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more difficult when the task of interest is a closed-loop task; that is, a task where the output
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excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor
control for an arbitrary system with unknown external forces. Using these benchmarks, we show
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randomly generated family of closed-loop simulations, even when there are up to 15 interacting
joints to be controlled.

   

  Ethics statement

  (Authors are required to state the ethical considerations of their study in the manuscript including for cases
where the study was exempt from ethical approval procedures.)

Did the study presented in the manuscript involve human or animal subjects: No

In review



1

Closed-loop Neuromorphic Benchmarks
Terrence C. Stewart 1,∗, Travis DeWolf 1, Ashley Kleinhans 2 and Chris
Eliasmith 1

1Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada
2Mobile Intelligent Autonomous Systems group, Council for Scientific and Industrial
Research, Pretoria, South Africa
Correspondence*:
Terrence C. Stewart
Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada,
tcstewar@uwaterloo.ca

ABSTRACT2

Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even3
more difficult when the task of interest is a closed-loop task; that is, a task where the output4
from the neuromorphic hardware affects some environment, which then in turn affects the5
hardware’s future input. However, closed-loop situations are one of the primary potential uses of6
neuromorphic hardware. To address this, we present a methodology for generating closed-loop7
benchmarks that makes use of a hybrid of real physical embodiment and a type of “minimal”8
simulation. Minimal simulation has been shown to lead to robust real-world performance, while9
still maintaining the practical advantages of simulation, such as making it easy for the same10
benchmark to be used by many researchers. This method is flexible enough to allow researchers11
to explicitly modify the benchmarks to identify specific task domains where particular hardware12
excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor13
control for an arbitrary system with unknown external forces. Using these benchmarks, we show14
that an error-driven learning rule can consistently improve motor control performance across a15
randomly generated family of closed-loop simulations, even when there are up to 15 interacting16
joints to be controlled.17

Keywords: neuromorphic hardware, benchmarking, minimal simulation, adaptive control, neural networks18

1 INTRODUCTION

Neuromorphic hardware holds great promise for a wide variety of applications. The combination of19
massively parallel computation and low power consumption means that there is the potential to have20
complex algorithms running in embedded processing situations, without being a significant drain on21
available energy. A crucial challenge is to identify what sort of always-on or interactive functionality can22
best exploit these devices.23

To evaluate applications of neuromorphic hardware, we need benchmark tasks. These tasks must allow us24
to compare across different instances of neuromorphic hardware (and potentially across different algorithms25
implemented in that hardware). Good benchmarks will allow us to quantitatively compare systems, letting26
researchers both measure the progress in the field, and also directly compare competing approaches.27

1
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In this paper, we focus on the development of closed-loop benchmarks. These are dynamic tasks where28
the output of the neuromorphic hardware influences its own future input through some environment. This is29
in contrast to standard categorization or pattern identification tasks, where the input is some fixed sequence30
and the hardware must produce the correct output for each input (or input pattern).31

We believe closed-loop benchmarks should be of particular interest to neuromorphic research, given that32
the most compelling applications of neuromorphic hardware are likely to be in this domain of embedded33
and interactive control of robotic or other physical systems. However, the closed loop itself raises a number34
of issues that complicate the development of such benchmarks. Rather than simply providing a data file35
of inputs and desired outputs, the benchmark must either specify a full physical system to be controlled,36
or it must provide software for a simulation of that system. As we discuss below, both approaches are37
problematic. Describing a method for overcoming these shortcomings is the primary goal of this paper.38

2 CLOSED-LOOP BENCHMARKS

A closed-loop benchmark task is one where the system we are studying has a two-way interaction with39
some sort of environment. That is, the outputs from the neuromorphic hardware are sent to the environment40
where they cause an effect, the results of which change the subsequent input. For example, the outputs41
might control the movement of a robot, which in turn affects the sensory data received by the robot.42

2.1 Simulation versus Physical Instantiation43

To define a closed-loop benchmark, we need to be explicit about the interaction with the environment. If44
a robot is to be controlled, we need to specify all of the details of that robot. What motors does it have?45
How are they configured? How strong are they? What sensors are there? Where are they placed? How46
accurate are they? However, even if these questions are answered, there is a fundamental problem in that47
other researchers need access to that exact robot. If a benchmark is to be widely used, other researchers48
developing their own neuromorphic hardware should be able to do their own testing on the same benchmark49
system.50

Furthermore, using a physical robot imposes significant practical difficulties when performing extensive51
benchmark testing. When testing, we often want to run the same task over and over again, both for52
robustness and to see the effects of varying parameters. With a physical robot, this means manually setting53
up the task, letting the test run, gathering the resulting data, and then resetting the robot back to the initial54
state. Consequently, issues like battery life become problematic, and not just because there is a limited55
amount of time available for testing. As the battery level changes, the performance of the robot itself can56
also change. Futhermore, for any rigorous testing of the benchmark, we will want to examine situations57
where the system fails. This means that some of the testing will involve parameter settings that lead to poor58
behaviour, which might have the undesirable result of causing physical damage.59

However, not using a real physical embodiment for testing is also problematic. First and foremost, without60
an actual real-world task, why should we have any confidence that the performance on the benchmark is61
reflective of the actual usefulness of the neuromorphic hardware? It is widely known that simulations of62
robots (or other physical systems) are often much easier to control and better-behaved than the real thing63
(see Jakobi et al. 1995; Koos et al. 2013). The field of robotics is filled with algorithms that work well “in64
theory,” but fail when run on actual hardware. We do not want a benchmark that falls into this trap, giving65
high scores to hardware that does not turn out to function well when deployed in real situations.66
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In review



Stewart et al. Closed-loop Neuromorphic Benchmarks

A variety of robotics simulators, such as Webots and Gazebo, already exist and are intended for evaluating67
robotics performance. These are extremely useful, but have two important limitations. First, they are68
generally meant to evaluate one particular robot body, and it is difficult to, for example, automatically69
generate a large number of different physical bodies to evaluate over. This means that such a system is70
good for evaluating a particular control system for a particular robot body, but is not suitable for the more71
general question of how well the control system will work over a large space of different robot bodies.72
Second, these simulators tend to run slower than real-time. Typically, when a simulation is too simple to73
reflect reality, more details are added to the simulation itself. Incredibly finely detailed simulations can74
be created, filling in all of the details needed. However, accurate modelling of physical systems can very75
quickly become impractical to run in real time. This is a fundamental problem, in that neuromorphic76
hardware is often tied to real-time interactions, and there can be no way to slow down the hardware to77
match the simulated environment. This means that even if we spent the considerable amount of research78
effort needed to define a simulated environment for a closed-loop benchmark, running that simulation fast79
enough to interact with the desired hardware would require significant computing resources. Indeed, one80
of the major efforts in the Neurorobotics section of the Human Brain Project is to develop exactly this81
sort of computing infrastructure (Hinkel et al. 2015), with a dedicated supercomputer to run the physics82
simulations. Until this hardware is publically available (and until software is available to create a variety of83
physical robot models), this approach is problematic for other researchers.84

