (5000–10 000 word) pronunciation lexicon. We develop such
an electronic pronunciation lexicon in Afrikaans, one of South
Africa’s official languages, and provide initial results obtained for
similar lexicons developed in Zulu and Sepedi, two other South
African languages. We derive a mathematical model that can be
used to predict the amount of time required for the development of a
pronunciation lexicon of a given size, demonstrate the various tools
that can accelerate the bootstrapping process, and evaluate the
efficiency of these tools in practice.

aThe audio version is created from the predicted phoneme string by concatenating audio
samples of the specified phonemes, that is, the word is ‘sounded’ rather than synthesized.
This implies that the only additional resource requirement is a set of sample phonemes,
rather than a more complex speech synthesizer.



that has two pronunciations: /r iy d/ and /r eh d/), or that he or she
is uncertain about the status of the word-pronunciation pair. If
the word is valid but the pronunciation is wrong, the verifier
specifies the correct pronunciation by removing, adding or
replacing phonemes in the presented pronunciation. A new
audio version is generated, for which the verifier can specify a
new verdict. At this stage, the learning algorithm updates the
word-to-pronunciation model in order to account for the
corrected pronunciation. The process is repeated with updated
predictions until a pronunciation lexicon of sufficient size is
obtained. A related approach was developed by Maskey et al.,5

achieving comparable results.
During prior experimentation, a number of tools were developed

in support of the bootstrapping process, including an efficient
grapheme-to-phoneme rule extraction algorithm (Default&
Refine6), automatic error detection tools4 and a software system
that supports the bootstrapping process. While rule extraction is
typically computationally efficient for small lexicons, the time
required to extract grapheme-to-phoneme rules from a sizeable
lexicon slows the process significantly, especially if continuous
rule updating is required. In our experience, the bootstrapping
system became noticeably cumbersome at approximately 2000
words. All the lexicons developed during prior experimentation
were therefore fairly small (approximately 1000 to 2000 words).
To overcome this barrier, a new incremental version of the
grapheme rule extraction algorithm was defined that performs
local refinement of grapheme-to-phoneme rules, accepting a
small degradation in learning efficiency in exchange for fast
update times.4 Incremental updating is performed continuously,
after every word that is edited by the dictionary developer. After
a pre-defined interval the system performs a full rule update (a
global optimization operation we term ‘synchronization’),
which is slower but results in more accurate models. The length
of the update interval is defined by the dictionary developer
and indicates the amount of ‘model drift’ that is allowed. (The
length of a typical update interval is 50 to 100 corrected words;
note that the number of actual words added to the lexicon
during this interval is larger.) In this paper, we evaluate these

tools during the development of a medium-sized pronunciation
lexicon in a resource-scarce language, during a continuous
process that starts well beyond the previous 2000-word barrier.

Bootstrapping framework
During bootstrapping, a model is grown systematically,

becoming increasingly accurate from one increment to the next.
When analysing the bootstrapping process, it soon becomes
apparent that the process relies on an automated mechanism to
convert among various representations of the model considered.
Each representation describes the same task in a format that
provides a specific benefit, either because the representation is
amenable to automated modelling and analysis or because it
describes the current model in a way that is convenient for a
human to verify and improve. For example, during the boot-
strapping of pronunciation models, the correctness of an entry
in the pronunciation lexicon (the first representation) is easily
verified by a human, whereas automated analysis of the extracted
grapheme-to-phoneme rules (the second representation) can be
used to identify possible errors that require re-verification. In
contrast, during the bootstrapping of acoustic models for speech
recognition, both representations are amenable to automated
analysis and updating: the acoustic models (the first representa-
tion) are typically built from the phonemic segmentation of the
audio data (the second representation) through automated
training, clustering and re-training of acoustic models, while the
phonemic segmentation of the audio data are created through
automated Viterbi alignment of the phonemic transcriptions,
utilizing the current acoustic models. By converting back and
forth between these two representations in a bootstrapping
fashion, both the phonemic segmentations and the acoustic
models become increasingly accurate.

