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Interest in manifold learning for representing the topology
of large, high dimensional nonlinear data sets in lower, but
still meaningful dimensions for visualization and classifica-
tion has grown rapidly over the past decade, and particularly
in analysis of hyperspectral imagery. High spectral resolution
and the typically continuous bands of hyperspectral image
(HSI) data enable discrimination between spectrally similar
targets of interest, provide capability to estimate within pixel
abundances of constituents, and allow direct exploitation of
absorption features in predictive models. Although hyper-
spectral data are typically modeled assuming that the data
originate from linear stochastic processes, nonlinearities are
often exhibited in the data due to the effects of multipath
scattering, variations in sun-canopy-sensor geometry, nonho-
mogeneous composition of pixels, and attenuating properties
of media. [1]. Because of the dense spectral sampling of HSI
data, the associated spectral information in many adjacent
bands is highly correlated, resulting in much lower intrinsic
dimensions spanned by the data (Fig. 1). Increased availabil-
ity of HSI and greater access to advanced computing have
motivated development of specialized methods for exploita-
tion of nonlinear characteristics of these data. In this con-
text, feature selection and feature extraction approaches for
dimensionality reduction have received significant attention.
While both feature selection and extraction result in some
loss of information relative to the original data, both have
been demonstrated to be quite successful in the classification
arena. While feature selection retains meaningful features for
classification, the algorithms are computationally intensive
and are often not robust in complex scenes. Alternatively,
feature extraction approaches, which project the data to
lower dimensional intrinsic spaces, are typically more robust
to variation in spectral signatures across scenes, and most
are computationally superior to optimal feature selection,
although the interpretation relative to the original spectral
signatures is lost. Both feature selection and extraction are
flexible relative to the choice of the back-end classifier.

Theoretical contributions and applications of manifold
learning have progressed in tandem, with new results provid-
ing capability for data analysis, and applications highlighting
limitations in existing methods. For HSI, the enormous size

of the data sets and spatial clustering of classes on the image
grid provide both challenges and opportunities to extend
traditional manifold learning methods. The machine learn-
ing community has demonstrated the potential of manifold
based approaches for nonlinear dimensionality reduction and
modeling of nonlinear structure [2]–[10]. The potential value
of manifold learning for HSI analysis has been demon-
strated for applications including feature extraction [1],
[11], segmentation [12], classification [13]–[15], anomaly
detection [16], [17], and spectral unmixing [18]–[21] with
some approaches exploiting inter-band correlation [14], [15]
and local spatial homogeneity [21]. Challenges encountered
in analyzing data sets, have inspired recent advances in
manifold learning methods, particularly related to feature
extraction and visualization. This paper provides both an
overview of traditional approaches and new directions for
modeling HSI data on nonlinear manifolds.

A general framework for representing spectral signatures
based on graph weights is presented, and traditional unsu-
pervised global and local graph based methods for dimen-
sionality reduction are summarized. Extensions to exploit
labeled data in single image and multi-temporal sequences
of hyperspectral data are described. Variants of manifold
learning based projection are particularly suitable as a
preprocessing to traditional Bayesian classification. In this
context, locality preserving discriminant analysis methods
are discussed. While traditional eigen-decomposition based
methods are computationally advantageous, iterative meth-
ods can often provide improved separation of classes in the
embedded space for both visualization and classification.
Iterative methods are introduced in the context of the affinity
matrix, which is utilized to describe Multidimensional Ar-
tificial Field Embedding (MAFE) and Spherical Stochastic
Neighbor Embedding (SSNE) [22]. Examples of selected
methods applied to a testbed of hyperspectral data are
included for illustration of the methods using a 1-nearest
neighbor classifier.



NONLINEAR MANIFOLD LEARNING IN A GRAPH EMBEDDING
FRAMEWORK

Given a dataset with training samples X = {xi}ni=1 in
Rm (m-dimensional feature space) and n is the total num-
ber of training samples, nonlinear dimensionality reduction
algorithms adapt a graph embedding framework in which
G = {X,W} is the undirected weighted graph and W is
the n × n data dependent similarity or affinity matrix. The
algorithms utilize the notion of affinity weights Wij ∈ [0, 1]
to measure the ”distance” between two sample observations.
The affinity functions do not utilize class label information,
but rather characterizes the neighborhood relationships be-
tween all pairs of points based on feature differences. A
popular approach to measure the affinity between samples
xi and xj makes use of the heat-kernel,

Wij = exp

(
−‖xi − xj‖2

γiγj

)
, (1)

where γi = ‖xi − x
(knn)
i ‖ denotes the local scaling of data

samples in the neighborhood of xi, and x
(knn)
i is the knn-

nearest neighbor of xi. Although the heat kernel has been
shown to result in effective locality preserving properties,
further improvements towards sparse affinity matrices can be
achieved by adapting the scaling parameter γi to the local
data statistics which often provide a stronger adaptivity to the
underlying structure of the embedded image manifolds. The
affinity matrix can be modified to include spatial context,
which can have a significant impact for manifold learning
with hyperspectral images, as discussed in a later section.

When considering multiple data sources (e.g. co-registered
gridded imagery data), disparity in the resulting feature
spaces can be addressed via separate affinity matrices ded-
icated to each source. In the realm of kernel methods, a
simple approach that has been exploited for geospatial image
analysis utilizes composite kernels (e.g. a weighted linear
mixture of kernels, each dedicated to a data source: Wij =∑K
k=1 αkWk(xki ,x

k
j ), s.t αk ≥ 0 and

∑K
k=1 αk = 1 ) to

create a unified Gram matrix that characterizes relations
across different input sources [23]. In the context of manifold
learning algorithms, such an approach is particularly relevant
for algorithms that operate directly on the affinity matrix, W.
Various complex functional forms for Wk can be adapted,
although the heat-kernel defined in equation (1) remains a
popular choice.