We are thus left with a situation where any benchmark we might define for a closed-loop task will85
be impractical for different researchers to run (if it is physically embodied), inapplicable to real-world86
situations (if it is a simulation that is simple enough to run in real-time), or impossible to connect to some87
neuromorphic hardware (if it is a simulation that runs slower than real-time). We thus need a new approach88
to provide a sharable real-time simulation that is robust enough that neuromorphic hardware that learns to89
deal with the simulation might also be able to deal with reality.90

2.2 Minimal Simulation91

The above considerations could be taken as an argument that even though using real-world physical92
hardware for benchmarking is problematic, it is still better than using simplistic simulations which may93
not generalize to real tasks. However, we do not think this is the case. Instead, we believe neuromorphic94
benchmarking can effectively exploit an approach known as Minimal Simulation (Jakobi 1997).95

This approach was first suggested in the context of evolutionary robotics. Notably, the problem faced by96
closed-loop neuromorphic benchmarking is remarkably similar to that faced earlier by these researchers. In97
evolutionary robotics, the goal is to use genetic algorithms to evolve systems that can control robots to98
perform various tasks. These tasks can be as simple as navigation and obstacle avoidance, but have also99
included more difficult tasks such as walking, collecting objects, and visual tracking (Nolfi and Floreano100
2000).101

However, performing evolution on real physical robots is problematic for the same reasons that102
benchmarks on physical robots are problematic. The robots must be reset to the same state each time; they103
often involve behaviour that can physically damage the robots; and they take a very long time to run. For104
this reason, attempts were made to evolve algorithms using simulated robots. However, the general finding105
was that algorithms that worked on the simulated robots would not work when run on the real physical106
robots. If the simulations were improved, adding complex physical detail, then it was possible to generalize107
to real behaviour; unfortunately, such complex simulations would run slower than real-time (see Husbands108
and Harvey 1992; Husbands et al. 1993).109
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To address this problem, Jakobi (1997) proposed the creation of “minimal” simulations. These are110
simulations where there is variability within the simulation itself. In other words, we make poor simulations,111
but ensure that the way in which they are poor is itself variable. We are then in a position to ensure that112
the controllers work across that whole range of variability. “Instead of trying to eliminate the differences113
between simulation and reality, they are acknowledged, and mechanisms are put in place to prevent evolving114
controllers from relying on them.” (Jakobi, 1998, p. 48)115

With this approach, it became possible to build minimal simulations that would run faster than real-time116
and yet also be complex enough that if a system could successfully control the simulation, it was also117
likely to successfully control a real robot. To achieve this kind of transfer, the simulations were made to be118
unreliable in almost every respect. For example, for a simulation of a simple motor it would still be the119
case that if power is applied it would generally try to spin, but the exact amount of torque, the amount of120
sensory noise, the amount of time needed, the amount of static and dynamic friction, and so on would all121
be randomly chosen. A successful controller would have to deal with this wide range of variability, and if it122
could handle that variability then there would be reason to believe it could also handle the real physical123
system.124

It is worth noting that a minimal simulation only has to be a good simulation for successful behaviour.125
That is, “if we are evolving corridor following behaviour, the dynamics of the simulation might differ126
wildly from those of reality if the controller hits a wall or goes round in circles, but this does not matter,127
since the controllers we are interested in transferring across the reality gap will neither hit walls nor go128
round in circles.” (Jakobi, 1998, p. 41) If the controller is poor, we do not need the simulation to be at all129
accurate in exactly how that poor behaviour is manifest. We do not need an exact detailed physics model130
of the collision between a robot and a wall, or a detailed model of what happens to a robot arm when it131
starts oscillating wildly due to a poor control signal. All we need is for the simulation to be just good132
enough to indicate that things have gone wrong, and thus give a low score to that controller. This means133
that, for example, in a minimal simulation of an eight-legged walking robot, it is not necessary to have134
a physics simulation that correctly models what happens when two legs collide with each other. Rather,135
if legs collide with each other, that is an indication that the walking behaviour is very poor. As long as136
that result is indicated we can greatly simplify the simulation by not including all the details necessary137
to model these complex physical interactions. This approach was successfully used to develop models of138
multi-legged walking robots (Jakobi 1998; Meyer et al. 2003) and vision-based tracking of a moving object139
(Nolfi and Floreano 2000).140

2.3 Minimal Simulation for Benchmarking141

Although minimal simulation has not previously been used outside the domain of evolutionary robotics,142
we propose using minimal simulation for neuromorphic benchmarks. We would argue that one important143
use of a benchmark is generalization. That is, by knowing how well particular hardware performs on a144
benchmark, you can reasonably infer how well that hardware will perform in other situations. For example,145
if an image recognition algorithm performs well on the MNIST hand-written digit recognition benchmark,146
this suggests that it may also perform well on a different recognition task. Of course, this inference will147
fail if that algorithm has been specifically over-fit to that situation. For that reason, it is useful to have148
benchmarks that cover a wide range of variations on the task. If the hardware performs well across that149
variability, then it is more likely to also work in sufficiently similar new situations.150

To achieve this kind of transfer, we need software simulations of the environment for the task. These151
simulations must be fast enough to run in real time (so that they can be controlled by real neuromorphic152
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hardware), and they must be extremely variable, to encourage robustness of the methods being benchmarked.153
Each time the simulation is run, different parameters will be chosen to give significant variability (so154
one run might have a large degree of sensor noise while the next run has none at all; one run might have155
more delay in the motor response and another might have less power available). Being successful at the156
benchmark means being successful across all this variability.157

