

8-9 October 2015 | CSIR ICC

Computer Vision for an Autonomous Mobile Robot

Dr. Daniel Withey

Contents

- Vision systems
- Computer vision for a mobile machine
- Example: Autonomous exploration and mapping
- Applications
- Summary

Human vision system

- Two primary vision sensors (eyes)
- CNS: analysis and interpretation

Computer vision system

- One or more vision sensors
- Computer: analysis and interpretation

Common sensor types

Omni-directional camera

The 5th CSIR
CONFERENCE
IDEAS THAT WORK
8-9 October 2015 | CSIR ICC

Computer vision for a mobile machine

NASA Curiosity rover – Mars

The 5th CSIR
CONFERENCE
IDEAS THAT WORK
8-9 October 2015 | CSIR ICC

- Google self-driving car
 - Lasers
 - Radars
 - Cameras
 - Proprietary software

Availability: possibly by 2020

http://www.wired.com/2015/10/googles-lame-demo-shows-us-far-robo-car-come/

The 5th CSIR 8-9 October 2015 | CSIR ICC

- Robot system hardware
 - Wheels and frame
 - Electric motors
 - **Batteries**
 - Internal sensors
 - Odometry (wheel motion)
 - IMU (3D acceleration and rotational velocities)

The 5th CSIR
CONFERENCE
IDEAS THAT WORK
8-9 October 2015 | CSIR ICC

System software

The 5th CSIR
CONFERENCE
IDEAS THAT WORK
8-9 October 2015 | CSIR ICC

Vision-related system software

Computer vision algorithm – Map formation:

Simultaneous Localisation And Mapping (SLAM) – Scan matching method

Transformation determined by scan matching

- develops the map
- gives the robot location within the map

The 5th CSIR
CONFERENCE
IDEAS THAT WORK
8-9 October 2015 | CSIR ICC

Example:

- Primary vision sensor
 - 3D laser scanner
 - 32 laser beams

Applications

Applications

Remote reconnaissance

Obtain information about a selected area/region from a remote location.

Examples:

- Public safety, police operations
- Hazardous materials detection
- Military reconnaissance operations

http://www.irobotweb.com/~/media/Files/Robots/Defense/iRobot-Nuclear-Industry-Applications.pdf?la=en

Applications

Remote inspection

Remote scans of selected structures/materials

- structural integrity
- operational status

Remote – due to hazards or space constraints.

Examples:

- Liquid chemical storage tank
- Nuclear plant
- Damaged infrastructure

http://www.irobot.com/For-Defense-and-Security/Robots/510-PackBot#PublicSafety

Summary

Summary

- Computer vision:
 - sensors <u>and</u> analysis hardware/software
- Autonomous mobile robot:
 - Unconstrained environments
 - Artificial intelligence
 - Control own motion
- Applications:
 - Exploration and mapping
 - Remote reconnaissance
 - Remote inspection

Thank you