Dimensionality Reduction via Graph Laplacian of Spectral Fea-
tures

Nonlinear manifold learning methods are broadly charac-
terized as global or locally based approaches, and often rep-
resented using a graph embedding framework [13]. Global
manifold methods retain the fidelity of the overall topology
of the data set, but have greater computational overhead for
large data sets, while local methods preserve local geometry

and are computationally efficient because they only require
sparse matrix computations. Although global manifolds seek
to preserve geometry across all scales of the data and have
less tendency to overfit, which is beneficial for generalization
in classification, local methods may yield good results for
data sets which have significantly different sub-manifolds.

Many popular existing approaches involve models that
compute embeddings to preserve pairwise distances, seeking
the global structure of data based on local linear fits. Man-
ifold learning algorithms such as isometric feature mapping
(ISOMAP) [2], kernel principal component analysis (KPCA)
[3], and locally linear embedding (LLE) [4], for example,
have received much attention because of their firm theoreti-
cal foundation associated with the kernel and eigenspectrum
framework.

In general, given a data matrix X, the dimensionality re-
duction problem1 seeks to find a set of manifold coordinates
Y = {yi}ni=1 ,yi ∈ Rp, where typically, m � p, through
a feature mapping Φ : x → y, which may be analytical
(explicit) or data driven (implicit), and linear or nonlinear.
Spectral based dimensionality reduction algorithms adapt
a graph embedding platform, i.e. with G = {X,W}, to
compute the affinity matrix from which the graph Laplacian
L is derived to play an important role in the framework.
Here, L = D −W with a diagonal degree matrix defined
by Dii =

∑
j Wij ,∀i.

In the one-dimensional case, where the resultant manifold
coordinate for n samples is a vector y = [y1, y2, . . . , yn], the
dimensionality reduction criterion for eigenspectrum based
methods can be represented as

y∗ = argmin
yByT=1

∑
‖yi − yj‖2Wij (2)

= argmin
yByT=1

yLyT (3)

where B is a constraint matrix that depends on the formula-
tion of the dimensionality reduction method. In many algo-
rithms the constraint removes any arbitrary scaling factors in
the embedding space. For example, setting B to a diagonal
matrix often yields the required scale normalization. Table
I summarizes various constraints that are encountered with
traditional and modern graph embedding algorithms. The
underlying goal is for sample pairs of larger weight to have
manifold coordinates that are closer to each other, under a
unique data geometry characterized by the graph Laplacian
L. The solution of the optimization problem can be obtained
by solving the eigen-decomposition problem Ly = λBy,
where the one-dimensional manifold coordinates y are given
by the eigenvector with the smallest non-zero eigenvalue.
This one-dimensional case can be easily generalized to the
multi-dimensional case through the following expansion

1For the hyperspectral dataset used in this paper, the “optimal” dimen-
sionality is found to be approximately 8 for the classical global manifold
learning embeddings, 15-17 for the local embeddings, and 8-10 for the
iterative embeddings.



Y∗ = argmin
YBYT=I

tr(YLYT) (4)

where I is the identify matrix. Analogous to the one-
dimensional case, the manifold coordinates Y of target
dimension p can be obtained from the eigenvectors corre-
sponding to the p smallest non-zero eigenvalues. Each of the
kernel based manifold learning algorithms summarized here
can be described in terms of this common framework with
different Laplacian matrices and constraints. For a detailed
discussion, see [13].

ISOMAP and Kernel PCA are the most widely applied
global manifold learning approaches for nonlinear dimen-
sionality reduction. The ISOMAP method assumes that the
local feature space formed by the nearest neighbors is linear,
and the global nonlinear transformation can be found by
connecting these piecewise linear spaces [2]. Defining Xi,
the set of neighborhood nodes of node xi, a distance matrix
S
′
, is computed whereby the Euclidean distance to node

xj ∈ Xi is computed, and the distance beyond Xi is
accumulated along the shortest path to obtain a shortest
path network Sstp. Dimensionality reduction is then ac-
complished through multidimensional scaling (MDS). The
computational burden of computing the geodesic distance
matrix scales as O(n2 log n), motivating development of
approximation methods such as Landmark ISOMAP (L-
ISOMAP). These methods avoid the computation for the
kernel matrix by selecting a subset of the original points,
referred to as “landmark samples”, for which the geodesic
distance computation is performed and the remainder of the
points are inserted into the ”backbone”, thereby reducing the
computational cost of the method to O(`n log n), where `
is the number of landmark samples [24], [25]. Kernel PCA
is a nonlinear extension of linear PCA in a feature space
induced by a kernel function [3].

Local kernel based manifold learning methods include
locally linear embedding (LLE) [4], local tangent space
alignment (LTSA) [7] and Laplacian eigenmaps (LE) [8].
All three methods are initiated by constructing a nearest
neighborhood for each data point, and the local structures
are then used to obtain a global manifold. According to the
framework, by solving the eigenvalue problem LY = λBY,
the embedding Y is provided by the eigenvectors correspond-
ing to the 2∼(p+1) smallest eigenvalues (the eigenvector that
corresponds to the smallest zero eigenvalue is a unit vector
with equal elements and is discarded). In LLE [4], the local
properties of each neighborhood are represented by the linear
coefficients that best reconstruct each data point from its
neighbors. In LTSA [7], the local geometry is described by
the local tangent space of each data point, and the global
manifold is determined by aligning the overlapping local
tangent spaces. In LE [8], the weighted neighborhood graph
of each data point is obtained by calculating the pairwise
distances between neighbors, where the distance is normally

calculated using a Gaussian kernel function with parameter
σ. The embeddings are obtained by minimizing the total
distance between each data point and its neighbors in the
low dimensional space. Parameter settings, including the size
of the neighborhood, for both global and local manifold
learning methods, and intrinsic dimensionality are selected
experimentally and are usually robust over a range of values.