The result is a benchmark that can be used by any researcher. The fact that it is a simulation means that158
source code can be shared, and that no specialized hardware is needed. Furthermore, the variability in159
the simulation itself can be controlled, and this can help give a rich characterization of the benchmarked160
hardware. For example, some hardware might only work with small amounts of sensor noise, while other161
hardware might be most effective when there is significant delay in the motor response. This flexibility in162
parameters in the benchmark allows researchers to explicitly characterize those particular situations where163
their hardware excels.164

2.4 Cost-Effective Robotics165

The minimal simulation described above forms the core of our method for generating benchmarks. The166
purpose of these benchmarks is that is that they should do a reasonable job of generalizing to real-world167
physical tasks. Consequently, it is important to supplement simulation benchmarks with at least one168
easy-to-construct physical analog. This physical version would be one particular instance of the type of169
situation the benchmarks are meant to cover. For that reason, the physical task is much more restrictive170
in terms of what general conclusions can be drawn from how well different hardware performs in that171
situation. Rather, the purpose is to give an explicit double-check that hardware that performs well on the172
simulation benchmarks also perform well in a physical environment.173

To keep the physical aspect simple, we recommend cheap, cost-effective, widely-available components.174
This allows a greater chance for other researchers to have access to the same (or similar) hardware. For175
the particular example benchmark described in the next section, we use the Lego Mindstorms EV3 kit, a176
simple robotics platform available at most toy stores.177

It is important to note that there is a theoretical advantage to using simple robotics hardware for178
benchmarking, in addition to the practical advantages. In particular, we do not want benchmarks that179
rely on high-speed, high-accuracy devices. The purpose of benchmarks is not to indicate how well180
this neuromorphic hardware works to control this particular robot in this task. Rather, the purpose of a181
benchmark is to characterise how well some specific neuromorphic hardware works on a task in general. The182
variability introduced in the minimal simulation means that the hardware should be able to function across183
a wide variety of physical embodiments, and so if we are to choose one particular physical embodiment to184
test in the real world, then we should choose one that is not high-precision. For this reason, we believe185
using Lego robots is actually more informative for benchmarking than expensive high-precision robots.1186

3 EXAMPLE: ADAPTIVE MOTOR CONTROL

To demonstrate this approach to creating closed-loop neuromorphic benchmarks, we now consider a basic187
control task. Suppose we have a system with a number of joints with positions q = [q1, q2, ..., qn] and we188
want to send a control signal u = [u1, u2, ..., un] to the motors at each joint such that the joints move to a189
particular desired position qd = [qd,1, qd,2, ..., qd,n]. The only output from the controller is the signal u and190
the inputs are the current position of each motor q and the desired positions qd.191

1 Of course, for more complex benchmark tasks we may need sensory and motor capabilities that are beyond that of a simple Lego robot.
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The simplest controller for such a situation is a P (proportional) controller, where u = Kp(qd − q). This192
is often supplemented with a D (derivative) term, which helps to slow the system down as it approaches the193
desired position, thus avoiding overshoot and oscillation. This combination of terms leads to the standard194
PD controller u = Kp(qd − q) +Kd(q̇d − q̇). Both Kp and Kd are constants that can be tuned to particular195
situations.196

However, this controller has difficulty in the presence of significant external forces. For example, consider197
a single motor controlling the angle of a single arm. If the arm is held out to the side, gravity acting on the198
mass of the arm itself will pull the arm downward. Thus to hold the arm still at a particular qd will require199
the controller to apply a force to counteract gravity. Since the PD controller always produces an output200
u = 0 when q = qd, it cannot compensate for gravity, and so the arm will stay stationary at some angle201
below the desired angle (Figure 1).202

The standard solution to this steady-state error is to add an I (integral) term (Ki

∫
(qd − q)dt) to the203

controller, making it a PID controller. As the difference between where it is (q) and where we want it to be204
(qd) accumulates over time, the Ki term will gradually increase the extra controlled force u that is being205
applied until it is large enough to counteract the external force of gravity (or whatever other external forces206
are present). However, this approach has great difficulty when qd changes, since the external force due to207
gravity changes depending on the position of the arm q. The controller ends up having to “relearn” the208
correct amount of extra force needed every time qd changes.209

In some robotics applications, this problem is solved by mathematically analyzing the geometry and210
mass of the system to compute exactly how much extra force is needed. In this particular case, the answer211
is straight-forward, in that the extra torque due to gravity is τ = mg l

2sin(q), where m is the mass of the212
arm, l is the length, and g is 9.8m/s2. If the force applied by the motor is linear in u, then we could simply213
compute this value and add it to our controller’s output. However, this assumes a perfectly even distribution214
of weight in the arm, ignores momentum, friction, and other forces, and gets much more complex as more215
joints are added. Furthermore, if this initial computation is slightly off, or if details of the system change,216
there is no way to adjust this compensation.217

Fortunately, there is an adaptive solution to this problem, and it is one that fits well with neuromorphic218
hardware. Slotine and Li (1987) show that if you express the influence of the external forces as τ = Y (q)ω219
(where Y (q) is a fixed set of functions of q, such as sin(q), and ω is a vector of scalar weights, one for220
each function in Y ), then you can learn to compensate for these external forces by using the learning rule221
∆ω = αY (q)u, where u is the basic PD control signal.222

Importantly, as pointed out by Sanner and Slotine (1992) and Lewis (1996), rather than making explicit223
assumptions about the exact functions that should be in Y (q), we can use a neural network approach where224
each neuron is a different function of q. As long as there is enough hetereogenetity (i.e. as long as the225
neural activity forms a basis space that is capable of approximating the external forces), then the learning226
rule will continue to work. This approach has been extended to biologically plausible neurons and been227
used in both the Recurrent Error-driven Adaptive Control Hierarchy (REACH) model of human motor228
control (DeWolf 2014) and quadcopter control (Komer 2015).229

These considerations suggest that there is a neuromorphic-friendly family of algorithms to address230
the general problem of controlling a wide variety of physical systems. Identifying those algorithms will231
allow us to benchmark their performance across example tasks and physical configurations. To implement232
these algorithms, the input to the neuromorphic hardware is q, the system state. This input is fed to each233
neuron such that each neuron produces some output activity that is based on this input. Since q will be234
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multi-dimensional (if there is more than one joint), we may give each neuron a random weighting of each q235
value (Ji = ei · q + bi, where Ji is the input to neuron i, and ei is a randomly chosen vector2, and bi is a236
randomly chosen bias term). Given this input, the neurons will produce some output A. We now form a237
weighted sum of these outputs Ad, where d is a matrix (number of neurons by number of elements in q)238
that is initially all zeros.239

