Solution-combustion synthesized aluminium-doped spinel (LiAl_xMn_{22x}O₄) as a high-performance lithium-ion battery cathode material

Mesfin A. Kebede1Maje J. Phasha2 Niki Kunjuzwa1,3 Mkhulu K. Mathe1 Kenneth I. Ozoemena1,3

Abstract

High-performing LiAl_xMn_{2-x}O₄ (x = 0, 0.125, 0.25, 0.375, and 0.5) spinel cathode materials for lithium-ion battery were developed using a solution combustion method. The as-synthesized cathode materials have spinel cubic structure of LiMn₂O₄ without any impurity peak and accompanied with peak shift as doping with aluminium. LiAl_{0.375}Mn_{1.625}O₄ (first cycle capacity = 113.1 mAh g₋₁) retains 85 % (96.2 mAh g₋₁), while pristine LiMn₂O₄ electrode (first cycle capacity = 135.8 mAh g₋₁) fades quickly and retains only 54 % (73.9 mAh g₋₁) after 50 cycles. The electrochemical performance of all the cathode samples prepared using the SCM is comparable to those reported for Al-doped LiMn₂O₄ spinel cathode materials. The experimental lattice parameter of LiAl_xMn_{2-x}O₄ was validated by ab initio calculations and correlated with the first cycle capacity of materials. The variation in lattice parameter as a result of Al doping greatly enhanced the cyclability of discharge capacity of the LiMn₂O₄ spinel.