Supervised implementations of local manifold learning
have also been developed for classification. Unsupervised
local manifold learning approaches search the k spectral
neighbors of a given point, whereas supervised local man-
ifold learning approaches identify only the neighbors that
are of the same class as the given point, often making
these methods more attractive for classification [26], [27].
Supervised local manifold learning approaches then map
all the training data from the same class onto a single
point in the embedded space, resulting in computational
complexity of O(mn1n2), where n1 and n2 represent the
number of training and testing samples respectively. Assum-
ing there are c classes, the outputs are c orthogonal vectors
Yc =

[
y1, · · · ,yc

]
∈ Rp×c. The kernel out-of-sample

extension method is attractive for unsupervised kernel-based
embedding of large data sets, but is required for testing
data when training data are embedded via supervised local
manifold learning methods [27].

NEW DIRECTIONS IN MANIFOLD LEARNING

Manifold Learning for Multi-Temporal Image Data

Classification of remotely sensed data from multiple
scenes acquired at different times or from spatially disjoint
areas is an important problem where it is often desirable to
exploit labeled data from one time or area to classify data
from a different time or area. Although global manifolds are
assumed to be similar, spectral shifts in classes over space
or time typically manifest themselves as localized variations
in the manifold. When the goal is to exploit limited labeled
data in a transfer learning mode to classify data in other
scenes, changes in the manifold between images can result in
misclassification of similar classes. Recent investigations that
seek to jointly exploit the global and local characteristics of
images [28], [29] and manifold alignment [30], [31] provide
the foundation for a correspondence based framework to
classify hyperspectral data acquired in multiple time periods
[32], or from spatially disjoint areas.

In [33] a joint manifold over time periods T1 and T2 was
obtained using the distance matrix

WG =

[
WxT1 ,xT1 WxT1 ,xT2

WxT2 ,xT1 WxT2 ,xT2

]
, (5)

where WxT1 ,xT1 and WxT2 ,xT2 are geodesic distances be-
tween points within the two images (intra-image distances)
which capture the global geometry of the data manifolds,



and WxT1 ,xT2 and WxT2 ,xT1 represent the connection be-
tween the two images (inter-image distance). The inter-
image distances and the resulting alignment are based on
u corresponding pairs

(
xT1

cip
,xT2

ciq

)
, i ∈ [1, u], determined

from the spatial-spectral optimization

arg minp≤n1,q≤n2

(∥∥xT1
p − xT2

q

∥∥+ a
∥∥sT1
p − sT2

q

∥∥) , (6)

where
{

sT1
1 , sT1

2 , · · · , sT1
n1

}
∈ R2, and

{
s1
T2 , sT2

2 , · · · , sT2
n2

}
∈

R2 are spatial coordinates of the pair of images with
n1 and n2 pixels, respectively. Distances between points
on the two manifolds are defined in terms of distances
to corresponding pairs within the respective manifold:

W
xT

1
i ,xT

2
j

(i, j) = min

(
W

x
T1
i ,x

T1
cip

+ W
x
T2
j ,x

T2
ciq

)
, thereby

preserving local relations between arbitrary points and their
nearest corresponding pair. The optimal joint manifold
feature space Y = {y1, ...,yn1

,yn1+1
, ...,yn1+n2

} ∈
Rp, p << m is computed by minimizing the cost function
E = ‖τ (WX)− τ (WY)‖ where WY is a distance
matrix with elements WY (i, j) =

√
(yi − yj), and the

τ operator converts distance that characterizes geometry
to inner products. The resulting problem is solved using
classical multidimensional scaling, yielding the respective
eigenvectors. In recent work, Tuia et al, [34] also utilized
manifold alignment in conjunction with linear, invertible
projections to jointly exploit and synthesize data from
multiple sensors.

Locality Preserving Discriminative Dimensionality Reduction

Principal Component Analysis (PCA), Linear Discrim-
inant Analysis (LDA), and their many variants, such as
subspace LDA, stepwise LDA [35], [36], etc. are com-
monly used for feature extraction prior to classification of
hyperspectral data. Under the assumption of homoscedastic
Gaussian class-conditional distributions, LDA is optimized
for classification tasks, but does not perform well when the
data are heteroscedastic Gaussian, and can fail for non-
Gaussian data. This makes such projections inappropriate
for Bayesian classifiers relying on Gaussian Mixture Models
(GMMs), or for classifiers that assume the decision sur-
faces to be substantially nonlinear (e.g. nonlinear Support
Vector Machines in a kernel-induced space). This issue
is particularly relevant for hyperspectral imagery, where
several factors can lead to deviation from such assumptions,
including variable illumination conditions, significant mixing
between the target pixel and background.

Local Fisher’s Discriminant Algorithm (LFDA) [37] was
developed as an extension to LDA to accommodate class
distributions that are not uni-modal homoscedastic Gaussian,
combining the discriminative properties of LDA with prop-
erties of unsupervised locality-preserving projections (LPP)
[38]. Unlike LDA or PCA, LPP seeks to find a linear map
that preserves the local-neighborhood structure of the data

in the projected subspace — i.e., neighborhood points in the
original input space remain neighbors in the LPP-embedded
space, and vice-versa. LFDA obtains good between-class
separation in the projection while preserving the within-class
local structure [37]. It can hence be expected that LFDA
should be a useful feature reduction algorithm for supervised
classification tasks, particularly for problems where local
structures convey relevant information (e.g. when the data
lie on a complex manifold in the input space) and need to be
preserved. In recent work for supervised hyperspectral image
analysis tasks [14], [15], [39], [40], LFDA and its variants
have been found to be very effective feature extraction
algorithms, particularly when paired with powerful Bayesian
classifiers, such as Gaussian Mixture Models. The heat
kernel’s normalized version has been adapted for LFDA
to compute the local between-class W

(lb)
ij and within-class

W
(lw)
ij weights as defined by,

W
(lb)
ij =

{
Wij(1/n− 1/nl), if zi = zj = l,

1/n, if zi 6= zj ,
(7)