To use this controller, we add its output to that of the standard PD controller. That is, the standard240
controller has u = Kp(qd − q) + Kd(q̇d − q̇), and so our actual output to the motor is u + Ad. We then241
apply a learning rule on d such that ∆d = αA× u. Here, α is a learning rate and the cross product is used242
so that we are applying the learning rule on all the joints simultaneously.243

Notice that we can think of this system as a three-layer neural network, where the input and output layers244
are linear. The first layer is q, the input state, one value for each joint. The “hidden” layer is the neurons245
producing activities A, the activity of a large number of neurons. The output layer again has one value per246
joint, and is the extra added signal to apply to the motors, Ad. Given that this is a canonical example of247
the use of neural networks, we expect that the majority of neuromorphic hardware is flexible enough to248
implement this model. Importantly, it functions well with spiking neuron models as well as non-spiking249
ones. For spiking neurons, we consider A to be the instantaneous measure of the output of a neuron (i.e.250
whether or not it is currently outputting a spike), filtered through a low-pass filter. Further discussion of251
this sort of learning rule and comparison to biological spiking neurons can be found in (Bekolay et al.252
2013). This type of neural modelling forms the foundation of Eliasmith and Anderson (2003)’s Neural253
Engineering Framework, which has shown that spiking and non-spiking neurons can be used in this manner254
to implement a wide variety of computations (e.g., Stewart and Eliasmith 2014).255

It should be noted that, while this algorithm fits well into neuromorphic hardware, other hardware might256
be better (in terms of accuracy, energy efficiency, cost, or even development time). Answering this sort257
of question is exactly why we need to use a benchmark that can compare multiple different hardware258
implementations of this algorithm. Furthermore, since some hardware may be better in different situations,259
we need a benchmark that has flexible parameters, rather than one that is based on a single particular260
physical system.261

3.1 Online and Offline Learning262

The rule for modifying the weights d described here is of a very common form, as the weight update263
from a neuron is proportional to the activity of that neuron and an external error signal. This makes it an264
instance of the ubiquitous delta rule. Thus, neuromorphic hardware that has built-in learning will often be265
able to natively support this rule. However, some neuromorphic hardware does not intrinsically have the266
ability to update connection weights in this manner.267

In that case, there are at least two possible ways to implement this algorithm. First, the multiplication268
by d can be done on the output from the neuromorphic hardware. Any closed-loop neuromorphic system269
will have some method that takes the neural output from the hardware and sends it to the motors (or to the270
simulation of the motors). Instead of sending the result of Ad, the hardware could send A (the activity of271
all the neurons), and the interface to the motor can be responsible for doing the multiplication by d and272
updating d according to the learning rule.273

2 e could also be chosen so as to regularly span the space of possibilities, or could be learned using some back-propagation of error method. Here, for simplicity,
we only consider the approach of randomly selecting ei and bi.
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Alternatively, it may be possible to use offline learning. That is, rather than updating the weights d during274
the simulation, we record A and u, and after a period of time stop the controller, compute the sum of the275
changes to d, load the new value of d onto the neuromorphic hardware, and start the controller again.276

Given this variety of options for implementing adaptive algorithms of this type, we believe it should be277
possible to benchmark most neuromorphic systems on adaptive control tasks in this manner.278

3.2 Minimal Simulation for Adaptive Control279

Now that we have defined the task domain, we can use the principles of minimal simulation to construct280
a flexible and variable simulated environment for testing adaptive control. In this case, we would like281
to develop a bare-bones simulation of the system being controlled, with significant variability. If the282
neuromorphic controller works well across this variability, then it is likely to work well outside of283
simulation as well.284

The basic system variable is a vector of joint angles q. Each joint has a velocity v. The force applied by285
each motor is related to the signal u sent to the motors, but will generally have some maximum value T , so286
we use tanh(u)T to determine the force as a function of the control signal. To account for friction, we287
scale the velocity by some factor F every time step. This results in the simplistic simulation described by:288

∆v = −vF + tanh(u)T (1)

∆q = v (2)

In addition, we add an external perturbing force. In a real system, this could be the effects of gravity289
given the current configuration of the motors, or of other unexpected influences. Rather than choosing290
one particular fixed external force for our benchmark, we randomly generate this force each time the291
benchmark is run. This ensures that the benchmark covers a wide range of possible external forces and292
motor configurations, rather than just one particular situation.293

Specifically, to generate this force, we start with a small set of smooth functions f which are often found294
in dynamics equations (x, x2, sin(x)). We then generate an external force of Kf (ζ · f(β · q + γ) + η)295
where ζ, β, γ, and η are all random vectors and Kf is a scaling factor to control how strong the external296
force is. The result is added to Equation 1. For example, if q is 4-dimensional (i.e. if there are four joints297
being controlled) and if there are three smooth functions in f , then β, γ, and η are all vectors of length 4298
and ζ is a 4x12 matrix. To introduce significant variability, all of these values are randomly chosen from299
the normal distribution N(0, 1).300

To complete the simulation, we introduce additional sources of variability: random noise, delay, and301
filtering to both the input and the output of the system. For noise, we add N(0, σu) to the control signal u302
and N(0, σq) to the q value reported back to the controller. We also use a low-pass filter to smooth both303
values (with time constants τu and τq) after this noise is added, giving a damping effect. Finally, both q and304
u are delayed by an amount of time tq and tu to reflect communication delays that are common in physical305
systems.306

The resulting simulation is not meant to be an accurate portrayal of a particular physical embodiment.307
Rather, this simulation is meant to be extremely fast to simulate, and it is meant to be similarly difficult to308
control as a real system. In other words, if a controller manages to be able to control the various randomly309
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created minimal simulations of embodiment that are generated with this approach, then we have reason310
to believe that it will also be successful at controlling real embodiments. With this minimal simulation311
and modern computers, we can run real-time simulations of systems with dozens of joints that have highly312
complex interactions between them. Consequently, we can effectively benchmark how well an adaptive313
controller deals with these situations.314

3.3 Calibrating the Minimal Simulation via Cost-Effective Robotics315

It is important to ensure that the minimal simulation defined in the previous section is representative of316
the sorts of real-world situations in which we want to use these same controllers. Importantly, this physical317
instantiation does not have to exactly match any particular parameter setting of the minimal simulation.318
Rather, we want a physical system that shares basic functional similarities to the minimal simulation319
defined previously.320