Bootstrapping components
The general bootstrapping concept using two model represen-

tations is depicted in Fig. 1. The number of representations is
limited to two for the sake of simplicity — three or more repre-
sentations can also be included in the model.
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Fig. 1. General bootstrapping concept, using two model representations.
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The following components play a role during bootstrapping:
• Alternative representations: two or more representations of the

same model lie at the heart of the bootstrapping process. In
Fig. 1 these are indicated as A and B. During the bootstrapping
of pronunciation models, one of these representations (say, ‘A’)
can easily be verified by a human, while the second represen-
tation (say, ‘B’) is more amenable to verification through auto-
mated analysis. For other applications, either none or both
representations may be amenable to either type of verification.

• Conversion mechanisms: each conversion mechanism (indicated
as A→B and B→A) provides an automated or semi-automated
means to convert data from one representation to another.

• Verification mechanisms: once converted to a specific representa-
tion, the model can be improved via automated or human
(manual) verification, indicated in the figure by the ‘Verify’
components.

• Base data: this term is used to refer to the domain of the model.
The current base indicates the domain that has been used in
training the current model, and consists of a subset of or
the full base data set. The current base data are implicitly or
explicitly included in each of the two representations.

• Increment mechanisms: the Add components are used to
increase the current base during bootstrapping. At the one
extreme, all model instances can be included in a single incre-
ment; at the other, a single instance can be added per boot-
strapping cycle. As a possible extension, the increment
mechanisms may use active learning techniques7,8 in order to
select an appropriate set of instances to add.

• External data: this term refers to additional data sources that are
used during bootstrapping. Typically, external data are used to
initialize a bootstrapping system with models that were devel-
oped on a related task.

Bootstrapping process
Prior to bootstrapping, the various representations are initial-

ized in preparation for the first iteration. Typically only a single
representation requires initialization (A in this instance). Exter-
nal data may be included in this process, or the bootstrapping
process starts without any initial knowledge of the task not
included in the base data. The increment mechanism chooses
the first base set to use. Once initialized, the bootstrapping
process consists of the following steps, many of which are
optional in the general case, as indicated:

1. The current base, as well as the current representation A, is
used to generate the next representation B. During pronun-
ciation modelling, A consists of word-pronunciation pairs
and B of grapheme-to-phoneme rules.

2. B is optionally verified, either manually or automatically.
During pronunciation modelling, this step is typically
omitted, unless the system is requested to flag possible
errors for re-verification.

3. Based on the current state of the bootstrapping system, the
increment mechanism increases the current base set. During
pronunciation modelling, additional words are added to
the word list being considered.

4. The current base as well as the current representation B is
used to generate representation A.

5. A is optionally verified, either manually or automatically.
During pronunciation modelling, this step is not optional
and consists of human verification of the newly generated
word-pronunciation pairs.

6. Based on the current state of the bootstrapping system, the
increment mechanism increases the current base set. (In the
general case either step (3) or (6) is optional. During pronun-

ciation modelling, step (6) is omitted.)
This cycle is repeated until a sufficiently accurate and/or

comprehensive model is obtained. Note that while step (5) is
required during the bootstrapping of pronunciation models,
both steps (2) and (5) may be optional for other applications
(such as the bootstrapping of acoustic models described above)
where model improvement occurs during the automated repre-
sentation conversion process rather than through post-conversion
verification.

Bootstrapping efficiency
The main aim of a bootstrapping system is to obtain as accurate

a model as possible from available data. When human intervention
is used to supplement or create the training data themselves, the
aim shifts towards minimizing the amount of human effort required
during the process. This is the focus of our analysis, and we
therefore measure bootstrapping efficiency as a function of
model accuracy:

Efficiency a
t a

t a
bootstrap

manual
( )

( )

( )
,= (1)

where a is the accuracy of the current model as measured against
an independent test set and tbootstrap(a) and tmanual(a) specify the time
(measured according to amount of human intervention)
required to develop a model of accuracy a with and without
bootstrapping, respectively.