W
(lw)
ij =

{
Wij/nl, if zi = zj = l,

0, if zi 6= zj .
(8)

Here nl is the number of available training samples for the
lth class,

∑c
l=1 nl = n and class labels are denoted by zi ∈

{1, 2, . . . , c}, where c is the number of classes.
In LFDA, the local between-class S(lb) and within-class
S(lw) scatter matrices are defined as

S(lb) =
1

2

n∑
i,j=1

W
(lb)
ij (xi − xj)(xi − xj)

>, (9)

S(lw) =
1

2

n∑
i,j=1

W
(lw)
ij (xi − xj)(xi − xj)

>, (10)

LFDA seeks to find a projection ΦLFDA that maximizes the
“local” Fisher’s ratio as defined using the local scatter ma-
trices defined above. The solution is obtained by solving the
generalized eigenvalue problem S(lb)ΦLFDA = ΛS(lw)ΦLFDA,
where Λ is the diagonal eigenvalue matrix.

Note that based on (9), and (10), LFDA can be thought
of as a “localized variant” of LDA, since it ensures that
local neighborhood structures are preserved by incorporating
an appropriate scaling of the scatter matrices. Hence, when
the data in the input space lie on nonlinear manifolds, or
in general, possess non-Gaussian, even multi-modal class-
conditional statistics, LFDA is expected to outperform tra-
ditional linear projection based dimensionality reduction ap-
proaches. Another benefit of scaling the LFDA based scatter
matrices is that the between-class scatter matrix is no-longer
rank-limited to c− 1. Thus, the “optimal” dimensionality of
the projected subspace is no-longer restricted to c− 1.

Although LFDA serves as an effective feature reduction
strategy for hyperspectral images, it is also prone to statis-
tical ill-conditioning when the training sample size is small.



In recent work [41], a segmented feature reduction approach
was developed wherein the high-dimensional hyperspectral
space is partitioned into contiguous subspaces, followed
by LFDA based feature reduction and Gaussian Mixture
Model based classification. Hyperspectral imagery exploits
such an approach naturally, since the correlation structure of
the spectral feature space is often strongly block-diagonal
(nearby bands are much more correlated than bands farther
apart). The resulting approach showed substantial robust-
ness to the small-sample-size problem. Other approaches
to discriminative feature reduction inspired by manifold
learning are also emerging for hyperspectral image analysis.
For example, in [42], a nearest feature line embedding
transformation is proposed for hyperspectral dimensionality
reduction, that also seeks to preserve the local manifold
structure under the embedding.

Manifold Learning for Spatial-Spectral Classification of HSI

Traditional nonlinear dimension reduction approaches
treat samples as statistically independent, ignoring the local
spatial relationships among pixels that occur in patches, as
well as the spatially disjoint locations of many spectrally
similar classes. Spatial issues have been addressed in many
ways by the image processing and remote sensing com-
munities, including Markov Random Fields, vectors with
stacked spectral-spatial features, morphological profiles, and
segmentation (See [43] for a comprehensive review).

Recent work related to feature extraction from hyper-
spectral data has also addressed local spatial relationships
via composite and other combined kernels [23], [44]–[46],
tensor embedding [47], and iterative methods [22], [48],
[49]. Forero and Manian [50] proposed nonlinear diffusion
partial differential equations (PDEs) for spatial preprocessing
of hyperspectral images, and the results demonstrated a
significant improvement in classification performance. Rep-
resented in the context of affinities, HSI spectral and spatial
neighborhood relations Wij = W (si, sj ,xi,xj) can be
computed through a weighted kernel function

W (si, sj ,xi,xj) = exp

{
−‖si − sj‖2

σ2
s

}
· W̃p(xi,xj) (11)

where si denotes the spatial coordinates of pixel i, xi denotes
the spectral m-dimensional vector. The expression ‖si−sj‖2
weights image pixel values as a function of the spatial
distance from the center pixel and the variance parameter
σs and

W̃p(xi,xj) = exp

{
−1

2
(xi − xj)

TΣ−1(xi − xj)

}
(12)

simply weights relations as a function of spectral differences
between the center pixel and its neighbor pixel. With addi-
tional manipulations as shown in [22], W̃p(xi,xj) can be
rewritten as

W̃p(xi,xj) = exp

{
−n
2
tr(Σ−1S)

}
(13)

where S is the sample covariance. Σ−1 can be obtained by
seeking an orthogonal decomposition of the true covariance
matrix Σ. This can be achieved through an efficient, robust
sparse matrix transform [48], [51] to decorrelate HSI bands.
The resulting affinity function infuses local adaptivity and
spatial sensitivity to the neighborhood graph, which leads to
preservation of local disjoint neighborhoods that are compact
and similar, benefiting hyperspectral data embedding. Fig.
2 depicts the eigen-spectra corresponding to the spatially
weighted Laplacian graph for a hyperspectral image. The
uniqueness and smoothness of eigenvalues demonstrate the
ability of affinity functions to capture both local and global
structures in the data. Smooth, rapidly decaying eigenvalues
suggest a neighborhood graph with a single, very large
connected component — the case for using a heat ker-
nel. Alternatively, smooth but slowly decaying eigenvalues
suggest a neighborhood graph with various disconnected
components, each based on the local spatial details of the
image.

Iterative Graph Embedding for Dimensionality Reduction

Nonlinear embedding formulations that ignore spatial rela-
tionships often collapse maps towards the center coordinates
of the embedding space, thereby increasing the crowding or
overlapping of class boundaries. Given a spatially weighted
affinity functions, high quality lower dimensional HSI vi-
sualization and improved classification performance may
be achieved by adapting an iterative dynamic embedding
framework.