For example, we want the inputs to the system to act like u, in that a positive number will increase some321
velocity v which will in turn increase some sensor value q. We want there to be some sort of external322
applied force that affects q, and we want that external force itself to be a function of q. We want there323
to be communication delays and noise in the sensor and motor systems, and we want all of these effects324
to be somewhere within the ranges covered by the minimal simulation. While implementing this kind of325
hardware analog cannot guarantee that neuromorphic hardware that is successful in simulation will be326
successful in every similar real-world task, it does provide an existence proof that there is at least one327
real-world task where the hardware performs similarly to how it performs in simulation.328

For our specific demonstration, we describe an easy-to-build system that can be usefully controlled by329
this adaptive method. In particular, we use the Lego Mindstorms EV3 robot kit, organized as shown in330
Figure 2. It consists of a single motor, mounted such that the full weight of a second (unused) motor331
applies a significant force on the arm itself. Multiple motors can be added, and other configurations can be332
considered and should also be suitable for benchmarking, but here we consider only this basic case.333

To interface to the physical hardware, we installed the ev3dev operating system (http://ev3dev.org),334
a Debian-based Linux system specifically developed for the EV3. We then installed and ran the ev3_link335
program from ev3dev-c (https://github.com/in4lio/ev3dev-c). This allows the EV3 to336
listen for UDP commands that tell it to set motor values and read sensor values. Communication with337
a PC was over a USB link (although the system also supports WiFi communication). With constant338
communication, the system is able to adjust the power sent to the motors u and give position feedback q339
from those motors at a rate of around 200Hz.340

Figure 3 shows the effects of adaptive control on this physical system. Without adaptation (i.e. with a341
simple PD controller), there system state q (the joint angle) overshoots the desired qd. This overshoot is342
largest when q is large. This is because the external force applied to the joint due to gravity is proportional343
to sin(q). The q value also overshoots and comes back part-way, due to physical momentum.344

However, with adaptation (the right-hand side of Figure 3), the system learns to counteract this extra345
force due to gravity. After the first 5 seconds, the system is able to bring q much closer to the desired qd.346
Figure 4 shows the average improvement over 50 experimental runs with different randomly-generated347
desired target paths qd(t). Adaptation provides a clear improvement.348

Now that we have this physical example of the task out minimal simulation benchmark is meant to cover,349
we can use it to calibrate the parameters of the simulation. For example, to characterize the communication350
delay between the computing hardware and the EV3 robot, we simply measure the number of times per351
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second we can send a motor command u and read the position of the motor q per second. This works352
because the ev3_link software is entirely synchronous and only responds with motor positions when it353
processes a command to do so. This rate of communication averaged 154-156Hz (95% bootstrap confidence354
interval over 100 trials) with a standard deviation of 3.3-4.7Hz (95% bootstrap C.I.). This indicates a355
round-trip delay on the order of 0.006 seconds. Given this, we set the delays in the simulation to be356
uniformly chosen between 0 and 0.01, so that the minimal simulation covers delay conditions even worse357
than those seen in the EV3 robot.358

For sensor noise, we note that the EV3 rotation encoders for the motors (the devices that measure q) have359
a resolution of 0.0175 radians (1 degree). This is a very different sort of noise than the Gaussian noise used360
in the simulation, so we set the simulation noise σq to be much larger (uniformly distributed between 0361
and 0.1). Similarly, the motor resolution is 0.01, as it accepts integer values up to 100, so we set the motor362
noise σu to be uniform between 0 and 0.1.363

Finally, we can use the physical system to calibrate the relationship between T (the maximum torque364
applied by the motor) and Kf (the scaling factor of the external force). After all, we do not want external365
forces that are so strong that the system does not have enough strength to counteract them. To measure this366
on the physical robot, we applied a standard PID controller with a target qd of π/2 (the position at which367
maximum torque must be applied to counteract gravity). After giving the system 5 seconds to stabilize, we368
recorded the required motor command sent to the robot (from -1 to +1). On average, this was 0.11 to 0.16369
(95% bootstrap confidence interval over 50 trials), with a standard deviation of 0.07 to 0.12 (95% bootstrap370
C.I.), and a maximum value of 0.36. Considering this a worst-case scenario, if we arbitrarily fix Kf to 1371
and randomly generate external forces given the process described above, then 95% of the time we get372
values between -3.75 and +3.75. Since we want the motors to be strong enough to compensate for forces in373
that range, we set T to 10 (≈ 3.75/0.36).374

4 BENCHMARK ANALYSIS

To run a benchmark using the proposed minimal simulation approach, there are four main steps: 1. identify375
the neuromorphic hardware to be tested; 2. construct the minimal simulation; 3. determine a metric (e.g.376
root-mean-squared error; rmse) to record; 4. specify distributions for any parameters in the simulation.377
We then perform multiple runs of the simulation, each time choosing different values from the parameter378
distributions. For each run, we reset the hardware to its initial state, so there is no learning from one run to379
the next. This means our metric indicates how well the system will perform on a single environment, rather380
than attempting to use the same learned parameters across different environments. We can then plot how381
the metric varies as a function of a particular parameter of interest, or how it compares across different382
hardware for a given set of parameter distributions.383

For example, Figure 5 shows the root-mean-squared error (rmse) between q and qd for three different384
hardware systems. For this benchmark, tq, tu, τq, and τu are chosen from U(0, 0.01) (the uniform385
distribution), σq and σu are from U(0, 0.1), and β, γ, η, and ζ are all N(0, 1). As discussed above, Kf is 1386
and T is 10. qd is set to be Gaussian white noise with a maximum frequency of 1Hz and RMS power of 1.387
Each simulation is run for 20 seconds, and the error is computed on the last 10 seconds.388

For each of three hardware platforms, we implemented the neural control system with the learning rule389
described above. That is, we started with a standard non-neural PD controller that produced an output u.390
The state information q was fed into a group of neurons using randomly generated input weights, producing391
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output activity A. The actual output to the motor was u + Ad where d is a vector of learned weights,392
initialized to all zeros. The learning rule was ∆d = αA× u, and the learning rate α was fixed at 0.001.393