Bootstrapping is analysed according to bootstrapping cycles.
While bootstrapping, all base instances do not result in valid
data that can be included in the model training process. Of the
instances that define a valid base data, some will be correctly
represented by the initial representation (B), and others will
contain errors. Recall from the Background section that the
verifier can specify four verdicts per word: identifying the
word-pronunciation pair as invalid, ambiguous, uncertain or correct,
possibly after correcting the pronunciation manually. We define
a number of variables to assist us in the analysis of these instances:
At the start of cycle x of the bootstrapping process, we define n(x)
as the number of instances included in the current base, ninvalid(x)
as the number of instances that are invalid, ambiguous or uncer-
tain; ncorrect(x) as the number of instances that are valid and
correct, and nerror(x) as the number of instances that are valid and
incorrect. For these variables, the following will always hold:

n x n x n x
n x n x n

invalid valid

valid correct

( ) ( ) ( ),
( ) ( )
= +

= + error x( ).
(2)

Related incremental variables are used to represent the
increase of word-pronunciation pairs of a specific type during
cycle x, namely inc_n(x), inc_ninvalid(x), inc_nvalid(x), inc_ncorrect(x) and
inc_nerror(x). The same intervention mechanism may have differ-
ent cost implications based on the status of the instance. In the
simplest case, the status of an instance may simply be correct,
incorrect or invalid, but subtler differences are possible, e.g. the
number of changes required to move from an incorrect to a
correct version. The expected status of a newly predicted
instance changes as the system becomes more accurate. Prior to
human intervention at stage x of the bootstrapping process, the
number of instances of each status within the current increment
is given by:

inc n x inc n s x

status invalid corre
s s tatus

_ ( ) _ ( , ),

{ ,

=

∈
∈
∑

ct error error error, , , ...}.1 2 3

(3)

where errorx indicates that the current pronunciation (prior to
verification) contains x phoneme errors, that is, x substitutions,
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deletions or insertions are required to correct the pronunciation.
Note that the correct status is similar to the error0 status.

Combining machine learning and human intervention in a
way that minimizes the amount of human effort required during
the process can be achieved in two ways: (a) by minimizing the
effort required by the human verifier to identify errors accurately,
and (b) by optimizing the speed and accuracy with which the
system learns from the human input. The remainder of this
section describes the various factors that influence the efficiency
of the bootstrapping process from both these perspectives. By
analysing these factors individually, it becomes possible to
understand better the effect on the overall process when opti-
mizing any single factor, and it also becomes possible to predict
better the effort involved when bootstrapping a specific resource
of a specific size.

Human factors
The first human factor that impacts on the efficiency of the

bootstrapping process relates to required user expertise:
whether the task requires expert skills, or whether a limited
amount of task-directed training is sufficient. If it is assumed that
the user has the skills required, the following measurements
provide an indication of the efficiency of the bootstrapping
process for a specific user:
• User learning curve: the time it takes for a specific user to

become fully proficient using the bootstrapping system.
Measured as ttrain, initial training data are assumed to be
discarded.

• Cost of intervention: the average amount of user time required
per intervention i when an instance has status s, for a fully
trained user using the bootstrapping system. Measured as
tverify(i, s), a different average cost may be associated with differ-
ent types of interventions. If more than one intervention is
used to generate a single instance during one cycle of boot-
strapping, the combination of mechanisms is modelled as an
additional (single) mechanism. Depending on the bootstrap-
ping process, it may be more realistic to measure this value for
a set of instances. During pronunciation modelling, there are
only two types of interventions: verifying predictions and ver-
ifying the list of errors.

• Task difficulty: the average number of errors generated by a
fully trained user using the bootstrapping system. Indicated
by error_ratebootstrap(i, s), this is measured as the percentage of
errors generated by a user using intervention mechanism i to
verify an instance initially in state s. For example, when a single
predicted pronunciation that contains 2 errors is verified, the
error_ratebootstrap(verifysingle, error2 ) is less than 0.5%.

• Quality and cost of user verification mechanisms: implicit in the
above two measurements are the cost and effect on error-rate
of additional assistance provided during user intervention.
Rather than modelling additional user assistance provided
during existing interventions separately, the combined inter-
vention is again modelled as an additional type of interven-
tion. In the same way, automated verification mechanisms are
modelled as additional interventions.

• Difficulty of manual task: The average number of errors for a
fully trained user developing instances manually. Indicated by
error_ratemanual, this is measured in percentage as the average
number of errors per 100 manual instances developed, where
each manual instance can be associated with an individual
base data instance in the bootstrapped system.

• Manual development speed: The average amount of time per
instance development for a fully trained user performing this
task manually, measured as tdevelop.

• Initial set-up cost: The time it takes for a user to prepare the
initial system for manual development or bootstrapping,
measured in time as tsetup_manual and tsetup_bootstrap, respectively.