In an iterative graph embedding framework, each affinity
weight Wij ∈ W, as computed from (11), is viewed as
characterizing spring force properties between a pair of
vertices i and j for all {(xi,xj)} ∈ G. The affinities can
be normalized or unnormalized for each observed pixel pair
in X. The embedding of G can then be interpreted as an
assignment of positions to vertices in a p-dimensional space
Rp. With the notation Y = {y1,y2, · · · ,yn} denoting the
assigned embedding of G, where yi ∈ Rp is the position
of the map of the ith vertex. An optimal embedding Y can
be obtained through an iterative optimization scheme whose
goal is to establish the minimum energy configuration state
of G. The quality of the embedding representation is heavily
dependent on the choice of both the objective function and
the kernel function used to compute the affinity matrix W.

Iterative embedding of data is based on an intuitive
premise. Assume that y =

{
yT1 ,y

T
2 , · · · ,yTn

}T
is a vector

in RNp that denotes the state of G. The framework builds on
a dynamic model formulation [52], to employ pair-wise dis-
tance dependent functions and a neighborhood characterized
graph to control the grouping of similar vertex maps. The
dynamics evolve in continuous time; as such, the velocity
as determined by the additive group effect on each vertex i,



and at position yi is described by

ẏi =
∑
j 6=i

(yi − yj){F ijr (‖yi − yj‖)− F ija (‖yi − yj‖)} (14)

F ijr : R+ → R+ denotes the repulsion term for dispersing all
embedding pixel maps, whereas F ija : R+ → R+ represents
the attraction term for similar pixels.

Functional forms are selected such that an attraction term
dominates the pair-wise interaction between vertex maps at
large distances, while at short distances the repulsion term
dominates, and in-between there is a unique distance εij
at which both terms will be in equilibrium - defining a
minimum energy configuration state and hence an optimal
positioning of pairwise vertex maps. To generate the corre-
sponding force field, the framework assumes the existence
of pair-wise dependent functions U ijatt → R+ → R+ and
U ijrep → R+ → R+ such that ∇yiWijU

ij
att(‖yi − yj‖) =

F ija (‖yi − yj‖)(yi − yj) and ∇yiU
ij
rep(‖yi − yj‖) =

F ijr (‖yi−yj‖)(yi−yj), where U ijatt and U ijrep are viewed as
artificial attraction and repulsion potential energy functions
that determine the trajectories of vertex maps. The general
embedding framework based on the dynamic model has the
form

ẏi =
∑
j 6=i

∇yi{U ijrep(‖yi − yj‖)−WijU
ij
att(‖yi − yj‖)} (15)

Following the negative gradient, i.e. to achieve an equi-
librium state for (15), attraction and repulsion potential
functions should be chosen such that the minimum of
U ijatt(‖yi − yj‖) occurs around ‖yi − yj‖ = 0, whereas
the minimum of −U ijrep(‖yi − yj‖) occurs around ‖yi −
yj‖ → ∞, and that the minimum of the interactive field
U ijatt(‖yi−yj‖)−U ijrep(‖yi−yj‖) occurs at ‖yi−yj‖ = εij ,
thus defining the equilibrium state of dynamic model. This
general framework exhibits strong unifying properties that
are applicable for deriving novel iterative multidimensional
artificial field embedding algorithms. Further illustrations
in this study demonstrate its use for interpreting some of
the existing nonlinear dimensionality reduction models, e.g.
reformulation of the stochastic neighbor embedding [53].

Multidimensional Artificial Field Embedding

Following the criteria described in the previous section,
an attraction term according to a quadratic form can be
chosen, i.e. U ijatt(‖yi−yj‖) = ξa‖yi−yj‖2. The notion of
a repulsion force can be interpreted as a barrier constraint
that can be captured by an indicator function, even though
its gradient is difficult to compute. There are continuous
indicator function approximations that yield useful repulsion
terms as summarized in Table I. An effective repulsion
potential function used here has the form U ijrep(‖yi−yj‖) =

ξr
‖yi−yj‖2 . The parameters ξa and ξr reflect the attraction and
repulsion force magnitude. Combining the two terms yields

a multidimensional artificial field embedding unbounded
repulsion model (MAFE-UR) [48],

U(y) =
∑
i=1

∑
j 6=i

{
ξa‖yi − yj‖2Wij −

ξr
‖yi − yj‖2

}
(16)

Obtaining the optimal embedding maps involves solving
a non-convex optimization problem, argminy∈RNp U(y),
whose solution space is known to exhibit many local minima
and instabilities for a standard gradient descent algorithm. A
much improved stable and efficient iterative updating scheme
can be devised in the form of a local adaptive stochastic
descent framework,

y(t+1) = y(t) − α(t)∇U(yt) (17)

to yield the optimal maps. Where α(t+1) = α(t) +
γ1〈∇U(y(t−1)),∇U(y(t))〉+γ2〈∇U(y(t−2)),∇U(y(t−1))〉
is the common adaptive learning rate. γ1 and γ2 are the meta-
learning rates. This adaptation scheme exploits gradient-
related information from the current as well as the two
previous embedding coordinates in the sequence to introduce
stability. The computational burden of computing the gradi-
ent scales as O(n2), motivating the need to develop faster
approximation methods or finding a closed form solution to
argminy∈RNp U(y).