The first hardware tested on this benchmark is an Intel i5-3337U CPU running at 1.80GHz. This is not394
neuromorphic hardware, but provides a useful baseline. The learning algorithm was implemented using395
Nengo, a software toolkit for developing large-scale neural models that can be run on various hardware396
platforms (Bekolay et al. 2014). For the neuron model, we used 500 spiking Leaky-Integrate-and-Fire (LIF)397
neurons.398

The second hardware used to generate Figure 5 is an Nvidia Tesla C2075 GPU, hardware that is often399
used for special purpose computing and neural network simulations. The same Nengo implementation400
was used, but retargetted to run on the GPU using OpenCL, with the same neuron model and number of401
neurons as the CPU.402

The third hardware system benchmarked is SpiNNaker (Furber et al. 2014). This neuromorphic hardware403
consists of 18 ARM processors on a single chip, optimized for running neural models. Thanks to a404
SpiNNaker implementation for Nengo (Mundy et al. 2015), the same Nengo implementation that was405
used on the CPU and GPU is run on this hardware as well. Importantly, while the basic neuron model406
is the same, the actual implementation of this neuron model on SpiNNaker is very different from the407
implementation on the CPU and GPU, in that it relies on fixed-point computations and an asynchronous408
on-chip communication system.409

All three hardware systems drastically improve performance on this task, as compared to the non-adaptive410
controller.411

4.1 Computational Power Benchmark412

In Figure 5, all three systems perform equally well. This means that the timing and accuracy differences413
between the fixed-point asynchronous SpiNNaker implementation and the floating-point synchronous414
CPU/GPU impementations do not affect performance on this task. However, on that benchmark all three415
systems are implementing exactly 500 neurons. This demonstrates that the differences in neuron model416
across that hardware does not significantly impact performance. Given that closed-loop models rely on417
real-time simulation, it is also important to determine how many neurons each piece of hardware is capable418
of running in real time. This is shown in Figure 6. With the current implementation, including both the419
Leaky Integrate-and-Fire neuron model and the learning rule, the CPU can run 5200 neurons, the GPU420
1500 neurons, and a single SpiNNaker core can run 500 neurons (or 500 × 16 = 8000 neurons for the421
whole chip). These values were measured empirically with the current versions of the reference Nengo422
implementation, the Nengo OpenCL implementation, and the Nengo SpiNNaker implementation (as of423
August 10, 2015). All other parameters are as before.424

4.2 Computational Efficiency Benchmark425

While it is possible to run large neural models on standard CPUs and GPUs, one of the primary advantages426
of neuromorphic hardware is its power efficiency. For this reason, the third benchmark normalizes the427
number of neurons based on power consumption. With a power budget of 1W per chip (with 16 used cores),428
we estimate 0.0625W for the 500 neurons used here and round up to 0.1W to be conservative. Neither the429
CPU nor the GPU are designed to run on that little power. For this reason, on this benchmark we scale the430
number of neurons by the power consumption of the hardware. For this power consumption we measure431
the difference between the idle power consumption and the consumption when running the benchmark.432
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For the Intel i5-3337U this was 34W − 11.5W = 22.5W and for the Nvidia Tesla C2075 GPU this was433
74W − 70W = 4W . This value is much lower than the peak power consumption supported by the GPU434
(215W ), indicating that the current implementation does not make extensive use of the GPU for this task.435
Indeed, initial analysis indicates that the main bottleneck is communication between the GPU and the436
environment (i.e., the minimal simulation), and we feel it is appropriate that this benchmark captures that437
limitation of the current GPU implementation. The GPU could easily run many more neurons than this in438
real time, if those neurons were not connected to an environment. However, that would not be useful for a439
closed-loop task.440

Given the above considerations, the benchmark indicates that the CPU can run 23 neurons per 0.1W, the441
GPU 38 neurons per 0.1W, and SpiNNaker can run 500 neurons per 0.1W. As shown in Figure 7, while the442
GPU outperforms the CPU on this task, the neuromorphic hardware outperforms both of them.443

4.3 Communication Delay Benchmark444

We can also use minimal simulation benchmarks to examine the effects of various parameters in the445
model. For example, Figure 8 shows the effect of increasing the delays tq and tu. Importantly, the range on446
the delay parameters is larger than in previous benchmarks (U(0, 0.04) rather than U(0, 0.01)). Figure 8447
shows that if the delay is short (less than 0.02), the controller performs well, and if it is very large (greater448
than 0.03), the controller performs poorly. However, for delays between 0.02 and 0.03, the controller449
sometimes performs well and sometimes performs poorly. The difference is due to the other random450
parameters in the system. Interestingly, SpiNNaker performs better on this task than the CPU (the GPU451
data is equivalent to the CPU and is not shown). This is somewhat surprising, as we are currently using452
the slow Ethernet interface to SpiNNaker, rather than the high-speed I/O system that is meant for motor453
control. Further analysis is needed to determine exactly why this is the case.454

4.4 Scaling Benchmark455

As a final comparison, we look at how this algorithm scales as the number of neurons increases and as the456
number of controlled motors N increases. This is a crucial benchmark, as the complexity of the task itself457
quickly increases with N because the function computing the force applied at each joint is an interaction of458
all the joint angles q. Consequently, the number of parameter interactions in ithe external force that the459
neural system must learn to predict increases in exponentially as N increases. The quality of the control is460
thus dependent on how good an approximation the neurons can make of this complex nonlinear function.461

As shown in Figure 9, adapting for unknown interacting forces on 15 joints is possible with 500 neurons.462
This gives an indication of how many neurons are needed for different tasks, and suggests that this controller463
could be used to control larger systems than those tested here.464

5 DISCUSSION

While the primary purpose of this paper is in describing the benchmarking methodology, it is also worth465
noting that these benchmarks indicate that the neuromorphic learning rule under investigation here is quite466
robust. As shown in Figure 9, even just 500 neurons can consistently adapt to control a randomly generated467
15-joint body simulation, and deal with larger delays and noise than were seen in the example 1-joint468
physical embodiment. Since this learning system is robust across such a wide range of conditions, and since469
it is efficiently implementable in a wide variety of neuromorphic hardware, we feel it is worth further study.470
This must include both a wider variety of minimal simulation benchmarks and also a few more traditional471
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benchmarks. These traditional benchmarks would be particular real physical systems (specific robot arms,472
for example), but testing on those would only reveal performance on those particular arms. As we argued473
here, benchmarking against a wide variety of randomly generated minimal simulation systems is needed to474
demonstrate the space of potential situations in which neuromorphic adaptive control performs well.475