Machine learning factors
The faster a system learns between verification cycles, the

fewer corrections are required from a human verifier, and the
more efficient the bootstrapping process becomes. From a
machine learning perspective, learning speed and accuracy are
directly influenced by the following factors:
• Predictive accuracy of current base: modelled as the expected

number of instances of each status at a specific cycle of the
bootstrapping process, and indicated by E(inc_n(s, x)). Implicit
in this measurement are four factors:—
—Accuracy of representations: the ability of the chosen represen-

tations to model the specific task.
—Set sampling ability: the ability to identify the next ‘best’

instance or instances to add to the knowledge base, possibly
using active learning techniques.

—System continuity: the speed at which the system updates its
knowledge base. This has a significant effect on system
responsiveness, especially during the initial stages of boot-
strapping.

—Robustness to human error: the stability of the conversion
mechanisms and chosen representations in the presence of
noise introduced by human error.

• On-line conversion speed: any additional time costs introduced
when computation is performed while a human verifier is
required to be present (but idle while waiting for the computa-
tion to complete). It is measured as the average time per
number of valid instances developed and indicated by tidle(n).

• Quality and cost of verification mechanisms: the average amount
of time required to utilize additional assistance mechanism j —
from a computational perspective — when an instance is in
status s, measured as tauto(j, s).

• Validity of base data: Using invalid data slows the bootstrapping
process, especially if human intervention is required to verify
the validity of base data. This is measured in percentage of base
data, and is indicated by valid_ratio.
Two additional factors that are not included explicitly in the

general model, but can be included based on the requirements of
the specific bootstrapping task, are:
• Conversion accuracy: the ability of the conversion model to

convert between representations without loss of accuracy.
• Effect of incorporating additional data sources: the ability of the

system to boost accuracy by incorporating external data
sources at appropriate times.

System analysis
The combined effect of the machine learning factors and

human factors provides an indication of the expected cost of
using the bootstrapping system. The time to develop a boot-
strapping model via N cycles of bootstrapping, using a set of
interventions I, is given by:

where titerate(N, I) combines the cost of the various iterations,
excluding the cost associated with system setup and user train-

(4)



ing. The expected value of inc_n(s, x) depends on the specific
conversion mechanism, and is influenced by valid_ratio and
error_ratebootstrap(i, s).

This cost of bootstrapping can be compared with the expected
cost of developing nmanual instances via a manual process:

t t t nmanual setup manual develop manual= + ∗_ . (5)

If nbootstrap and nmanual are chosen such that

E inc n correct n E inc n correct nbootstrap manu[ _ ( , )] [ _ ( ,= al )], (6)

where the number of valid instances generated during boot-
strapping is given by:

n inc n valid xbootstrap
x

N

=
=

−

∑ _ ( , ),
1

1

(7)

the accuracy of each of the two systems is approximately equiva-
lent, and the values of Equations (4) and (5) can be combined
according to Equation (1) in order to obtain a measure of the
expected efficiency of the bootstrapping process.

Bootstrapping a medium-sized lexicon

Experimental approach
We use the above framework to improve and analyse the

efficiency of our pronunciation model bootstrapping process.
During prior experimentation, a number of bootstrapped
lexicons were created, each less than 2000 words. In this work
we first cross-analyse these prior lexicons and manually verify
discrepancies in order to obtain a verified lexicon of approxi-
mately 5000 words. We then perform bootstrapping according to
the bootstrapping framework described above, and initialize
the bootstrapping system using the verified lexicon. We use a lin-
guistically sophisticated first language speaker (Developer ‘C’)
who has previous experience in using the bootstrapping system
to develop the lexicon and measure the time taken for each
actionb. We obtain a word list from random text from the
Internet, and order words randomly (in the list of new words to
be predicted). We use incremental Default&Refine for active
learning in between synchronization sessions and standard
Default&Refine during synchronization. We set the update
interval (number of words modified between synchronizations)
to 50.

At the end of the bootstrapping session we perform error
detection. (No additional error detection is performed during
bootstrapping.) We first extract the list of graphemic nulls, and
identify possible word errors from the graphemic null genera-
tors.c We then extract Default&Refine rules from the full lexicon
with the purpose of using these rules to identify errors, similar to
the process described in our earlier work.4 Only words that
generate new grapheme-to-phoneme rules are considered for
manual re-verification. We list as possible errors all words from
word sets that result in a new rule and contain fewer than five
words, and verify these words manuallyd.