Stochastic Neighbor Embedding

Hinton and Roweis [53] developed a stochastic neighbor
embedding (SNE) method for preserving neighbor relations
based on probabilities in the lower dimensional space. The
original SNE method assumes that edge weights are anti-
symmetric Gaussian probabilities Wij (i.e. Wij 6= Wji) of
pairs of vertices being neighbors in the higher dimensional
space. Considering a symmetric version of Wij the high
dimensional probability edge weights are defined using the
Gaussian functions of the form

Wij =
exp{−‖xi − xj‖2/2σi}∑
r 6=i exp{−‖xr − xi‖2/2σi}

(18)

where σi is computed using a binary search method ensuring
that the entropy of the distribution Wi is approximately
log(k), where k is the effective number of neighbors. In the
lower dimensional space, SNE assumes symmetric Gaussian
probabilities W̃ij between embedding coordinates, i.e. em-
bedding graph weights are computed as

W̃ij =
exp{−‖yi − yj‖2}∑
r 6=i exp{−‖yr − yi‖2}

(19)

SNE proceeds to compute for the maps by minimizing a sum
of Kullback Leibler(KL) objective functions∑

i

KL(Wi||W̃i) =
∑
i

∑
j 6=i

Wij log(
Wij

W̃ij

) (20)

The goal is to minimize the distortion between each of the n
high dimensional neighborhood distributions Wi’s and their



corresponding lower dimensional neighborhood distributions
W̃i’s. The difficulty with the original formulation of SNE
is encountered in the optimization algorithm, where the
antisymmetric assumption poses challenges requiring many
experimentally defined parameters for attaining stability. In
a more recent approach, Maaten and Hinton [54] improved
on SNE by prescribing a student-t distribution to compute
the lower dimensional probabilities. The improvement led
to a tSNE model that preserves meaningful structures in
lower dimensional spaces. A further expansion on (20)
while ignoring terms that do not depend on the unknown
probabilities W̃ij , yields a functional form that makes both
SNE and tSNE special cases of (15). In particular, SNE can
equivalently be represented by

U(y) =
∑
i

∑
j 6=i

‖yi − yj‖2Wij + log
∑
r 6=i

exp{−‖yr − yi‖2}

Taking the derivative yields the gradient ∇U(y) that forms
a dynamic equation that can be used to obtain optimal
embeddings through an iterative algorithm in (17).

Spherical Manifolds and Stochastic Embedding

Other than studying manifolds on a flat surface, better
visualization and increased classification performance may
be achieved by seeking HSI coordinate representations on
curved manifolds, which exhibit desirable properties and
have been well studied in statistics [55].

To embed data onto a spherical surface one can consider a
unit p-dimensional sphere to be represented as the geometric
locations of all unit vectors in Rp+1

Sp =
{
yi ∈ Rp+1 : ‖yi‖2 = 1

}
(21)

For every observed image pixel, the goal is to learn the
optimal embedding map yi and a probability distribution
that preserves the neighborhood relations originating from
the high dimensional space. Such a goal can be achieved by
applying the SSNE framework, which when given an image
X, proceeds to compute the high dimensional symmetric
probability wij that pixel i would select j as its neighbor as

Wij =
W (si, sj ,xi,xj)∑
r 6=iW (si, sr,xi,xr)

(22)

where W is a combined spatial-spectral kernel function.
The corresponding unit spherical coordinates are obtained
from using an Exit distribution [56] as a kernel density
function that estimates the probability of spherical points
being neighbors. The Exit distribution has the form

f(y; yi, ρ) =
1

Ap

1− ρ2

‖y − ρyi‖p
, y ∈ Sp (23)

where Ap is the surface area of Sp, i.e. Ap = 2π(p/2)

Γ(p/2) , Γ(·) is
the Gamma function, ρ is the concentration parameter, and
yi is associated with the mean direction of the distribution.

The probability W̃ij of a spherical map i selecting map j
as its neighbor is computed as

W̃ij =
‖yj − ρyi‖−p∑

k 6=i {‖yk − ρyi‖−p}
(24)

An added benefit of SSNE (and other iterative embedding
algorithms) is that they jointly learn the optimal low-
dimensional representations and also compute probability
distributions over neighborhood relations (or unnormalized
relations) with the understanding that spatial proximity
should play a role in establishing meaningful manifold
structures. SSNE obtains an optimal embedding on a unit
(hyper)sphere by iteratively solving an energy minimization
problem whose cost function is defined by the sum of
KL divergences between the high-dimensional distribution
Wi = (Wij) and the unknown spherical neighborhood
distribution W̃i = (W̃ij). The optimization problem is
defined as

Y? = argmin
Y={yTi | yi ∈ Sp}

n∑
i

KL(Wi||W̃i) (25)

Further manipulations of (25), reveal that SSNE has a
functional form of (15) applied to a constant curvature space.

HYPERSPECTRAL IMAGE ANALYSIS EXPERIMENTS

The efficacy of manifold learning techniques for hy-
perspectral classification, is illustrated using the Kennedy
Space Center (KSC) hyperspectral data — a standard testbed
dataset, that was acquired using the NASA Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS) sensor at 18-m
spatial resolution. With noisy and water absorption bands
removed, 176 features remain for 13 wetland and upland
classes of interest. Certain KSC classes that include Cabbage
Palm Hammock, and Broad Leaf/Oak Hammock upland
trees; Willow Swamp, Hardwood Swamp, Graminoid Marsh,
and Spartina Marsh tend to be difficult to separate in lower
dimensional spaces. Their spectral signatures are mixed and
often exhibit only subtle differences. Fig. 3 illustrates the
dataset and ground reference information, including the total
number of labeled points for each class..

Visualization of Graph Embedding

Figure 4 shows a 2-dimensional scatter plot after an
ISOMAP projection for the KSC hyperspectral dataset, re-
spectively. Similar spectral classes such as the lowland marsh
grasses (Swamp, Hardwood Swamp, Graminoid Marsh, and
Spartina Marsh) and the upland woodlands (Cabbage Palm
Hammock, and Broad Leaf/Oak Hammock upland trees) are
clustered on the manifold. Classes within the groups are
difficult to separate because signatures are mixed and often
exhibit only subtle differences.

Figures 5, 6, and 7 depict pixel coordinate representations
after the iterative MAFE-UR, SNE, and SSNE 2-dimensional



projections, respectively. As illustrated from the embedding
visualizations, both SSNE and MAFE map similar pixels
onto coordinates with similar values, forming tighter disjoint
clusters. The disjoint nature of embeddings is attributed to
the spatial information that is captured by the dual spatial-
spectral kernel function.