The benchmarks described above all use the same underlying minimal simulation as a way to characterize476
the overall performance of particular hardware across a range of situations. By adjusting the random477
distributions that define that range of situations, we generate different benchmarks that explore the478
capabilities of the systems in different ways. This allows for an explicit depiction of the sorts of conditions479
in which particular neuromorphic hardware performs well. After all, it is unlikely that one piece of480
neuromorphic hardware will be the best choice in all situations; rather, these benchmarks allow us to481
demonstrate the advantages and disadvantages of the hardware by looking at the same underlying system,482
but with multiple different distributions of parameters.483

Python software for the minimal simulation and the full benchmarks are available at484
http://github.com/ctn-waterloo/ctn_benchmarks.485

5.1 Benchmark Improvements486

The benchmarks presented here can be improved and further developed in several ways. Most obviously,487
we need to benchmark more hardware, and in particular we note that none of the systems tested here are488
analog neuromorphic hardware. While getting access to such hardware can be difficult, we believe the fact489
that our benchmark is easily shared with others as source code and interacts with existing hardware using a490
Python interface will help this process. Interestingly, it is worth noting that these benchmarks can also be491
run on software simulations of hardware (analog or digital), and could even be used to help form design492
decisions about hardware that has not yet been produced.493

However, it is also clear that performance on these benchmarks is a result of a combination of the494
hardware itself, the algorithm being run, and the system that interfaces the hardware to the environment.495
Thus, for any given hardware, we can explore improvements to the algorithm (better choices for e, different496
learning rules, adaptive learning rates, adapting Kp and Kd, etc.). For example, in the SpiNNaker hardware497
implementation not only can the neuron model be adjusted, but the distribution of the task across the498
multiple cores is also under programmer control. Furthermore, SpiNNaker provides a custom I/O interface499
for high-speed communication that could be used to reduce communication delay.500

In addition, other classes of benchmarks could rely on expanded or completely different minimal501
simulations. For example, other physical systems could be used to calibrate the minimal simulation. This502
would lead to other classes of randomly generated external forces that may be more (or less) difficult for503
the neuromorphic system to learn. If we identify classes of tasks that we are likely to want to control,504
we can create modify those randomly generated forces to ones that are more appropriate for different505
tasks. For example, it may be of interest to randomly generate N -joint arms with random arm lengths and506
random masses, and derive (an approximation of) the actual forces that would be seen in those situations. In507
particular, we feel benchmarks based on the biologically-inspired “soft-robotics” systems (e.g. Pfeifer et al.508
2013) would be particularly appropriate for neural control, given the complexity involved in generating509
traditional controllers for them.510
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5.2 Other Benchmarks511

While the particular minimal simulation shown here suggests that this adaptive control algorithm is512
worth further investigation, the overall goal of this paper is to present the general idea of using minimal513
simulation as a way to benchmark neuromorphic hardware. That is, we believe this same approach could514
be scaled up to other, more complex, closed-loop tasks. Importantly, benchmarking these other tasks would515
require both the creation of new minimal simulations and the specification of new algorithms suitable for516
performing those tasks. These algorithms would then be implemented with the neuromorphic hardware and517
connected to the minimal simulations to construct new benchmarks.518

As a first step towards scaling up, consider the more complex task of controlling a system where the519
values to be controlled are not the joints themselves. For example, suppose we want to control the position520
of a hand x, but our output u only directly controls the joints q of an arm. The position of the hand x521
is some function of q, but this function may be unknown or highly complex. This is often expressed as522
ẋ = J(q)q̇, where J(q) is the Jacobian. In order to successfully control x (the hand), the system needs to523
learn the relationship J that indicates how adjusting various joints q will affect the position of the hand.524
Crucially, there is a learning rule similar to the one discussed above that can learn this mapping (Cheah525
et al. 2006), and we have had some success in using it for particular arm control tasks (DeWolf 2014).526
So far we have only tested this algorithm in the context of one particular arm, but it was successful in527
learning this relationship, and thus learning to correctly move its hand given an unknown arm geometry.528
To establish that this is a generally useful task for neuromorphic hardware, we need to benchmark this529
rule against a large family of different arms (and other systems to be controlled). This can be done by530
generating minimal simulations very similar to the one presented here; the main difference is that there531
would also be a randomly generated Jacobian function J(q). It should also be noted that in this context,532
the dimensionality of x and the dimensionality of q are separate variables. It may be that some algorithms533
work well when q is much larger than x, while others work best when they are similar. Exploring this534
relationship is fairly straightforward with minimal simulation, and would be an important result to know535
when choosing neuromorphic hardware for a particular new situation.536

Given this, we believe that the combination of minimal simulation and neuromorphic hardware is useful537
for adaptive control problems in general, whether the adaptation is in terms of an additive bias term to538
compensate for external forces such as gravity (as seen in the benchmarks presented in this paper) or if it is539
in terms of learning the Jacobian term relating the controlled variables q to the desired target space x (as in540
the adaptive Jacobian model discussed in the previous paragraph). This should allow systems to adapt to541
both unknown external forces and to unknown bodily geometries. However, it is less clear whether this542
approach will scale to more complex robotics tasks.543

One more complex robotic task where this approach might be applicable is navigation and obstacle544
avoidance. Here, we would need both a more complex minimal simulation for the environment, and an545
explicit neuromorphic algorithm capable of performing this avoidance. The minimal simulation itself546
would need to include some sort of sensory modality (vision, range sensing, or both), and movement in a547
two-dimensional environment (probably wheeled movement, for simplicity). To run such a simulation in548
real-time, we would use many of the same optimizations and simplifications used in Jakobi’s original work549
(Jakobi 1997). These included making separate simulations for corridors and intersections (rather than550
generic simulations for any possible geometries), using noisy lookup tables (rather than detailed physics551
simulations), treating collisions as failures (rather than modelling them), and using shifting random dot552
patterns for visual stimuli (rather than high-fidelity image rendering). Given Jakobi’s success at building553
high-speed simulations over 20 years ago, we believe real-time simulations of this type are feasible now.554
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However, having such a simulation is only half of what is required. We would also need a control555
algorithm suitable for such a situation. This is, itself, a topic of much research, and there is no clear best556
approach. We have been exploring the use of reinforcement learning in neural models (Stewart et al. 2012;557
Rasmussen and Eliasmith 2014), and note that these make use of the same learning algorithm as described558
here, with additional neural components needed to implement action selection. In this case, the learning559
rule would adjust the system’s estimate of which action is most appropriate given the current sensory state.560
We are currently investigating this approach further.561