Results
The parameters of the bootstrapped lexicon are listed in

Table 1. We measure the time taken by the verifier to perform
each verification action, and analyse the effectiveness of the

verification process from a human factors perspective. Figure 2
illustrates the verification process as the lexicon grows from 5500
to 7000 words. We plot the time taken to verify each valid word,
indicating whether 0, 1, 2 or 3 corrections are required for each
word as it is added to the lexicon. (The number of training words
on the x-axis includes both valid and invalid words.)

We note the following:
• User learning curve: the verifier was proficient in using the

system prior to the current bootstrapping session, and further
training was not required. The value of ttrain during earlier
sessions was <120 min.

• Cost of intervention: in this experiment we used two interven-
tion mechanisms: verifying predictions and verifying the list
of possible errors. Table 2 provides the average verification
times observed for Developer C where the intervention
mechanism is a single verification of a prediction (tverify(single,
s)) for words that are in different states s prior to verification.
Verification of the list of possible errors took approximately
27 minutes (for approximately 3000 words).

• Task difficulty: during the bootstrapping process, 3019 words
were added to the lexicon, of which 181 were invalid or
ambiguous. During error detection, 9 errors were found in the
remaining 2838 valid words. Given our previous analysis,4 we
estimate that this represents at least 50% of the errors, and
therefore estimate the actual error rate to be 0.6%e. It is interest-
ing to note that, while our error detection protocol resulted in a
re-verification of 3.3% of the full lexicon (1832 grapheme-
specific patterns, or about 300 words), the average position of
each error in the ordered error prediction list was at 0.67% of
the full training lexicon, with the majority of errors found in
the first 0.1% of words, that is, the first or second pattern on the
per-grapheme list of potential errors.
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Table 1. Parameters of the Afrikaans bootstrapped lexicon.

Number of graphemes in orthography 40
Number of phonemes in phoneme set 43
Number of words in starting lexicon 4923
Total number of words in bootstrapped lexicon 8053
Number of valid words in bootstrapped lexicon 7782
Number of derived rules (Default&Refine) 1471

Fig. 2. Time taken to verify words requiring zero, one, two or three corrections, as a
function of the number of words verified. For the first three measures, the averages
were computed for blocks of five words each.

bIn prior work we have shown that even linguistically unsophisticated user can be trained to
use the bootstrapping system with high accuracy.6
cGraphemic nulls are inserted during alignment where a single grapheme maps to more
than one phoneme. See ref. 16 for a detailed description of graphemic nulls and graphemic
null generators.
dA word set associated with a rule tends to have either only one or two words associated with
it, or a large set of words: within an acceptable range, the error detection process is not
sensitive with regard to the exact cut-off point selected. e18 errors in 2838 valid words.
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• Difficulty of manual task: error_ratemanual is assumed to be <0.5%,
which is an optimistic estimate for the range of manual devel-
opment speeds evaluated.

• Manual development speed: different values of tdevelop are used for
comparison, ranging from 19.2 s, again an optimistic estimate.

• Initial set-up cost: As this is an extension of an existing system,
no further set-up cost was incurredf.
From a machine learning perspective, the following is

observed:
Predictive accuracy of current base: measured directly during

experimentation, the number of corrections required per word
added to the lexicon (inc_n(s, n)) is depicted in Fig. 3. We plot the
running average (per blocks of 50 words) of the number of
corrections as a function of the number of words verified.

On-line conversion speed: the average time taken for a synchro-
nization event was 50.15 seconds ( = 7.72 s). This value
increased gradually from 35 s during the initial cycle, to 56 s in
the final cycle.

Quality and cost of verification mechanisms: the computational
times required for both verification mechanisms are included in
the verification times. No additional processing is required.

Validity of base data: 94% of the base data was valid.
Based on our observations during this experiment, we can

assign approximate values to the different costs and efficiencies
involved during bootstrapping of an Afrikaans lexicon up to
10 000 words. We list these values in Table 3.