Classification Performance via Manifold Learning

Table II depicts the overall classification accuracy, kappa-
statistic and the class-specific accuracies using unsupervised
(PCA, LLE, ISOMAP) and supervised (LDA, sLLE, LFDA,
SSNE) techniques, followed by a 1-NN classifier. Note that
all graph based methods are sensitive to the parameter knn
— the number of neighbors used when constructing the
affinity matrix. However, depending upon the data (partic-
ularly it’s local structure) and the embedding algorithm,
the classification performance of each algorithm achieves
its maximum over a range of knn values. All the labeled
samples (See Fig 3) were used to develop the manifolds
via unsupervised methods, and 50% of the labeled samples
were used for training and 50% for testing the classifier.
Random sampling was repeated 20 times, and the results
represent an average accuracy over 20 trials. Manifold
learning techniques outperformed PCA, provided a robust
classification performance, and were particularly successful
at classifying “hard” classes, such as upland vegetation
classes 4, 5, and 6. The intrinsic dimensionality indicated
by ISOMAP and the iterative methods was somewhat higher
than for PCA, and was significantly higher for LFDA, LLE,
and SLLE than for PCA. For these data and the 1-NN
classifier, higher accuracies were achieved via local methods
than global methods, and the value of exploiting correlation
structure in the spectral data was demonstrated. The result
is consistent with the work of Ma et al [13], where a more
detailed sensitivity analysis was performed on the parameters
for several global and local nonlinear manifold learning
methods. Both the spectral embedding provided by iterative
methods and the contribution of localized spatial information
were demonstrated by the significantly higher accuracies and
high quality visualizations that were achieved, although the
computational overhead of such methods would need to be
considered for large remotely sensed data sets.

CONCLUSIONS

Advances in hyperspectral sensing provide new capabil-
ity for characterizing spectral signatures in a wide range
of physical and biological systems, while inspiring new
methods for extracting information from these data. Hy-
perspectral image data often lie on sparse, nonlinear man-
ifolds whose geometric and topological structures can be
exploited via manifold learning techniques. In this article,
we focused on demonstrating the opportunities provided
by manifold learning for classification of remotely sensed
data. However, limitations and opportunities remain both

for research and applications. Although these methods have
been demonstrated to mitigate the impact of physical effects
that affect electromagnetic energy traversing the atmosphere
and reflecting from a target, nonlinearities are not always
exhibited in the data, particularly at lower spatial resolutions,
so users should always evaluate the inherent nonlinearity
in the data. Manifold learning is data driven, and as such,
results are strongly dependent on the characteristics of the
data, and one method will not consistently provide the
best results. Nonlinear manifold learning methods require
parameter tuning, although experimental results are typically
stable over a range of values, and have higher computational
overhead than linear methods, which is particularly relevant
for large scale remote sensing data sets.

Opportunities for advancing manifold learning also exist
for analysis of hyperspectral and multi-source remotely
sensed data. Manifolds are assumed to be inherently smooth,
an assumption that some data sets may violate, and data often
contain classes whose spectra are distinctly different, result-
ing in multiple manifolds or sub-manifolds which cannot
be readily integrated with a single manifold representation.
Developing appropriate characterizations that exploit the
unique characteristics of these sub-manifolds for a particular
data set is an open research problem, for which hierarchical
manifold structures appear to have merit. To date, most
work in manifold learning has focused on feature extraction
from single images, assuming stationarity across the scene.
Research is also needed in joint exploitation of global and
local embedding methods in dynamic, multi-temporal envi-
ronments and integration with semi-supervised and active
learning.

REFERENCES

[1] C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, “Exploiting
manifold geometry in hyperspectral imagery,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 43, no. 3, pp. 441–454, 2005.

[2] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[3] B. Schlkopf, A. J. Smola, and K. R. Muller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural Computation, vol. 10,
no. 5, pp. 583–588, 1998.

[4] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
local linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
2000.

[5] V. de Silva and J. B. Tenenbaum, “Global versus local methods
in nonlinear dimensionality reduction,” in Proceedings of Advanced
Neural Information Processing Systems, vol. 15, Hyatt Regency,
Vancouver, B.C., Canada, 2002, pp. 713–720.

[6] L. K. Saul and S. T. Roweis, “Think globally, fit locally: unsupervised
learning of low dimensional manifolds,” Journal of Machine Learning
Research, vol. 4, pp. 119–155, 2003.

[7] Z. Zhang and H. Zha, “Principal manifolds and nonlinear dimension-
ality reduction via local tangent space alignment,” SIAM Journal on
Scientific Computing, vol. 26, no. 1, pp. 313–338, 2004.

[8] Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality re-
duction and data representation,” Neural Computation, vol. 15, no. 6,
pp. 1373–1396, June 2003.

[9] D. K. Agrafiotis, “Stochastic proximity embedding,” Journal of Com-
putational Chemistry, vol. 24, no. 10, pp. 1215–1221, 2003.

[10] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin, “Graph
embedding and extensions: A general framework for dimensionality



reduction,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, no. 1, pp. 40–51, 2007.

[11] J. He, L. Zhang, Q. Wang, and Z. Li, “Using diffusion geometric co-
ordinates for hyperspectral imagery representation,” IEEE Geoscience
and Remote Sensing Letters, vol. 6, no. 4, pp. 767–771, 2009.

[12] A. Mohan, G. Sapiro, and E. Bosch, “Spatially coherent nonlinear
dimensionality reduction and segmentation of hyperspectral images,”
IEEE Geoscience and Remote Sensing Letters, vol. 4, no. 2, pp. 206–
210, 2007.

[13] M. M. Crawford, L. Ma, and W. Kim, “Exploring nonlinear manifold
learning for classification of hyperspectral data,” in Optical Remote
Sensing: Advances in Signal Processing and Exploitation Techniques,
S. Prasad, J. Chanussot, and L. B. (Eds), Eds. London: Springer
Verlag, 2011.

[14] W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, “Locality preserving
dimensionality reduction and classification for hyperspectral image
analysis,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 50, no. 4, pp. 1185–1198, 2012.