As a more speculative possibility, we also intend to apply this approach to tasks involving classical562
and operant conditioning. Conditioning effects are extremely common in living creatures, and are clearly563
evident when animals are exposed to novel environments. As such, it is natural to define benchmark564
tasks involving learning the associations between sensory events in the environment (akin to classical565
conditioning) and the associations between actions and desired sensory states (akin to operant conditioning).566
In this case, the minimal simulations would consist of a set of small, controlled rooms with controllable567
buttons and stimuli, matching the sort of “Skinner Box” environments used in experimental psychology.568
The minimal simulation will also require a basic simulated body, capable of movement, pushing buttons,569
and observing stimuli. The tasks would consist of pairing stimuli together and determining if the learning570
algorithm is able to respond correctly. For example, a model might have a built-in response where it571
will salivate when presented with food. If the sound of a bell is paired with the presentation of food, it572
should learn to salivate with presented with just the sound of a bell. Importantly, there are extensive results573
showing the rate at which such associations are learned and un-learned in various animals. Furthermore, we574
would test the ability to learn associations that are separated in time (delayed conditioning), and to recover575
associations that had been previously learned (spontaneous recovery). Interestingly, there already exist576
neuron-based classical conditioning learning rules that may be suitable for such implementation, given577
their similarity to the learning rule used in the adaptive control benchmark (Verschure et al. 2003).578

6 CONCLUSIONS

We have described a new method for benchmarking neuromorphic hardware that addresses the problem of579
reliably benchmarking complex tasks that involve interaction with an environment. This method involves580
building a minimal simulation; a simulation that is extremely simple in terms of required computation,581
but that has a high degree of adjustable variability. By benchmarking across a space of possibilities, we582
can identify hardware that performs well across that space, and is thus likely to be useful in real-world583
situations. In order to identify which real-world situations are covered by a minimal simulation, we can584
tune the variability in the simulation to particular physical systems.585

We demonstrated this approach by defining a minimal simulation and a task appropriate for adaptive586
motor control. We presented an algorithm that can use neuromorphic hardware to improve performance587
on this task over that of a standard non-adaptive controller. Importantly, by measuring performance while588
adjusting the distributions of parameters in the benchmark, it is possible to characterize different aspects of589
the hardware, identifying how different aspects of the task affect performance for different hardware. This590
was demonstrated by providing five different benchmarks, each based on the same minimal simulation, but591
setting parameters in different ways. We believe this sort of flexibility is important in a benchmark method,592
as it lets researchers be explicit about what their hardware is good at, while still using the same basic and593
shareable benchmark framework.594
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Finally, we note that the benchmarking results show that this learning rule can consistently improve control595
performance across a wide variety of randomly generated situations, and is suitable for implementation on596
a wide variety of neuromorphic hardware. Given this promising result, we will be further evaluating it on597
specific physical embodiments, and comparing it to more complex variants of PID control.598
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Figure 1. A simple example of a physical embodiment for control. In order to hold the joint q at a desired
angle qd, a force must be applied to counteract the pull of gravity. The magnitude of this force is a function
of q which can be learned.

Figure 2. A simple physical robot embodiment for calibrating the minimal simulation. All components
come with the Lego Mindstorms EV3 kit, and are shown on the left (2 large motors; 2 1x11 beams; 1
1x13 beam; 12 pins; 1 EV3 brick; 1 connector cable). To rotate the central motor to the desired position q,
enough force must be added to u to counteract the weight of the second unused motor.
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Figure 3. Adaptive control of the EV3 lego robot used for calibrating the minimal simulation. The effects
of adaptation over two different desired trajectories are shown. Without adaptation, the joints q do not
reach the desired qd when qd is large (which is when the external force is largest). With adaptation, q is
closer to qd after about 5 seconds, showing that the system has quickly learned to compensate. Points in
time where the improvement is clearest are circled.

Figure 4. The effect of adaptive control on a single-joint lego robot (Figure 2). Each run uses a randomly
generated desired trajectory qd(t) over 20 seconds, and root-mean-squared-error is computed over the last
10 seconds only. The adaptive algorithm provides a significant improvement (p < 0.05; two-tailed t-test;
50 samples). Scatterplots show individual runs (with random jitter on the x-axis to avoid overlap), the
shaded area is the mean plus or minus the standard deviation, and the 95% confidence interval of the mean
is shown.
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Figure 5. Benchmark results comparing three hardware systems. Each system is running 500 neurons. The
hardware do not statistically significantly differ, but are all statistically significant improvements over no
adaptation (p < 0.05; two-tailed t-test with Bonferroni correction; 400 samples per condition). Scatterplots
show individual runs (with random jitter on the x-axis to avoid overlap), the shaded area is the mean plus
or minus the standard deviation, and the 95% confidence interval of the mean is shown.

Figure 6. Benchmark results comparing three hardware systems in terms of their performance when
running as many neurons as they are capable of in real time. Scatterplots show individual runs (with random
jitter on the x-axis to avoid overlap), the shaded area is the mean plus or minus the standard deviation, and
the 95% confidence interval of the mean is shown. In this case, there is no statistical difference between the
three hardware systems (p > 0.05; two-tailed t-test with Bonferroni correction; 400 samples per condition).
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Figure 7. Benchmark results comparing three hardware systems in terms of their performance when
running as many neurons as they are capable of per 0.1 Watt of power consumption. Scatterplots show
individual runs (with random jitter on the x-axis to avoid overlap), the shaded area is the mean plus or
minus the standard deviation, and the 95% confidence interval of the mean is shown. All differences are
statistically significant (p < 0.05; two-tailed t-test with Bonferroni correction; 400 samples per condition).

Figure 8. Benchmark results comparing the effects of communication delay for the CPU and SpiNNaker
systems. The delays tq and tu are randomly varied. Shaded area is the mean plus or minus one standard
deviation, smoothed with a Gaussian kernel of σ = 0.005.
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Figure 9. Benchmark results examining the relationship between number of neurons and the number of
simulated joints N . The benchmark was run on the Intel i5-3337U CPU. Shaded area is the mean plus or
minus one standard deviation, smoothed with a Gaussian kernel of σ = 1 in the log2 domain.
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