Using the above observations, we obtain the following
expected cost of N cycles of bootstrapping:

E t N E t E t E tbootstrap setup bootstrap train i[ ( )] [ ] [ ] [= + + terate N( )] , (8)

where:
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We assume an update event after every 100 errors (approxi-
mately 400 words verified.) As tidle is dominated by tverify(error-det)
during the initial 10 000 words, we keep this value constant
as the number of words in the training lexicon increases,g and
estimate it at:

t tverify error idle( det)( ) ( )− + =400 400 180 seconds. (10)

From Table 3 we estimate E(tverify(s, single)) as t0 + tex seconds,
where x is an indication of the number of corrections required, t0

= 2 and te = 4.5.

In order to estimate E t s E inc n s xverifyx

N
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=

−∑ 1

1
single for

different states (different numbers of corrections per word), we
smooth the number of errors across the training data — as if a
word could have only one error — and fit an exponential curve
through the accuracy measurements depicted in Fig. 3. That is,
we assume the probability that the system will predict an error
when the training lexicon is of size d is given by pe(d), where:
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and P0 and k are parameters to be estimated. The time required
for d corrections T(d)(excluding synchronization events) is then
given by:
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For the specific data depicted in Fig. 3 we obtain the estimates:
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We can combine Equations (9) and (12) in order to estimate the
value of E[titerate(d/400)] for various values of total lexicon size d:
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In Fig. 4 we plot Equation (14) for different values of d, using
the estimates from Equations (10) and (13). On the same graph
we plot the cost of manual lexicon development (again exclud-
ing set-up cost) using estimates for tdevelop(d) of 19.2 and 30 s, both
optimistic estimates. For these estimates we assume that the
same base data (or at least data with a similar validity ratio) are

Table 2. Statistics of the time taken to verify words requiring 0, 1, 2 or 3 errors, or to
identify a word as invalid or ambiguous (µ is the mean, and σ the standard
deviation.).

Verdict Time in seconds

µ σ

Correct 1.95 1.35
1 error 5.79 2.3
2 errors 10.74 3.19
3 errors 17.91 6.12
Invalid 3.39 4.71
Ambiguous 8.92 5.08

Fig. 3. The average number of corrections required per word as a function of the
number of words verified. Averages were computed for blocks of 50 words each.

fIn the previous experiment tsetup_ bootstrap –tsetup_ manual <60 min.
gThis value is influenced by the number of words corrected per cycle – a number that
remains constant per cycle.
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used for both approaches. We also assume that the error rates for
the bootstrapping system with error detection and the manual
process are approximately equal. As can be seen from the figure,
the bootstrapping approach requires significantly less effort
than the manual approach. A manual developer would have to
be able to generate a correct instance every 3 seconds, in order to
develop a comparable lexicon within the same time frame. In
Fig. 5 we plot the efficiency estimates of the bootstrapping
process as compared to a manual lexicon development process
for the same values as Fig. 4.

Conclusion
A pronunciation model is one of the key components required

for the development of speech technology in a resource-scarce
language. In this paper we developed a framework for the analy-
sis of a typical bootstrapping process, and demonstrated the
practical application of such a framework during the bootstrap-
ping of a pronunciation model in a resource-scarce language. We
reported on results for a lexicon that is large enough to be of
practical use, with final results summarized in Figs 4 and 5.

Upon completion of the Afrikaans pronunciation lexicon, two
further bootstrapped pronunciation lexicons were developed in
Zulu and Sepedi, respectively. The Zulu lexicon has since been
integrated in a general-purpose text-to-speech (TTS) system
developed in the Festival9 framework. This was accomplished as
part of the Local Language Speech Technology Initiative
(LLSTI),10 an internationally collaborative project that aims to
support the development of speech technology systems in local
languages. A small grapheme-to-phoneme rule set (84 rules

from 855 words) was generated using the bootstrapping system
and converted to the Festival letter-to-sound format. The TTS
system used the Multisyn approach to synthesis and is described
in more detail elsewhere.11,12 The completed system was evalu-
ated for intelligibility and naturalness by both technologically
sophisticated and technologically unsophisticated users.13

The Sepedi lexicon (Sepedi is a dialect of Northern Sotho) was
developed and integrated in an automatic speech recognition
(ASR) system in collaboration with partners from the University
of Limpopo. Again a fairly small number of words were boot-
strapped in order to develop a concise set of letter-to-sound
rules (90 rules from 2827 words). These were then used to
develop14 a speech recognition system using the HTK15 frame-
work.