[15] ——, “Locality-preserving discriminant analysis in kernel-induced
feature spaces for hyperspectral image classification,” IEEE Geo-
science and Remote Sensing Letters, vol. 8, no. 5, pp. 895–898, 2011.

[16] L. Ma, M. M. Crawford, and J. W. Tian, “Anomaly detection for
hyperspectral images based on robust locally linear embedding,”
Journal of Infrared Millimeter and Terahertz Waves, vol. 31, no. 6,
pp. 753–762, 2010.

[17] L. Zhang, D. Tao, and X. Huang, “Sparse transfer manifold embedding
for hyperspectral target detection,” IEEE Transactions on Geoscience
and Remote Sensing, vol. PP, 2013.

[18] R. Heylen, D. Burazerovic, and P. Scheunders, “Nonlinear spectral
unmixing by geodesic simplex volume maximization,” IEEE Journal
of Selected Topics in Signal Processing, vol. 5, no. 3, pp. 534–542,
2011.

[19] A. Halimi, Y. Altmann, N. Dobigeon, and J.-Y. Tourneret, “Nonlinear
unmixing of hyperspectral images using a generalized bilinear model,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 49,
no. 11, pp. 4153–4162, 2011.

[20] R. Heylen and P. Scheunders, “Calculation of geodesic distances
in nonlinear mixing models: Application to the generalized bilinear
model,” IEEE Geoscience and Remote Sensing Letters, vol. 9, no. 4,
pp. 644–648, 2012.

[21] J. Chi and M. M. Crawford, “Selection of landmark points on
nonlinear manifolds for spectral unmixing using local homogeneity,”
IEEE Geoscience and Remote Sensing Letters, vol. 10, no. 4, pp.
711–715, 2013.

[22] D. Lunga and O. Ersoy, “Spherical stochastic neighbor embedding of
hyperspectral data,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 51, no. 2, pp. 857–871, 2013.

[23] G. Camps-Valls, L. Gomez-Chova, J. Muñoz-Marı́, J. Vila-Francés,
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Fig. 1. True color AVIRIS hyperspectral image over
Kennedy Space Center (KSC), FL. Nonlinearity in the
spectral data is exhibited in a plot of bands Bands 13, 65,
and 31.
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Fig. 2. Plots of normalized eigenvectors for different graph
neighborhoods computed from Euclidean distance, spatially
weighted, and heat kernel based Laplacian affinity functions
for KSC data.

Fig. 3. Ground reference information for KSC hyperspectral
data set.



Table I. Affinities And Constraints For Various Graph Embedding Algorithms
Algorithm Affinity Constraint Approximation
LFDA [15] W

(lb)
ij ,W

(lw)
ij — none

ISOMAP [5] Wij = ‖xi − xj‖2 B = I none
PCA/KPCA [3] Wij = 1/n, i 6= j B = I none

LLE [4] Wij = (M + MT −MTM)ij B = I none
LE [8] Wij = exp

(
−‖xi − xj‖2/t

)
B = D none

SNE [53] Wij =
exp{−‖xi−xj‖

2/2σi}∑
r 6=i exp{−‖xr−xi‖2/2σi}

I+(f(u)) f(u) = log
∑
r 6=i e

−u2

SSNE [22] Wij =
W (si,sj ,xi,xj)∑
r 6=i W (si,sr,xi,xr)

I+(f(ν)) f(ν) = log(
∑n
j=1 ν

−p)

MAFE-UR [49] Wij = W (si, sj ,xi,xj) I+(f(u)) f(u) = ξru
−2

where u = ‖yi − yj‖, ν = ‖yi − ρyj‖, f(·) approximates the indicator constraint,H = I− eeT /n, e is a n dimensional vector with e = [1, 1, · · · , 1]T .

I+(f(u)) =

{
0, u > εij
∞, u ≤ εij

, εij is the equilibrium point where the attraction and repulsion forces balances out. Tij = [Sstp]2,M = −HTH.

Table II. The overall-accuracy (OA), Kappa-statistic, and class-specific accuracies for the 13 classes in the KSC hyperspectral
dataset.

OA Kappa 1 2 3 4 5 6 7 8 9 10 11 12 13

PCA 88 86.7 93.8 85.8 89 62.2 50.5 44 82 86.5 95.5 92.2 95.7 87.6 99.9
ISOMAP 88.3 86.9 91.6 89.2 84.5 57.3 56.8 42.5 85.2 87.4 95.5 98.4 94.5 89.4 100

LLE 89.5 88.3 92.6 89 84 60.8 54.4 49 81.5 87.5 94.9 98.2 98.6 94.9 100
LDA 94 93.4 95.4 94 84.8 75.4 79.2 78.3 82.8 91.4 97.2 100 98.8 99.3 100
sLLE 93.2 92.4 96.4 94 93 73.1 65.5 62.3 91.7 91.3 98.9 98.6 98.5 95.4 100
LFDA 94.9 93.3 94.7 92.3 89.7 76.9 82.8 82.2 91.8 93.8 98.1 99.8 98.7 99.2 100
SNE 83.5 81.9 91.2 85.34 80.4 51.9 41.2 39.3 82.77 63.62 93.56 93.68 93.81 81.91 100

SSNE 99.42 99 98 100 100 100 95.45 100 100 100 100 100 100 98.53 100
MAFE-UR 99.6 99.72 98.3 100 100 91.21 100 86.2 100 100 100 100 98.97 100 100
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Fig. 4. 2D scatter plot of the first two dimensions of the
ISOMAP embedding of KSC data.
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Fig. 5. 2D scatter plot of the first two dimensions of the
MAFE-UR embedding of KSC data.
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Fig. 6. 2D scatter plot of the first two dimensions of the
SNE embedding of KSC data.

Fig. 7. 2D scatter plot of the first two dimensions of the
SSNE embedding of KSC data.