The bootstrapping approach has been shown to be highly
efficient for the development of pronunciation lexicons. We
foresee that further application of the approach developed will
ensure the availability of pronunciation models suitable for
speech processing systems in all of South Africa’s official
languages.
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Introduction
Polymer–matrix composites are increasingly used in the aero-

space industry, particularly in the manufacture of modern
fighter planes.1–3 The number and complexity of such composites
are also increasing steadily. The aerospace industry requires
non-destructive testing (NDT) of all parts during the manufac-
turing process. In the case of composite materials, testing is
particularly necessary for detecting the presence of delaminations
and inclusions. The conventional approach involves the use of
ultrasonics, based on water jets and piezoelectric transducers. A
requirement for this process is that the transducers must be normal
to the surface to ensure good signal-to-noise ratio. Since most
modern aircraft parts have a complex geometry, this process is
slow and therefore expensive.

An alternative ultrasonic inspection technique is laser ultrasonics
(LU). In this technique two lasers are used to illuminate the part:
a short pulse laser with a wavelength chosen so as to be absorbed
by the material, and a second laser beam to detect the impact of
the ultrasonic waves. The first laser pulse is rapidly absorbed by
the material, causing fast thermal expansion, which results in
ultrasonic waves. The wave amplitudes themselves are small
enough not to cause any damage. The waves so generated propa-

gate through the material and are reflected from interfaces ( such
as defects) inside the material. On returning to the surface, the
reflected waves generate very small surface displacements of the
material. A second, narrow bandwidth, frequency stable laser is
used in conjunction with an interferometer to detect these me-
chanical displacements on the surface of the material.1–3 The ad-
vantage of LU is that these measurements can be done at large
distances from the sources and at large angles with respect to the
sample surface. This gives LU a competitive advantage and en-
sures that it is currently the NDT method of choice for the testing
of composite materials in the aerospace industry.

For efficient and reliable operation, LU requires the efficient
generation of ultrasound by the first laser pulse, which places
stringent requirements on the laser system. The properties
required of the laser pulse include good beam quality, a pulse of
short duration (<100 ns), as well as a minimum energy
(>200 mJ) and pulse repetition rate (>200 Hz) for the process to
be suitable for industrial applications. Furthermore, since these
systems will typically be used in a production environment, the
final design must result in a laser system that is reliable (with low
downtime) and economical. Numerical simulations and experi-
mental investigations have indicated that generation efficiency
can be improved by using short pulses in the 3–4 µm and 10 µm
spectral regions.1 Short-pulse 10-µm radiation can be produced
by transversely excited, atmospheric CO2 (TEA CO2) lasers. Ow-
ing to the technological maturity of these lasers, they are
particularly suited to industrial environments.

In this paper we discuss the design of a TEA CO2 laser for LU
applications. We cover the basic laser parameters to be optimized,
and report experimental data for the optimization of the output
coupler reflectivity and gas mix. The impact on laser chemistry is
discussed in detail.

Laser parameters
It is useful to start with a summary of the important laser

parameters for LU, and their interrelationships. Since the parame-
ters are not independent of one another, the critical aspect of the
parameter testing is to explore regimes in terms of combinations
of parameters. Only in some cases can the parameters be chosen
independently. For LU a strong ultrasonic signal at as high a
repetition rate as possible must be generated. The strong signal
ensures a good signal-to-noise ratio, while a higher repetition
rate allows more samples to be tested in a given time, thereby
increasing productivity. The LU signal is a product of the effi-
ciency of the laser pulse in generating ultrasound, determined

Laser ultrasonics is currently the optimal method for non-destructive
testing of composite materials in the aerospace industry. The
process is based on a laser-generated, ultrasound wave which
propagates inside the composite. The response at the material
surface is detected and converted into a defect map across the
aircraft. The design and optimization of a laser system for this
application, together with the basic science involved, is reviewed in
this paper. This includes the optimization of laser parameters, such
as output couplers and gas mixture, and the impact these choices
have on the laser chemistry. We present a theory for the catalytic
recombination of the gas which shows excellent agreement with
experiment. Finally, an operating laser system for this application,
yielding a sixfold improvement in performance over conventional
laser systems, is described.
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